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Neurodegenerative disorders referred to as
tauopathies have cellular hyperphosphorylated tau
protein aggregates in the absence of amyloid
deposits. Comparative biochemistry of tau aggre-
gates shows that they differ in both phosphorylation
and content of tau isoforms. The six tau isoforms
found in human brain contain either three (3R) or
four microtubule-binding domains (4R). In
Alzheimer’s disease, all six tau isoforms are abnor-
mally phosphorylated and aggregate into paired hel-
ical filaments. They are detected by immunoblotting
as a major tau triplet (tau55, 64 and 69). In corti-
cobasal degeneration and progressive supranuclear
palsy, only 4R-tau isoforms aggregate into twisted
and straight filaments respectively. They appear as a
major tau doublet (tau64 and 69). Finally, in Pick’s
disease, only 3R-tau isoforms aggregate into ran-
dom coiled filaments. They are characterized by
another major tau doublet (tau55 and 64). These dif-
ferences in tau isoforms may be related to either the
degeneration of particular cell populations in a given
disorder or aberrant cell trafficking of particular tau
isoforms. Finally, recent findings provide a direct link
between a genetic defect in tau and its abnormal
aggregation into filaments in fronto-temporal
dementia with Parkinsonism linked to chromosome
17, demonstrating that tau aggregation is sufficient
for nerve cell degeneration. Thus, tau mutations and
polymorphisms may also be instrumental in many
neurodegenerative disorders.

Introduction
The cytoskeleton plays a major role in establishing

and maintaining the regional specialization within neu-
rons. Microtubules, polymers made of tubulin, are
responsible for neurite extension and serve as the tracks

for transport within the cells. Microtubule-associated
proteins also play important roles in the assembly of
microtubules, in cross-linking of microtubules to each
other and to other filaments, and in transport functions.
In some neurodegenerative disorders, referred to as
tauopathies, hyperphosphorylated microtubule-associat-
ed tau protein aggregates into abnormal filaments. These
filaments are found in glial and neurofibrillary tangles,
degenerating neurites and Pick bodies. Some tau aggre-
gates are consistently found in Alzheimer’s disease
(AD), corticobasal degeneration (CBD), progressive
supranuclear palsy (PSP) and some frontotemporal
dementia including fronto-temporal dementia with
Parkinsonism linked to chromosome 17 (FTDP-17) and
Pick’s disease (PiD) (2, 31, 46).

Tau proteins
Tau belongs to the family of microtubule-associated

proteins (131) and is involved in microtubule assembly
and stabilization. In humans, tau is found in neurons,
although non-neuronal cells also have trace amounts
(52). In the adult human brain, six tau isoforms are pro-
duced from a single gene, located on chromosome
17q21, by alternative mRNA splicing. Exons 2, 3 and 10
are alternatively spliced and allow for six combinations
(2-3-10-; 2+3-10-; 2+3+10-; 2-3-10+; 2+3-10+;
2+3+10+) (42, 43, 75).

At the protein level, tau proteins constitute a family
of six isoforms ranging from 352 to 441 amino acids
with molecular weights from 45 to 65 kDa, when run on
SDS-PAGE (Figure 1). The tau variants differ from each
other by the presence or absence of 29- or 58-amino
acids inserts located in the amino-terminal part and a
31-amino acids repeat located in the carboxy-terminal
part. In absence of the latter, which is encoded by exon
10, the spliced products give rise to three tau isoforms
with three repeats (3R). The three other tau isoforms
contain this 31 amino acids repeat and thus have four
repeats (4R). These repeats and their adjacent domains
constitute the microtubule-binding domains of tau (42,
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43, 77, 78). In normal cerebral cortex, 3R-tau isoforms
are slightly more predominant than 4R-tau isoforms
(43). Furthermore, the two tau isoforms with the 58-
amino acids insert are weakly expressed (64, 85) (Figure
1). Finally, tau isoforms may be differentially distrib-
uted in neuronal subpopulations. For instance, 4R-tau
isoforms are not detected by in situ hybridization in
granular cell of the dentate gyrus (43). These variations
indicate that the different domains of tau are likely to be
involved in various physiological functions.

