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Abstract

Motivation: Data normalization is an important step in processing proteomics data generated in mass spectrometry
experiments, which aims to reduce sample-level variation and facilitate comparisons of samples. Previously pub-
lished methods for normalization primarily depend on the assumption that the distribution of protein expression
is similar across all samples. However, this assumption fails when the protein expression data is generated
from heterogenous samples, such as from various tissue types. This led us to develop a novel data-driven
method for improved normalization to correct the systematic bias meanwhile maintaining underlying
biological heterogeneity.

Results: To robustly correct the systematic bias, we used the density-power-weight method to down-weigh outliers
and extended the one-dimensional robust fitting method described in the previous work to our structured data. We
then constructed a robustness criterion and developed a new normalization algorithm, called RobNorm.
In simulation studies and analysis of real data from the genotype-tissue expression project, we compared and eval-
uated the performance of RobNorm against other normalization methods. We found that the RobNorm approach
exhibits the greatest reduction in systematic bias while maintaining across-tissue variation, especially for datasets
from highly heterogeneous samples.

Availabilityand implementation: https://github.com/mwgrassgreen/RobNorm.

Contact: huatang@stanford.edu or mpsnyder@stanford.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Mass spectrometry (MS) has made a significant progress over the
last few decades, enabling the identification and quantification of
thousands or ten thousands of proteins (Callister et al., 2006;
Chawade et al., 2014; Välikangas et al., 2018). Nowadays, the use
of mass tags allows for multiplexing several samples in a single MS
experiment, which permits quantification of protein levels and
increases data throughput. This simultaneous measurement also
benefits statistical analysis in reducing within-run technical vari-
ation. Despite the advancement of the underlying technology and
labeled experiment designs, MS data is still affected by the systemat-
ic biases introduced during sample preparation and data generation
processes (Chawade et al., 2014). Inclusion of a normalization step
is thus needed to correct such systematic biases and to make sample
expression more comparable.

Using tandem mass tag (TMT) liquid chromatography-mass
spectrometry (LC-MS), (Jiang et al., 2020) quantified 12 627 pro-
teins from 32 normal human tissue types in the genotype-tissue ex-
pression project (GTEx). The dynamic range of protein expression
profiles between heterogenous tissue types can be quite different
from each other. This makes it hard to distinguish between technical
variation and biological variation. In this setting, how to correct for
inevitable technical variations while maintaining important bio-
logical variation becomes challenging at the normalization step.

One approach from experimental design is to resort to spike-ins
or house-keeping peptides/proteins controls. However, distinct from
genomic analysis methods, there are no well-defined housekeeping
proteins across tissues in the proteomics analysis that could be used
in a similar way. From the computational perspective, current wide-
ly used normalization methods for MS data analysis are primarily
derived from microarray analysis (Callister et al., 2006; Chawade
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et al., 2014; Välikangas et al., 2018). Most of these methods rely on
the implicit assumption that the protein distributions across all sam-
ples are similar. However, this assumption does not hold when ex-
pression profiles across or within samples are highly heterogenous,
such as from various tissue types in the GTEx project. This moti-
vated us to develop a new data-driven robust normalization method,
called RobNorm, to robustly correct technical variations while pre-
serving important heterogeneity information.

We used the density-power-weight method to down-weigh out-
liers and extended the previous work of Windham (1995) and
Fujisawa and Eguchi (2008) to our setting in Section 2. We com-
pared the performance of RobNorm with several commonly used
normalization methods in Section 3. Not all the normalization meth-
ods have the ability to robustly correct the systematic bias without
ruining the underlying heterogeneities. Our RobNorm approach
showed the best performance for preserving heterogenous sample
expression, as shown in Section 3. We conclude the article and dis-
cuss a few limitations of the method in Section 4.

In this work, we focused on normalizing the relative abundance
(in the logarithm scale) of the labeled quantitative proteomics data.
Potential application in the label-free quantitative proteomics is dis-
cussed at the end of the article.

2 Materials and methods

In our approach, we called the systematic bias the ‘sample effect’.
The protein expression matrix was viewed as structured data with
row expression determined by the effect from each protein’s level
while column expression was determined by the sample effect.
Besides sample effect, protein expression was modeled from a mix-
ture distribution with a Gaussian population distribution. Using this
mixture model, we extended the one-dimensional robust fitting
shown in the previous work of Windham (1995) and Fujisawa and
Eguchi (2008) to the structured proteomics data and obtained a ro-
bust estimation for the sample effect from our algorithm RobNorm.
The technical details are provided in the following subsections. In
notation below, variables in bold represent vectors and variables
with a capital letter denote a matrix based on the context.