There are 80 Ser or Thr residues in the longest human

brain tau isoform (441 amino acids) and tau proteins can
be phosphorylated at a number of these sites, some of
which regulate their microtubule-binding properties.
Using phosphorylation-dependent anti-tau antibodies,
mass spectrometry and sequencing, at least thirty phos-
phorylation sites have been described (Table 1) (13, 54,
55, 68, 83, 91, 109, 125). All of these sites are localized
outside the microtubule-binding domains with the
exception of Ser 262 (R1), Ser285 (between R1 and R2),
Ser305 (between R2 and R3), Ser324 (R3), Ser352 (R4)
and Ser356 (R4) (42, 43, 109, 117). Most of these phos-
phorylation sites are on Ser-Pro and Thr-Pro motives. A
number of sites on non Ser/Thr-Pro sites have also been
identified. 

As indicated above, the carboxy-terminal part of tau
proteins is characterized by the presence of 3 or 4 micro-
tubule-binding domains. These repetitive domains are
the repeats encoded by exons 9-12 (Figure 2). The 3R or
4R are made of a highly conserved 18-amino acids
repeat separated from each other by less conserved 13-
or 14- amino acids inter-repeat domains. It has been
demonstrated that adult 4R tau isoforms are more effi-
cient at promoting microtubule assembly than 3R tau
isoforms. The R1-R2 inter-repeat is likely to enhance
this binding (48). A heptapeptide (K224KVAVVR230)
located in the proline-rich region has also a high micro-
tubule binding activity in combination with the repeat
regions (Figure 2) (48). However, microtubule assembly
also depends partially upon the phosphorylation state of
tau proteins: phosphorylated tau proteins are less effec-
tive than non-phosphorylated tau on microtubule poly-
merization (5, 8, 20, 21, 32, 80). Phosphorylation of Ser
262 alone dramatically reduces the affinity of tau for
microtubules in vitro (5). Nevertheless, this site alone is
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Figure 1. Schematic representation of the six brain tau iso-
forms (ranging from 352 to 441 amino-acid). Alternative splicing
of the exons 2, 3 and 10 allows the six combinations (2-3-10-;
2+3-10-; 2+3+10-; 2-3-10+; 2+3-10+;2+3+10+). They differ from
each other by the addition of one or two 29 amino-acid inserts
(encoded by exons 2 (yellow) and 3 (orange) in the amino-ter-
minal domain in combination with either three (R1, R3 and R4)
or four (R1-R4) microtubule-binding domains (referred to as 3R
(light blue) and 4R (dark blue) respectively). The fourth micro-
tubule-binding domain (R2) is encoded by exon 10 (red box).

Phosphorylated tau sites Antibodies

T181 AT270
S202/T205 AT8
T212/S214 AT100
T231/S235 AT180
T231/S235 PHF-27/TG3
S262 12E8
S396/S404 AD2/PHF1
S422 988/AP422

Numbering is given according to the 441 amino-acid tau iso-
form. Antibodies that recognize abnormal tau phosphoryla-
tion are in italic. They are likely to recognize conformational
epitopes.

Table 1. Phosphorylation-dependent monoclonal antibodies
and their epitopes.

Figure 2. Partial sequence of the 441 amino-acid tau isoform
(Pro223-Asn410) including microtubule-binding domains.
Consensus sequences among the four microtubule-binding
domains are gray-boxed. Other major sequences with micro-
tubule-binding properties are the heptapeptide in exon 9 (blue
box), R1-R2 inter-repeat (blue box) and the phosphorylation
site Ser262 (dark green circle). The sequence encoded by exon
10 is in red. Beginning of the sequences encoded by exons 10,
11, 12 and 13 are indicated by an arrow. Ser396 and 404 are
also indicated (light green circle).



insufficient to eliminate tau binding to microtubules
(117). Thus, phosphorylation outside the microtubule-
binding domains can also influence tubulin assembly by
modifying tau-microtubule affinity (48, 87).

Alzheimer’s disease
Phosphorylation modifies tau biochemical proper-

ties, in that they become longer and stiffer (53). In neu-
rodegenerative disorders, hyperphosphorylated tau pro-
teins aggregate into intracellular filamentous inclusions.
In AD, these filaments are named paired helical fila-
ments (PHF). The major antigenic components of PHF
are tau proteins (9), and several groups have reported
phosphorylation as the major modification in these pro-
teins (38, 49, 51, 66). Their biochemical characteriza-
tion by SDS-PAGE and immunoblotting reveals the
presence of a triplet of proteins at 55, 64 and 69 kDa
(tau55, 64 and 69), and also referred to as A68, or PHF-
tau (25, 44, 49, 79). A 72-74 kDa component is also
present in only very low amounts (114). Using PHF-tau
preparations and recombinant tau proteins, Goedert and
colleagues showed that dephosphorylated PHF-tau pro-
teins have a similar electrophoretic mobility than the six
tau isoforms expressed in human brain (44). The fol-
lowing scheme is now well established (Figure 3): tau
55 results from the phosphorylation of the shortest iso-
form (2-, 3-, 10-); tau 64 from the phosphorylation of
tau variants with one cassette exon (2+, 3-, 10- and/or
2-, 3-, 10+); tau 69 from the phosphorylation of tau vari-
ants with two cassette exons (2+, 3+, 10- and/or 2+, 3-,
10+). Phosphorylation of the longest tau isoform (2+,
3+, 10+) induces the formation of the additional hyper-
phosphorylated tau74 variant (85, 93, 113, 114).

Despite the fact that many phosphorylation sites are
common to aggregated tau proteins, referred to as PHF-
tau in AD, and native tau in control biopsy-derived
materials, there are biochemical differences that differ-
entiate them and support the concept of abnormal phos-
phorylation in AD (88, 113). First, insoluble polymers
of phosphorylated tau are present exclusively in AD
brain extracts and are visualized by immunoblotting as
smears using anti-tau antibodies. Second, two-dimen-
sional immunoblot analysis reveals that PHF-tau are
more acidic than native tau derived from biopsy samples
(113). Third, hyperphosphorylation generates differ-
ences that can be visualized by a few phosphorylation-
dependent antibodies such as AT100 (86, 88, 133),
AP422 (56), 988 (17), PHF-27 (63) and the TG/MC
antibodies (i.e. TG3) (130). (Figure 4) With the excep-
tion of ser422, these sites in PHF-tau are conformation-
dependent epitopes. Recently, it was also shown that

TG3 epitope was selectively expressed in mitotic cells,
but not in quiescent cells (130). These data suggest that
cell cycle mechanisms may be affected in AD and lead
to neurodegeneration (74, 84, 130).

Altogether, these results show that the main feature
of PHF-tau is their aggregation into polymers that con-
stitute neurofibrillary lesions. The aggregation process
may be enhanced by a number of co-factors as suggest-
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Figure 3. Schematic representation of the hyperphosphoryla-
tion (P blue-circled) of the six brain tau isoforms in Alzheimer’s
disease. The two tau isoforms with the 58-amino-acid insert are
weakly expressed and are represented thinner than the others.
Tau 55 results from the phosphorylation of the shortest isoform
(2-, 3-, 10-), tau 64 from the phosphorylation of tau variants with
one cassette exon (2+, 3-, 10- and/or 2-, 3-, 10+), tau 69 from
the phosphorylation of tau variants with two cassette exons (2+,
3+, 10- and/or 2+, 3-, 10+). Phosphorylation of the longest tau
isoform (2+, 3+, 10+) induces the formation of the additional
hyperphosphorylated tau74 variant. The color codes are similar
to those used in Figure 1. On the left, a typical immunoblotting
using the phosphorylation-dependent monoclonal antibody
AD2, that recognizes phosphorylated Ser396 and 404, allows
to visualize the Alzheimer-type electrophoretic profile (tau55, 64
and 69 and the minor tau74 variant).