2.1 Mixture model
Define the protein expression matrix by X in log scale. The element
Xij represents the expression for ith protein from jth sample, i ¼
1; . . . ; n; j ¼ 1; . . . ; m; where n is the protein number and m is
the sample size. For the ith protein, the expression Xij from sample j
is affected by the sample effect �j. The sample effect �j is the com-
mon factor in all expression data from sample j, which is the system-
atic bias to remove. Besides the sample effect, the assumption that
all the sample expression come from the same distribution is hard to
uphold using heterogenous samples. Hence, we modeled protein ex-
pression from a mixture distribution, allowing the presence of out-
liers. For each protein, the majority of its expression is determined
by the same population distribution. We took a parametric ap-
proach to model the overall population distribution as a Gaussian
distribution. The remaining expression data are outliers, which can
be technical errors or tissue specific expression. Usually their distri-
bution is unknown. Therefore, we did not specify the outlier distri-
bution. This is one advantage of our model. In formula (1), the
Gaussian-population mixture model for the expression in the ith
protein is as follows,

Xij � �j þ ð1� pi1ÞNðli0; r2
i0Þ þ pi1Fi1; (1)

where pi1 2 ½0; 0:5Þ is the outlier proportion. From Model (1), a
fraction ð1� pi1Þ of samples come from the Gaussian-population
distribution Nðli0; r2

i0Þ with mean li0 and variance r2
i0, while the

rest of samples are outliers from unknown distribution Fi1. The
parameters ðli0; r2

i0Þ in the Gaussian population are called the pro-
tein effect. They can be different in various proteins. If a protein has
no outliers, that is pi1 ¼ 0; then its expression can be written as

Xij ¼ �j þ li0 þ eij; where eij �iid N 0; r2
i0

� �
; j ¼ 1; . . . ; m:

Relaxing this assumption on the outlier distribution makes the
model more flexible. Here we assumed independence for all the ex-
pression data.

2.2 Robust criterion for the structured data
In the presence of outliers, our goal is to robustly estimate the sam-
ple effect. The literature of robust estimation is rich in statistics
(Hampel et al., 2011; Huber, 2011; Maronna et al., 2018; Tyler,
2008). The work of Basu (1998), Fujisawa and Eguchi (2008) and
Windham (1995) used an approach to down-weight the outliers by
weighting each data point by the fitted density to power c. The par-
ameter c is the exponent of the weighted density. Previous work
found that this approach can still maintain robustness even when
the outlier proportion is not small, which fits our setting with sam-
ple expression that is highly heterogeneous.

Suppose the sample effect �: is known and then the adjusted ex-
pression �Xij ¼ Xij � �j; j ¼ 1; . . . ; m; are independently and
identically distributed (i.i.d.) from the mixture distribution
ð1� pi1ÞNðli0; r2

i0Þ þ pi1Fi1. In the procedure of Windham (1995),
a weight wij is assigned to the adjusted expression �Xij by

wij ¼
f c
i0ð~xij; hÞPm

j¼1 f c
i0ð~xij; hÞ

; (2)

where c � 0, and f0 �x; hð Þ is a Gaussian density function with par-

ameter h ¼ ðl; r2Þ. If the underlying population parameter is

known, that is, h ¼ ðli0; r2
i0Þ, then the theoretical distribution of

the weighted data fðwij;� XijÞgm
j¼1 is still Gaussian

N li0; r2
i0=ð1þ cÞ

� �
; but its variance is shrunk by 1=ð1þ cÞ of the

original variance. In the illustrated example shown inFigure 1, the
outliers go to the tail of the density of the weighted data and thus do
not contribute substantially to the population estimation. In this
way, the expression from the population gains more weights while
the outliers gain less, which achieves the goal of robustness.