Figure 4. The binding sites of anti-tau antibodies. The different
well-known antibodies and their binding sites are represented
on the schematic map of the 441 amino-acid tau isoform (color
codes are similar to those described in Figure 1). With the
exception of Tau-1 that recognizes the dephosphorylated 189-
207 amino-acid sequence, all antibodies bind to phosphorylat-
ed epitopes. Antibodies that recognize abnormal tau phospho-
rylation are blue-circled.



ed in amyloidosis. Among them, glycosaminoglycans
and other polyanions might be of particular interest (41,
45, 69, 98, 120). In addition, and possibly in association
with the aggregation process, specific phosphorylation
sites are also present on PHF-tau. Tau aggregation is not
specific to AD, and is also described in many other neu-
rodegenerative disorders. Interestingly, the tau elec-
trophoretic profile is often disease-specific.

Progressive supranuclear palsy
Progressive supranuclear palsy (PSP) is a cause of

late-onset atypical Parkinsonism described by Steele,
Richardson, and Olszewski in 1964 (121). Dementia is
also a common feature at the end-stage of the disease
(81, 82). Neuropathologically, PSP is characterized by
neuronal loss, gliosis and NFT formation.
Neurofibrillary tangles were first described in basal gan-
glia, brain stem, and cerebellum (121). Subsequently,
neuronal degeneration was described in the perirhinal,
inferior temporal and prefrontal cortex, with the same
features as subcortical NFT (4, 59, 61). Furthermore,
glial fibrillary tangles have also been described (4, 18,
59, 72, 73). Ultrastructural analyses further support dif-
ferences between AD and PSP, since PHF are found in
AD (71), while straight filaments are observed in PSP
(123, 124). 

The electrophoretic profile of aggregated tau proteins
in PSP is substantially different from that in AD, as a
characteristic doublet is found (Tau 64 and Tau 69)
instead of the triplet of AD (40, 127). A minor 74 kDa
band is also detected. In fact, only hyperphosphorylated
tau isoforms with sequence encoded by exon10 (4R-tau
isoforms) aggregate into filaments in PSP whereas tau
isoforms without exon 10 (3R-tau isoforms) are not
detected (85, 116) (Figure 5). Nevertheless, most of the

phosphorylation sites in PHF-tau are also encountered
in aggregated tau proteins from PSP patients (111).
Biochemical mapping performed on several cortical and
subcortical areas from PSP brain has revealed that the
doublet of tau 64 and 69 is first detected in the subcorti-
cal regions where NFT are found, neocortical areas
being affected later (127, 129). These results are in good
agreement with previous neuropathological results that
show cortical involvement in these areas in advanced
disease (59, 61). 

Although most cases of PSP are considered to be
sporadic, familial cases such as those reported by De
Yebenes and coworkers have a pattern of inheritance
consistent with an autosomal dominant disorder (24).
More recently, a study of clinical genetics of familial
PSP suggests that hereditary PSP is more frequent than
previously thought and that the scarcity of familial cases
may be related to the lack of recognition of the variable
phenotypic expression of the disease (110). Conrad et
al. first identified a polymorphic dinucleotide repeat
sequence in the intron 9 (between exon 9 and exon 10)
of the tau gene, in a Caucasian population with PSP
(22). They described a significant over representation of
the most common allele (A0), characterized by the pres-
ence of 11 TG repeat, and of the homozygous genotype
A0/A0 in the PSP cohort (95.5%), compared to normal
controls (57.4%) or patients with AD (49.7%). Recently,
these data were subsequently confirmed by several stud-
ies considering Caucasian series (3, 60, 92, 96).
Conversely, it was not observed in Japanese populations
(23). Moreover, Baker et al. (1999) described two
extended haplotypes that cover the gene (2). In unrelat-
ed Caucasians, there was complete disequilibrium
between polymorphisms that span the gene. These
authors showed that the most common haplotype, desig-
nated H1, is significantly over represented in patients
with PSP, extending earlier reports of the association
between the intronic dinucleotide polymorphism and the
disorder (2). While not likely to be directly involved in
splicing given the distance from the splice site, it is
interesting to speculate that the dinucleotide polymor-
phism influences in some way exon 10 splicing and,
thus, the proportion of 4R-tau isoforms. Even if poly-
morphisms in the tau gene are important to the patho-
genesis of PSP, it remains to be determined at what level
it is involved. It is noteworthy that in some familial
forms of PSP, no linkage to chromosome 17 is observed
(110).