Windham’s procedure estimates the population parameters by
solving the estimation equation,

Xm
j¼1

wijuð~xij; hÞ ¼
ð

uðx; hÞ f 1þc
i0 ðx; hÞÐ

f 1þc
i0 ðy; hÞdy

dx;

where u x; hð Þ ¼ @logfi0 x; hð Þ=@h is the score function of the log-
likelihood function. In the same approach of down-weighting the

log2(relative abundance)
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Fig. 1. An illustration of the population estimation from the down-weighting outlier

procedure using simulated expression for one protein. The protein expression profile

is generated from the mixture model �X :j � 0:8N 0; 1ð Þ þ 0:2N 3; 1ð Þ;
j ¼ 1; . . . ; 200. The blue bars (in the left bump) correspond to the population ex-

pression (about 80% samples) from distribution N(0, 1) and the yellow ones (in the

right bump) correspond to the outlier expression (the rest about 20% samples) from

distribution N(3, 1). The blue solid curve indicates the underlying population

Gaussian distribution N(0, 1). The blue dashed curve indicates the theoretical

weighted population Gaussian distribution N(0, 1/(1 þ c)) from the down-weighting

outlier procedure. The red curve is the fitted population distribution from method

RobNorm under c ¼ 1
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outliers, the work of Fujisawa and Eguchi (2008) found a robustness
criterion—c-cross entropy in (3), which gives the same estimates as
from the Windham’s procedure,

dc;iðf i; fi0;hÞ ¼
1

1þ c
log

ð
f 1þc
i0 ðx; 0Þdx� 1

c
log

1

m

Xm
j¼1

f c
i0ð ~Xij; hÞ

¼ 1

1þ c
log

ð
f 1þc
i0 ðx; 0Þdx� 1

c
log

1

m

Xm
j¼1

f c
i0ðXij � vj; hÞ;

(3)

where c > 0 and �f i is the empirical density of the adjusted expres-
sion in the ith protein. As c approaches to zero, the limit of the c-
cross entropy criterion is the negative of averaged log-likelihood
function,

d0;iðf i;fi0;hÞ ¼ �
1

m

Xm
j¼1

log fi0ðXij � vj; hÞ:

In the case of c ¼ 0, the weight in (2) is 1=m for all samples. If
there are no outliers, taking c ¼ 0 gives the most efficient esti-
mates—maximum likelihood estimation (MLE). In the presence of
outliers, large c values down-weigh the outliers more aggressively
and hence could provide more robustness. The model parameter c
essentially balances robustness and efficiency.

To estimate the sample effect in our structured data, we
extended the criterion of c-cross entropy for a single protein to the
weighted summation of the c-cross entropies from all proteins. Note
that wij values are self-standardized for each protein, i.e.Pm

j¼1 wij ¼ 1. We define the weighted sample size by

Mi ¼
Xm
j¼1

f c
i0ð~xijj; hÞ; (4)

from the denominator of wi: defined in (2). For example, there are
five data points fx1; x2; . . . ; x5g. If we re-weight x1 and x2 each
by 1=2 and others by 0, then the weighted sample size M ¼ 2. Our
robustness criterion for the structured data is

dðstrucÞ
c ðf ; f0;h0

Þ ¼
Xn

i¼1

Mi � dc;iðf i; fi0;hi0
Þ; (5)

where dc;i is defined in (3) and Mi is defined in (4). When c ¼ 0, the
criterion (5) becomes the negative of log-likelihood function from
all the expression.

2.3 Robust normalization
Based on criterion (5), the robust estimate for ðm; h0Þ is

ðv̂; ĥ0Þ ¼ argminðv;hÞ
Xn

i¼1

Mi

� 1

1þ c
log

ð
f 1þc
i0 ðx; hÞdx� 1

c
log

1

m

Xm
j¼1

f c
i0ðXij � vj; hÞ

 !

where h0 ¼ l0; r2
0Þ

�
are the population parameters. The weight and

the estimates are obtained in an iterative fashion. Given the weights
w, taking the derivatives of d strucð Þ

c with respect to the parameters
gives

l̂ i0 ¼
Pm

j¼1 wijðxij � vjÞ;
r̂2

i0 ¼ ð1þ cÞð
Pm

j¼1 wijðxij � vjÞ2 � l̂2
i0Þ;

v̂j ¼
Pn

i¼1

wijMi

r̂2
i0

ðxij � l̂ i0Þ=
Xn

i¼1

wijMi

r̂2
i0

:

8>>><
>>>:

(6)

In turn, the weight w is updated based on l̂i0; r̂2
i0; �̂ j

� �
from

the previous iteration. The fixed points from the iterations are the
final estimates. We summarized the steps in Algorithm 1. Note that
there is an unidentifiability in estimating li0 and �j. Both ðli0; �jÞ
and ðli0 � c; �j þ cÞ satisfy the equations in (6), where c is a

constant. One common way to remove this ambiguity is to set c as
the sample effect for the standard sample x0, which is constructed of
sample medians from individual proteins. Although our estimation
does not rely on such a standard sample, we introduced x0 in the al-
gorithm. In the initial step, the estimate for the sample effect m 0ð Þ is
attained from a commonly used method—probabilistic quotient
normalization (PQN) (Dieterle et al., 2006). More analysis and per-
formance comparisons with PQN are in Supplementary Material.

3 Results

In this section, we first reviewed several existing normalization
methods and then compared their performance against our
RobNorm approach in both simulation studies and application to
real data.

3.1 Summary of current normalization methods
Most normalization methods used for the MS proteomics data are
adapted from microarray analysis. The work of Callister et al.
(2006), Chawade et al. (2014) and Välikangas et al. (2018) gave a
systematic review on commonly used normalization methods. Here
we summarized these methods into four categories in
Supplementary Table S1.

From Supplementary Table S1, Category I includes normaliza-
tion methods that use simple sample shifting, including mean/me-
dian normalization and PQN. The advantage of this approach is
easy to implement. However, without a targeted model, it is hard to
reduce the systematic bias to the desired level.

Our RobNorm method belongs to the category II: model-based
normalization. This category also contains the ANOVA-based nor-
malization methods (Hill et al., 2008; Oberg et al., 2008; Oberg and
Mahoney, 2012) and EigenMS (Karpievitch et al., 2009). ANOVA-
based normalization methods attempt to remove all sources of
biases from the model, such as the effects from tags, experimental
groups and peptides. However, aiming to include all these effects in
the model may lead to the problem of overfitting. Moreover, it is im-
possible to identify all the relevant sources of biases due to the com-
plexity of MS experiments (Karpievitch et al., 2009). Furthermore,
if there is some effect, such as the tissue effect, not included in the
model, the estimation of the sample effect from ANOVA may not be
robust. EigenMS is another approach adapting the surrogate

Algorithm 1: Robust normalization (RobNorm).

Input: a combined matrix x0;Xð Þ with the first column from

the standard sample expression and the remaining columns

from the expression matrix X; parameter c, iteration step

counter k (starting from 1) and a small tolerance � (¼ 10�4

by default).

Output: robustly normalized data matrix

1. Initialize m 0ð Þ; l 0ð Þ; r2Þ 0ð Þ
� ��

. m 0ð Þ is obtained from PQN

and l 0ð Þ; r2Þ 0ð Þ
� ��

are the MLEs of the normalized data

adjusted by m 0ð Þ.

2. Calculate wðkÞ from m k�1ð Þ; l k�1ð Þ; r2Þ k�1ð Þ
� ��

based on

(2).

3. Update m kð Þ; l kð Þ; r2Þ kð Þ
� ��

given wðkÞ based on (6).

4. Replace l kð Þ by ðl kð Þ þ � kð Þ
1 Þ and m kð Þ by m kð Þ � � kð Þ

1 Þ:
�

5. Update k  kþ 1

6. Repeat steps 2-5 until k n kð Þ � nðk�1Þ k1 < � and

k � 50, where n ¼ m; l;r2Þ:
�

Finally attain the robustly

normalized data matrix by subtracting �̂ j from the corre-

sponding column of X.
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variable analysis (SVA) method of (Leek and Storey, 2007) to re-
move possible bias from unmodeled effects. It was formulated in
two steps: (i) to remove the known effects from experimental design,
and (ii) to apply SVA on the residuals to remove possible unknown
bias trends. One concern inherent to this method is that it may elim-
inate the biological differences in the differentially expressed (DE)
proteins, especially when the truly differential expression is strong
and dense. Since EigenMS was implemented in two successive steps,
the robustness of its estimation in the first step may affect the stabil-
ity of its results in the second step. Compared to ANOVA-based
normalization that includes all effects in one model and EigenMS
that estimates the known and unknown effects in two steps, we in-
stead put unmodeled and unknown factors into the outlier distribu-
tion and then robustly estimated the sample effect.

Category III comprises the sample variance stabilization normal-
ization (VSN) method (Huber et al., 2002). Methods based on
sample-to-reference transformation belong to Category IV. The as-
sumption of the methods in these two categories is that the majority
of the proteins are non-differentially expressed (non-DE). Since non-
DE proteins are mainly affected by systematic bias, the normaliza-
tion methods attempt to correct this bias based on non-DE protein
data. As the non-DE proteins are unknown beforehand, several nor-
malization methods make use of robust estimation approaches.
Quantile normalization is based on this assumption and transforms
the distributions of all samples to be conform to the empirical cumu-
lative density function (e.c.d.f.) of the reference sample (Bolstad
et al., 2003). VSN estimates the sample transformation parameters
from the least trimmed sum of squares (LTS) regression. In its imple-
mentation, VSN provides options for tuning the LTS quantile par-
ameter for robustness. Linear regression-based normalization
methods use robust least median regression (rlm) to project the
unnormalized expression onto the reference sample expression
(Chawade et al., 2014). Loess-based methods are based on robust
loess fitting tuned by a span parameter (Ballman et al., 2004;
Dudoit et al., 2002; Ting et al., 2009). However, when the sample
expression is highly heterogeneous, the assumption that the majority
of the proteins are non-DE is hard to maintain. In the simulation
studies in Section 3.2, we investigated the performance of these ro-
bustness methods against differing degrees of heterogeneity to iden-
tify the level of heterogeneity at which methods become unreliable.