Corticobasal degeneration
Corticobasal degeneration (CBD) was first described
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Figure 5. Typical western-blots using the phosphorylation-
dependent monoclonal antibody AD2 exhibiting the elec-
trophoretic tau profiles encountered in AD, CBD, FTDP-17, PiD
and PSP. On the right side of each blot, the type of hyperphos-
phorylated tau isoforms that are found aggregated in filaments
are represented. Color codes are similar to those used in Figure
1.



in 1967 by Rebiez and coworkers as corticodentatoni-
gral degeneration with neuronal achromasia (103, 104).
CBD is a rare, sporadic and slowly progressive late-
onset neurodegenerative disorder that is clinically char-
acterized by cognitive disturbances and extrapyramidal
motor dysfunction (104). Moderate dementia emerges
sometimes late in the course of the disease (107). There
is a clinical and pathological overlap between PSP and
corticobasal degeneration (37, 81, 82, 112).
Neuropathological examination reveals glial and neu-
ronal abnormalities. The glial pathology includes astro-
cytic plaques and numerous tau-immunoreactive inclu-
sions in the white matter. Achromatic ballooned neurons
are detected in cortex, brainstem and subcortical struc-
tures, as are neuritic changes and NFT. These lesions
can be readily visualized with phosphorylation-depend-
ent anti-tau antibodies (14, 36, 37, 73, 76, 97).
Ultrastructural studies indicate that tau aggregates in
CBD form twisted filaments that differ from PHF of
AD. In CBD, filaments are shorter in length (less than
400 nm), 10 to 20% wider and the periodic twist (169 to
202 nm) is twice as long as that in AD (76).

The electrophoretic profile of tau pathological pro-
teins in CBD is similar from that of PSP (14, 36, 76),
and is described as a major tau 64, 69 doublet (Figure 5).
The components may be different since this doublet is
not detected in CBD using antibodies raised against the
region encoded by exon 3 (76). These data have been
confirmed by immunohistochemistry (36). Conversely,
in recent studies, tau isoforms with sequence encoded
by exon10 (4R tau isoforms) were found solely in CBD,
whereas tau isoforms without exon 10 were not detect-
ed. These data suggest that only 4R-tau isoforms aggre-
gate into filaments in CBD as observed in PSP (85,
116). In this respect, the only isoform with sequence
encoded by both exons 3 and 10 is the longest tau iso-
form (Figure 5). Since the longest tau isoform is found
in very low amounts in human brain, it may explain why
previous works did not find any immunoreactivity of
sequence encoded by exon 3 in their experiments (36,
76). These data confirm our observations that both size
and phosphorylation of tau isoforms are responsible for
the observed differences in tau electrophoretic mobility.
It should be noted that to date no tau polymorphism has
been reported in CBD

Pick’s disease
Pick’s disease is a rare neurodegenerative disorder

characterized by a progressive dementia and personality
deterioration. Early in the clinical course, patients often
show signs of frontal disinhibition (11, 100).

Neuropathologically, Pick’s disease is characterized by
prominent frontotemporal lobar atrophy, gliosis, severe
neuronal loss, ballooned neurons and the presence of
neuronal inclusions called Pick bodies (11, 14, 26, 62).
Pick bodies are immunolabeled by anti-PHF-tau anti-
bodies, with a higher density in the hippocampus than in
the neocortex (14, 26, 62). The laminar distribution of
Pick bodies is clearly different from that of NFT in AD,
CBD and PSP. In the hippocampus, Pick bodies are
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Figure 6. Typical western-blots using the phosphorylation-
dependent monoclonal antibodies AD2 and 12E8. AD2 labels
all tau variants among neurodegenerative disorders. The 12E8
antibody does not label the tau doublet tau 55 and 64 in PiD
whereas it labels both the PSP major tau doublet (tau64 and
69) and the AD major tau triplet (tau 55, 64 and 69).