3.2 Simulation studies
We examined the performance of the normalization methods men-
tioned in Section 3.1 in simulated data. We listed the methods for
comparison below and provided their implementations in R func-
tions (Team, 2013) as references. The methods for comparisons are:
our RobNorm approach under c ¼ 0:5; 1 for the large sample size
and under c ¼ 0:1; 0:5 for small sample size, ANOVA method
(c ¼ 0), mean/median normalization, PQN (Dieterle et al., 2006),
EigenMS (Karpievitch et al., 2009), VSN [R library vsn—justvsn(.)
(Huber et al., 2002)] under LTS quantile parameter 0:9; 0:7; 0:5,
quantile normalization [R library preprocessCore—normalize.quan-
tiles(.) (Bolstad et al., 2003)], Rlr and its variant RlrMA (Chawade
et al., 2014), LoessCyc and its variant LoessMA under span parame-
ters 0:9; 0:7; 0:5 [R library limma – normalizyCyclicLoess(.)
(Ritchie et al., 2015)]. For the Loess-based normalization (Dudoit
et al., 2002), we used fast Loess for computational efficiency.

Simulated data. Using the same notation as in model (1), the out-
lier distribution Fi1 here is specified as Gaussian Nðli0 þ Dl; r2

i0Þ.
The generative underlying model in the simulations is as follows

Xij � �j þ ð1� pi1ÞNðli0; r2
i0Þ þ pi1Nðli0 þ Dl; r2

i0Þ; (7)

where i ¼ 1; . . . ; n; and j ¼ 1; . . . ; m. The protein population
mean li0’s were generated from Nð0;1Þ and the protein variance
r2

i0’s were from inverse-Gamma distribution with the shape param-
eter at 5 and scale parameter at 0.5. 80% of sample effect �j’s were
obtained from Nð0; 1Þ, and the remaining 20% �j’s from Nð1; 1Þ.
The distributions of the generated parameters are shown in
Supplementary Figure S1. The first half of the samples were treated
in group 1 and the last half in group 2. In the simulations, the

outliers were concentrated in two regulation blocks, one block per
group. The simulated dataset was visualized in Figure 2 (left panel).
The 80% expression levels in the up-regulated block (in the upper
left corner in color red) was up-shifted by Dl in mean and, similarly,
80% expression levels in the down-regulated block (in the bottom
right corner in color blue) were down-shifted by Dl in mean. There
is no overlap between the regulation blocks.

In the simulated data shown in Figure 2, there are clear stripes in
the columns, indicative of the sample effect. The right panel in
Figure 2 shows the normalized expression from RobNorm. After the
sample effect was robustly removed, the underlying regulation
blocks were recovered.

In the differential expression (DE) analysis, four cases were con-
sidered: (i) DE protein proportion ¼ 2�10% (10% for up-
regulation, 10% for down-regulation) and DE mean change Dl ¼
61, (ii) DE protein proportion ¼ 2�10% and Dl ¼ 63, (iii) DE
protein proportion ¼ 2�20% and Dl ¼ 61, (iv) DE protein pro-
portion ¼ 2�20% and Dl ¼ 63. The protein size n was set as 5000
and the sample size m as 200 and 40. The Wilcoxon rank sum test
was applied for each protein after normalization and the Area
Under the Curve (AUC) for each method was recorded. We repeated
the procedure independently 20 times. The reports were summarized
in Figure 3 (m ¼ 200) and Supplementary Figure S2 (m ¼ 40).