Tau mutations Exon Tau pathology

K257T 9 AD triplet ?

I260V 9 AD triplet ?

G272V 9 AD triplet

N279K 10 PSP doublet

�K280 10 ?

L284L 10 PSP doublet

P301L 10 PSP doublet

P301S 10 PSP doublet

S305N 10 PSP doublet

+3 intronic PSP doublet

+12 intronic PSP doublet

+13 intronic PSP doublet

+14 intronic PSP doublet

+16 intronic PSP doublet

V337M 12 AD triplet

G389R 13 AD triplet

R406W 13 AD triplet

Table 2.



numerous in granular cell neurons of the dentate gyrus,
in CA1, subiculum and entorhinal cortex, whereas in the
neocortex, they are mainly found in layers II and VI of
the temporal and frontal lobes. Ultrastructurally, Pick
bodies consist of random coiled and straight filaments.

Biochemical analysis, using a quantitative western
blot approach with phosphorylation-dependent anti-tau
antibodies has revealed that in all cases of Pick’s disease
studied, a major 55 and 64 kDa tau doublet is observed
in the isocortex, in the limbic areas and in subcortical
nuclei (Figure 5) (26). In addition, a very faint band is
observed at 69 kDa (14). In the neocortex, all Brodmann
areas of the frontal and temporal lobes are affected. The
parietal cortex is frequently involved while the occipital
cortex is generally spared. In subcortical structures, the

tau doublet is found in the striatum, substantia nigra,
locus coeruleus, and brainstem (26). The presence of the
tau doublet correlated well with brain areas with Pick
bodies (26). The 55 and 64 kDa doublet characteristic of
Pick’s disease is different from the tau-triplet in AD and
tau-doublet in PSP and CBD (14, 85). Interestingly, Pick
bodies and the tau doublet tau 55 and 64 are not labeled
with immunological probes directed against the
sequence encoded by exon 10 (85,115) indicating only
3R-tau isoforms aggregate into Pick bodies (Figure 5).
Moreover, aggregated tau proteins in Pick’s disease can
not be detected by the monoclonal antibody 12E8 raised
against the phosphorylated residue ser262. In contrast,
this phosphorylation site is readily detected in other
neurodegenerative disorders (28,102) (Figure 6). Since
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Figure 7. A. Partial sequence of the 441 amino-acid tau isoform (Pro223-Asn410) showing FTDP-17 mutations. Consensus
sequences among the four microtubule-binding domains are gray-boxed. The heptapeptide with microtubule-binding properties in
exon 9 is blue boxed. The sequence encoded by exon 10 is in red. Beginning of the sequences encoded by exons 10, 11, 12 and 13
are indicated by an arrow. Ser396 and 404 are also indicated (light green circle). All FTDP-17 mutated amino acids are in green in
an explosion scheme. B. Nucleotidic sequence of the exon 10 and its 5’ and 3’ intronic regions. All FTDP-17 mutated nucleotides are
in green. The exon 10 sequence is in red caps letters. The intronic sequence is in light brown. Mutations are only shown in the stem
loop structure.



it was shown that 3R-tau isoforms can be phosphorylat-
ed at Ser262, the lack of 12E8-immunoreactivity is like-
ly to be related to either inhibition of a kinase in neurons
that degenerate in Pick’s disease or absence of these
kinases within degenerating neurons (85). The present
evidence suggests that only 3R-tau isoforms that are not
phosphorylated at ser262 aggregate in Pick bodies (28,
85).

Frontal lobe degeneration non-Alzheimer non-Pick
Frontal lobe degeneration is a neurological disorder

that has been not widely recognized until recently,
despite the fact that it is the second most common pre-
senile dementing disorder in Europe after AD. As in
Pick’s disease, it is associated with “frontal” pathology.
Pick’s disease is neuropathologically distinguished by
the presence of Pick bodies, whereas frontal lobe degen-
eration has no specific neuropathologic hallmarks.
Morphological changes include neuronal cell loss, spon-
giosis and gliosis mainly in the superficial cortical lay-
ers of the frontal and temporal cortex. No tau pathology
is observed in this disorder (11, 27, 118).

FTDP-17
Frontotemporal dementia with Parkinsonism linked

to chromosome 17 (FTDP-17) has been related to muta-
tions on the tau gene (65, 101, 118, 119). Tau mutations
segregate with the pathology and are not found in the
control subjects, suggesting their pathogenic role.
Although clinical heterogeneity has been described
between and within families with FTDP-17, the usual
symptoms include behavioral changes, loss of frontal
executive functions, language deficit and hyperorality.
Parkinsonism and amyotrophy are described in some
families. Neuropathologically, brains of FTDP-17
patients exhibit severe neuronal cell loss in frontal and
temporal lobes and gliosis in both white and gray mat-
ter. One of the main histopathologic features is filamen-
tous pathology affecting neuronal cells, or both neuronal
and glial cells.

At present 20 mutations in the tau gene have been
described among the different families with FTDP-17,
including missense mutations in coding regions (K257T,
I260V, G272V, N279K, L284L, P301L, P301S, S305N,
V337M, G389R, R406W), amino acid deletions
(�K280) and intronic mutations in the intronic region
following exon 10 at position +3, +13, +14 and +16 (6,
16, 19, 30, 33, 34, 47, 50, 58, 64, 65, 67, 90, 94, 95, 101,
106, 108, 119, 126) (Table 2; Figure 7).

Mutations may be divided in two groups: 1) those
affecting alternative splicing of exon 10 leading to

changes in the ratio of tau mRNAs containing or lacking
exon 10 and thus the proportion of 4R-and 3R-tau iso-
forms and 2) those modifying microtubule interactions.
All intronic mutations disturb a putative stem-loop
structure at the splicing site that stabilizes this region of
the pre-mRNA and may decrease access of U1snRNP to
this RNA region (50, 65, 119, 126). Without this stem
loop, access of U1snRNP may be facilitated, which
increases the formation of tau mRNAs containing exon
10 (33, 50, 126) (Figure 7). Furthermore, sequence
analysis of this splicing region in different animals indi-
cates that the lack of the stem-loop structure is associat-
ed with an increase in tau mRNAs containing exon 10
(50). All intronic mutations lead to an increase in tau
mRNAs containing exon 10, and thus in 4R-tau iso-
forms. Interestingly, in those families, only abnormally
phosphorylated 4R-tau isoforms aggregate into fila-
ments and display a tau electrophoretic profile similar to
that found in PSP and CBD (a major tau doublet at 64
and 69 kDa) (14, 40, 76, 118, 119, 129). Some missense
mutations (N279K, �K280, L284L and S305N) also
modify the splicing of exon 10 (33). For instance, the
change in nucleotide for N279K and S305N mutations
also creates an exon-splicing enhancer sequence (33).
The silent mutation L284L increases the formation of
tau mRNAs containing exon 10, presumably by destroy-
ing an exon splicing silencing element (33). Families
exhibiting these three missense mutations display the
same tau pathology (a tau doublet 64 and 69) as those
with intronic mutations (Figures 5 and 7) (33, 64, 106).

The second group of tau mutations found in FTDP-
17 includes mutations that alter the microtubule-binding
properties of tau. Goedert and co-workers reported the
effects of mutations G272V, P301L, V337M and
R406W in an in vitro system of microtubule assembly.
Mutated tau isoforms did not bind microtubules and
induce microtubule disassembly as readily a normal tau
(57). These data have been confirmed by additional lab-
oratories (33, 64) and are discussed by Yen and co-work-
ers in this symposium. When missense mutations are
located in tau regions common to all isoforms, tau iso-
forms do not bind to microtubules as well as normal and
they gradually aggregate into filaments. Their biochem-
ical characterization shows a tau electrophoretic profile
similar to that encountered in AD and is composed of a
tau triplet (tau55, 64 and 69). Conversely, when mis-
sense mutations are located in exon 10 (P301L, P301S),
only 4R-tau isoforms show poor binding to micro-
tubules and subsequently aggregate into filaments. Their
biochemical characterization shows a tau electrophoret-
ic profile similar to that encountered in PSP and CBD
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and is composed of a tau doublet (tau64 and 69)
(Figures 5 and 7). 