When sample size m ¼ 200; RobNorm delivered the best per-
formance in all four cases (Figure 3). The performance of RobNorm
under c ¼ 1 was slightly better than that under c ¼ 0:5, especially in
the case that the outlier magnitude was large. Among the methods
in Category I, PQN performed the best but was still out-performed
by RobNorm, which indicated the importance of incorporating data
structure into the normalization step. Using quantile parameters
from 0:9 to 0:5, the performance of VSN was dramatically
improved. Under quantile parameter ¼ 0:5, VSN removed 50% ex-
treme data points to be robust enough to estimate the normalization
factors, although it still performed worse than RobNorm. Other
methods in Category II generally performed worse than RobNorm.
Without iterating the expression of the reference sample, the
LoessMA had even lower power than LoessCyc at finding DE pro-
teins. One observation in this simulation study was that the results
from EigenMS had much larger variation than all other approaches.
We speculated that this variation may arise from failures of distin-
guishing true signals from unwanted bias.

Comparison results under sample size m ¼ 40 are summarized in
Supplemental Material. When the sample size was small, the fitted
population of some proteins could be locally trapped such that the
variance of those proteins was very small under a large c. To avoid
this, a small c for RobNorm is recommended. In simulations where
m ¼ 40, we set c ¼ 0:1; 0:5. RobNorm under c ¼ 0:5 performed
better than the rest of the methods except EigenMS. EigenMS
achieved the best performance on average but at the cost of larger

Fig. 2. An illustration of a simulated data expression matrix under the setting of pro-

tein number n ¼ 500, the sample number m ¼ 20 and the regulation effect jDlj ¼ 3.

Each row is the expression of a protein from 20 samples and each column is the ex-

pression of a sample from 500 proteins. There are two regulation blocks. One

occurs in the upper left block in the first 100 proteins from the first four samples

and the other in the bottom right block from the last 100 proteins from the last four

samples. Each sample (the column) is affected by a sample effect. The left panel is

the raw expression. The right panel is the normalized expression from method

RobNorm under parameter c ¼ 0:5: The simulation details are in Section 3.1
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variation. Note that EigenMS adjusted both known and unknown
biases while other methods focused only on adjusting known biases.

We further investigated the performance of RobNorm and one
competitive method PQN in estimating the sample effect and protein
effect under various outlier proportions and magnitudes. The effect
of the choice of c was also explored in Supplementary Material. In
the simulation studies under m ¼ 200, the estimation for the sample
effect from RobNorm achieved high accuracy in terms of sum of
squared errors and was not affected much by the choice of c. We
observed that a properly selected c would improve the estimation ac-
curacy for the protein effect.

3.2 Real data application
We applied the normalization methods above to the labeled proteo-
mics dataset generated in our previous work (Jiang et al., 2020). In
this dataset, each run had a pooled reference sample. The peptide
abundances were first normalized by the total sum normalization
and then summarized to the protein level. Their relative abundances
were obtained by calculating the ratios of the sample abundances to
the reference. To evaluate normalization performance, we only

considered the 5970 proteins that were observed in at least 100 sam-
ples to avoid possible bias from missing values.

Details in identification and quantification can be found in
Supplementary Material in Jiang et al. (2020).

With the exception of the VSN method working with the raw
relative abundance data, all the other normalization methods use
log transformed data. For the fast loess (LoessCyc) normalization
method, the default iteration limit is 3. We found that the estimation
from LoessCyc did not converge within 100 iterations for this data-
set. Hence, we did not include LoessCyc and only included the
LoessMA method which does not iterate reference sample expres-
sion. The methods applied in this dataset were RobNorm (under
c ¼ 0:5; 1), ANOVA (c ¼ 0), EigenMS, PQN, mean/median nor-
malization, quantile normalization, Rlr, RlrMA, VSN (under quan-
tile parameter ¼ 0:9; 0:7; 0:5) and LoessMA (under span parameter
¼ 0:9;0:7;0:5). The implementation of EigenMS removed the pro-
teins with any missing values so the normalized data from EigenMS
covered only 4816 proteins.

To evaluate the performance of these normalization methods
(Callister et al., 2006; Chawade et al., 2014; Välikangas et al.,
2018) discussed several relevant metrics, such as quantitative met-
rics to evaluate within-group and across-group variation and quali-
tative visualization measures. We first evaluated the effect of the
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Fig. 3. The effect of normalization method on the differential expression (DE) analysis in terms of AUC from simulation studies. In the simulations, the sample size m was set as

200. Four situations were considered and each panel shows the AUC results in each situation. Situation (1): DE protein proportion ¼ 2� 10% and DE mean change ¼ 61 (the
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average AUCs from 20 independently repeated simulations. The error bar corresponds to 61 standard deviation from the averaged AUC
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Fig. 4. The effect of normalization method on within-tissue variation from the

GTEx proteomics dataset. The within-tissue variation was measured by the pooled

intragroup median absolute deviation (PMAD) method introduced in Chawade

et al. (2014)
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normalization method on the within-tissue variation in terms of
the pooled intragroup median absolute deviation (PMAD). From
Figure 4, except the EigenMS method, most of the methods
including RobNorm did not significantly decrease the PMADs
compared to the raw unnormalized data. It may be because the
high quality of the reference samples and labeled experimental
design help reduce within-tissue variation in the raw data. We
next focused on evaluating the effect of the normalization
method on the across-tissue variation.

As a qualitative measure, we visualized the distribution of tissue
expression after normalization. In Figure 5, the densities of muscle
and heart ventricle expression obviously lagged behind other tissue
expression toward low values in the raw data. This can be explained
by the fact that high signals from a small number of abundant pro-
teins can suppress the signals from lower abundance proteins in
muscle and heart tissues (Jiang et al., 2020). The purpose of normal-
ization is to make most of the expression comparable across all tis-
sues and the adjustment factors should not be strongly affected by a
few extremely high or low abundances. In RobNorm normalized
data, the density peaks of all the tissues are aligned together in
Figure 5, while the EigenMS and VSN adjusted data still produce
muscle and heart tissue densities deviated from other tissue densities,
which lowers their ability to detect up-regulated muscle or heart
proteins. All method density comparisons are shown in
Supplementary Figure S9.

We further investigated the normalization effect on the across-
tissue variation in differential expression (DE) analysis. As full tissue
expression analysis was studied in Jiang et al. (2020), here we focused
on comparing muscle group expression versus non-muscle group ex-
pression on the normalized datasets. The proteins observed in at least
five samples in both two groups were included in this DE analysis.
The Wilcoxon rank sum test was applied for each protein and signifi-
cantly regulated proteins under BH adjusted P-value < 0.05 were
reported (Benjamini and Hochberg, 1995). The DE results are sum-
marized in the Supplementary Figure S10 with volcano plots. Based
on the significantly up-regulated muscle proteins from the DE results,
GO term biological function analysis was applied and was imple-
mented using the software STRING (Franceschini et al., 2012). 1232
significantly up-regulated proteins resolved in muscle were detected
from the RobNorm adjusted dataset. They were significantly enriched
in the skeletal-muscle-function-related GO terms, including respira-
tory electron transport chain, oxidative phosphorylation, mitochon-
drial electron transport, NADH to ubiquinone, muscle system
processes, muscle contraction, aerobic respiration, glycolysis and
fatty acid metabolic process (with BH adjusted P-value < 10�8).
Approximately 900 proteins detected using RobNorm were not
detected in raw data or in EigenMS adjusted data. Those undetected
proteins were highly enriched in muscle-related functions, including
generation of precursor metabolites and energy, muscle system pro-
cess, muscle organ development, muscle contraction, mitochondrial
electron transport, NADH to ubiquinone and skeletal muscle con-
traction (with BH adjusted P-value < 10�5). This indicated that im-
proper normalization methods may limit discoveries in protein
function and tissue regulation. Moreover, we evaluated the coverage
of significantly up-regulated proteins over the proteins belonging to
four well-known muscle-function related GO terms—NADH ubi-
quinone oxidoreductase subunit, myosin, mitochondrial protein and
ATP protein. As shown in Figure 6, the coverage from raw data,
EigenMS, VSN, Quantile, mean and median normalized data are
<80% in at least one protein group. The Rlr method and our
RobNorm approach have similar coverage. For the down-regulated
proteins, we found that those proteins whether they were detected
from RobNorm or other methods were mainly enriched in the basic
protein functions, such as vesicle-mediated transport, protein trans-
port and protein localization. Moreover, we did not obtain much sig-
nificant GO term enrichment associated with non-muscle-tissue-type
specific functions. It may be because we restricted the proteins to be
observed in at least five samples in each group in this DE analysis
such that the non-muscle-tissue-type specific proteins were filtered
out. Hence, here we did not further evaluate performance differences
in detecting down-regulated proteins.

4 Discussion and conclusion

In analyzing MS data from labeled experimental designs, we devel-
oped a new data-driven robust normalization method (RobNorm)
and compared the performance of RobNorm to several commonly
used normalization methods. From these studies and their applica-
tion to real data, we concluded that our RobNorm approach offers
the best performance in correcting systematic bias while maintaining
underlying biological heterogeneities. However, there are still some
limitations in the method and future work to be done.