The �K280 mutation, which is located in exon 10, is
a particularly interesting one. Despite being in a coding
region, it may act similar to the splice site mutations by
decreasing the formation of tau mRNAs containing exon
10 and thus, enhancing the formation of 3R tau iso-
forms. Interestingly, this tau missense mutation also
affects tau binding. Thus, it should only affect 4R-tau
isoforms. No data are currently available on the bio-
chemistry of tau aggregates or the pathology in this fam-
ily (108).

In summary, these findings suggest that reduced abil-
ity of tau to interact to microtubules may be upstream of
hyperphosphorylation and aggregation. The tau muta-
tions may also lead to an increase in free cytoplasmic
tau (especially 4R-tau isoforms) that ultimately facili-
tates their aggregation into filaments (132). In this
respect, it is interesting to note that over expression of
tau was reported to block dynein-mediated axonal trans-
port (35).

Conclusions
Despite the fact that many neurodegenerative disor-

ders display specific electrophoretic tau profiles, it
should be noted that there are overlapping patterns for
some of them. The AD tau electrophoretic profile char-
acterized by a major tau triplet tau 55, 64 and 69 and a
minor variant at 74 kDa is also found in some forms of
FTDP-17 (see above), amyotrophic lateral sclerosis/
parkinsonism-dementia complex of Guam (12, 89),
Down syndrome (39), Niemann-Pick type C disease (1),
postencephalitic parkinsonism (15) and in the hip-
pocampal formation in aging (29). The tau elec-
trophoretic profile is identical for CBD and PSP even if
their clinical features are different (116). Conversely,
some disorders have unique electrophoretic tau profiles.
For instance, PiD tau doublet has not been observed in
any other disorder. Similarly, in myotonic dystrophy, tau
pathology is mostly present in temporal areas and is
characterized by an unique electrophoretic tau profile
made of a major tau 55 variant (128). Whatever the elec-
trophoretic tau profile, tau aggregation in association
areas is always correlated to dementia (14, 15, 28, 29,
127, 129).

In conclusion, tau isoforms with 3R and 4R may be
differentially expressed and their aggregation may lead
to different biochemical signatures characterized by tau
doublets and the tau triplet. Different processes may
explain these observations. First, Goedert and co-work-
ers (43) previously showed that neurons do not express

3R and 4R tau isoforms equally (for instance granule
cells of the dentate gyrus express 3R-tau isoforms) and
Delacourte and coworkers (28) clearly demonstrated
that only 3R tau isoforms aggregate in Pick bodies in
granule cells. Second, tau proteins are principally found
in axons in normal neurons, but accumulate in somato-
dendritic neuronal compartments in neurodegenerative
disorders. Since tau trafficking is phosphorylation-
dependent (7, 10, 70, 105, 122), it suggests that abnor-
mal phosphorylation of tau proteins may lead to aber-
rant cell trafficking and tau aggregation. Third, in some
tauopathies, tau isoforms may be expressed in other cell
types than neurons. For instance, tau aggregates are also
found in glial cells (73). Finally, in hereditary disorders,
differences in tau isoform expression are related to
either mutations in tau (as in FTDP-17 or in tau poly-
morphisms (as in PSP). Most of tauopathies, however,
including CBD, PiD, amyotrophic lateral
sclerosis/parkinsonism dementia complex of Guam are
not associated with tau mutations or polymorphisms
(99, 101). 

Altogether, these observations indicate that in many
tauopathies, different processes including tau mutations
or polymorphisms, aberrant cell trafficking and selective
cell vulnerability act to determine specific patterns of
neurodegeneration and corresponding tau biochemical
profiles.
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