Model assumption. The RobNorm approach was based on the
assumption that the majority of protein expression follows a
Gaussian distribution in logarithmic scale. Based on the Gaussian
population assumption, we obtained an explicit formula to estimate
the sample effect. If the underlying distribution has heavier tails,
such as a t-distribution with a small degree of freedom, a similar
framework can be still applied. To maintain the power for perform-
ance at normalization, it is required to adjust the weight function
based on the t-distribution.

Model flexibility and stability. To model the protein expression
in the step of normalization, we only modeled the sample effect and
the protein effect as the primary parameters, while EigenMS consid-
ered both known and unknown effects. As pointed out in
Karpievitch et al. (2009), normalization models need to be flexible
enough to capture biases of arbitrary complexity while avoiding
overfitting that would invalidate downstream statistical inference.
From our simulation studies with highly heterogenous sample ex-
pression, we found that EigenMS failed to distinguish the true sig-
nals from the unwanted effects and its performance had high
variation. There is still a need to robustly and stably remove both
known and unknown systematic biases in future work.

Choice of c. Our robust estimation was based on the density-
power-weight approach. The model parameter c is the weight expo-
nent, which balances robustness and efficiency of the estimation.
Since our algorithm sets the same c for all proteins, the c can be large
for some proteins such that their population fitting was locally
trapped, i.e. the estimated variance was too small. To avoid this, we
suggested choosing a smaller c when the sample size is small.
Therefore, in implementing RobNorm from GitHub, we included a
warning message if the prechosen c is large. From our experience,
we recommended setting c as 1 or 0.5 when sample size is greater
than 100, and otherwise setting c as 0.5 or 0.1. The ideal case is to
choose c adaptively for each protein, but this will lead to a problem
in balancing flexibility and stability of the model. How to select an
optimal c is still an open and interesting problem.

Sample size. Since our robust estimation for the sample effect
depends on the estimation of the population parameters, the sample
size cannot be too small. This is one limitation of the RobNorm
method. In practice, we suggest that the sample size should be
greater than or equal to 20.

Missing values. In practice, missing values are very common in
MS data. Since RobNorm is based primarily on population expres-
sion, random missing values would not have much effect on the

Detection proportions in muscle−functional protein groups across normalization methods

E
igenM

S

R
aw

R
obN

orm
(1)

R
obN

orm
(0.5)

R
lr

R
lrM

A

LoessM
A

(0.5)

LoessM
A

(0.9)

LoessM
A

(0.7)

A
nova

P
Q

N

V
S

N
(0.5)

V
S

N
(0.9)

V
S

N
(0.7)

Q
uantile

M
ean

M
edian

NADH

Myosin

Mitchondrial

ATP

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 6. The effect of normalization method on muscle-function related GO terms

using only the up-regulated proteins for each method from differential expression

(DE) analysis. The muscle-function related four GO terms were pre-selected, includ-

ing NADH ubiquinone oxidoreductase subunit, myosin, mitochondrial protein and

ATP protein. Each cell in the heatmap shows the proportion of the number of sig-

nificant DE muscle proteins within one GO term over the total number of the pro-

teins in the corresponding GO term. The DE muscle proteins were obtained from

Wilcoxon rank sum test for muscle sample expression versus non-muscle sample ex-

pression comparison on the raw or normalized dataset

820 M.Wang et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa904#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa904#supplementary-data


normalization factors. If there are missing values in the population,
one can impute the missing values by taking the sample median or
the robustly fitted mean and then iteratively applying our algorithm
until the estimated parameters converge. To avoid possible bias
from missing values due to low expression, we recommended using
partial proteins with missing proportion < 50% to estimate the
sample effect and then apply the estimated sample effect to normal-
ize all the proteins. The work of Karpievitch et al. (2012) combined
their EigenMS normalization method with missing value imput-
ation. How to embed the missing value imputation step into our
framework can be further explored.

Extension to label-free experimental designs. Our RobNorm
method was designed to normalize labeled proteomics data. Label-
free proteomics quantification is usually considered to be more noisy
by nature when compared to labeled data (Callister et al., 2006;
Cox et al., 2014). One step normalization may not be enough to cor-
rect all the biases. The work of Kultima et al. (2009) combined the
normalization step with removing run order bias. MaxLFQ took
pair-wise comparison of peptides to best estimate protein abundance
(Cox et al., 2014). Also, different search engines may affect the
quantification results (Kuharev et al., 2015). It is possible to apply
RobNorm to label-free quantification as long as the Gaussian as-
sumption is valid for the population expression. However, there still
needs a combination of multiple processing steps used, not only one
normalization step, to fully correct systematic biases.
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