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Abstract

The increasing prevalence of diabetes, combined with a growing global shortage of health care professionals
(HCP), necessitates the need to develop new approaches to diabetes care delivery to expand access to care,
lessen the burden on people with diabetes, improve efficiencies, and reduce the unsustainable financial liability
on health systems and payers. Use of digital diabetes technologies and telehealth protocols within a digi-
tal/virtual diabetes clinic has the potential to address these challenges. However, several issues must be resolved
to move forward. In February 2020, organizers of the Advanced Technologies & Treatments for Diabetes
Annual Conference convened an international panel of HCP, researchers, patient advocates, and industry
representatives to review the status of digital diabetes technologies, characterize deficits in current technologies,
and identify issues for consideration. Since that meeting, the importance of using telehealth and digital diabetes
technologies has been demonstrated amid the global coronavirus disease (COVID-19) pandemic. This article
summarizes the panel’s discussion of the opportunities, obstacles, and requisites for advancing the use of these
technologies as a standard of care for the management of diabetes.

Keywords: Telemedicine, Digital tools, AGP, Type 1 diabetes, Type 2 diabetes, Connected devices.

1The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider
Children’s Medical Center of Israel, Petah Tikva, Israel.

2Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.
3International Diabetes Center at Park Nicollet, Health Partners, Minneapolis, Minnesota, USA.
4Close Concerns and diaTribe, San Francisco, California, USA.
5Diabetes Centre for Children and Adolescents, AUF DER BULT, Kinder-und Jugendkrankenhaus, Hannover, Germany.
6University of Colorado Denver and Barbara Davis Center for Diabetes, Aurora, Colorado, USA.
7Science Consulting in Diabetes, Neuss, Germany.
8Division of Metabolism, Endocrinology, & Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle,

Washington, USA.
9Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA.

10Pediatric, Adolescent and Young Adult Section and Section on Clinical, Behavioral and Outcomes Research, Joslin Diabetes Center,
Harvard Medical School, Boston, Massachusetts, USA.

11Dr. Mohan’s Diabetes Specialties Centre & Madras Diabetes Research Foundation, Chennai, India.
12CGParkin Communications, Inc., Henderson, Nevada, USA.
13Department of Pediatric Endocrinology, Diabetes and Metabolism, University Medical Centre-University Children’s Hospital,

and Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
For Panel Attendees members, see Acknowledgments section.

DIABETES TECHNOLOGY & THERAPEUTICS
Volume 23, Number 2, 2021
ª Mary Ann Liebert, Inc.
DOI: 10.1089/dia.2020.0375

146



Introduction

Despite advances in antidiabetic medications and dia-
betes technologies, a substantial percentage of people

with diabetes (PwD) are not achieving their treatment goals,
resulting in inadequate clinical outcomes.1,2 A key contrib-
utor to suboptimal glycemic control is therapeutic inertia, a
combination of failure to initiate or intensify therapy ac-
cording to evidence-based clinical guidelines and non-
adherence to prescribed treatment.2–5 Although several
barriers to therapy intensification have been cited,6–10 the
underlying obstacle is often the inability to readily access
accurate and sufficient clinically relevant data that are pre-
sented in standardized formats that can be readily interpreted
and acted upon.11–13

Technology advances create the potential to address this
obstacle through use of digital diabetes technologies that
automatically collect, transfer, and interpret relevant diabetes
data in ways that facilitate more informed therapy decisions.

In February 2020, organizers of the Advanced Technolo-
gies & Treatments for Diabetes (ATTD) Annual Conference
convened an international panel of health care professionals
(HCP), researchers, patient advocates, and industry observers
to review the status of digital diabetes and telehealth technolo-
gies, characterize deficits, and identify issues for consideration.

Following the meeting, principals of the panel discussed
the importance of these technologies in the face of the global
coronavirus disease (COVID-19) pandemic, which has prompted
a dramatic restructuring of health care delivery.14–18 This ar-
ticle summarizes the panel’s discussion of the opportunities,
obstacles, and requisites for advancing the use of these tech-
nologies as a standard of care for the management of diabetes.

Efficacy of Digital Tools
and Telemedicine Technologies

Digital technologies

Continuous glucose monitoring. Numerous studies have
demonstrated the clinical efficacy of continuous glucose
monitoring (CGM) use in individuals with type 1 diabetes
(T1D) and type 2 diabetes (T2D).19–28 The recent DIA-
MOND trials showed that use of real-time CGM (rtCGM)
resulted in lower glycated hemoglobin (HbA1c) levels, less
time spent in the hypoglycemic and hyperglycemic ranges,
and reductions in moderate to severe hypoglycemia in T1D
and T2D individuals treated with multiple daily insulin in-
jections (MDI) compared with traditional self-monitoring of
blood glucose (SMBG).21,22

The more recent HypoDE trial showed that the use of
rtCGM in T1D adults with problematic hypoglycemia re-
sulted in fewer low-glucose events and episodes of severe
hypoglycemia.29 Significant and sustained reductions in
HbA1c over 3 years, with increases in the percent time in
range (%TIR) and reductions in percent time below range
(%TBR) in T1D adults treated with MDI or sensor-
augmented pump (SAP) therapy using rtCGM compared with
SMBG have also been demonstrated.23

In the recent CONCEPTT trial, investigators assessed the
clinical impacts of rtCGM use versus SMBG within a cohort
of 325 T1D women who were pregnant or planning to be-
come pregnant.30 Investigators reported significant increases
in %TIR with rtCGM compared with SMBG use (68% vs.

61%; P = 0 $ 0034, respectively). The recommended %TIR
for pregnancy in T1D is >70% at 63–140 mg/dL (3.5–
7.8 mmol/L).31 rtCGM use was also associated with lower
incidence of large for gestational age (P = 0.0210), fewer
neonatal intensive care admissions lasting >24 h (P = 0.0157),
fewer incidences of neonatal hypoglycemia (P = 0 $ 0250),
and 1-day shorter length of hospital stay (P = 0 $ 0091).

In a large prospective cohort study, investigators reported
significantly improved overall glycemic control, lower gly-
cemic variability, and reductions in mean infant birth weight
among women with gestational diabetes who used rtCGM
compared with SMBG.32

Use of intermittently scanned CGM (isCGM) has also been
shown to confer glycemic benefits in T1D25,26 and T2D27,28

adults treated with intensive insulin therapy. In adults with
well-controlled T1D, isCGM use was associated with a 38%
reduction in time spent in hypoglycemia (<70 mg/dL).25

Similar findings were reported in the REPLACE trial, which
showed a 43% reduction in time spent in hypoglycemia.28

There is also emerging evidence associating iCGM use in
individuals treated with less-intensive insulin or noninsulin
therapy with improved HbA1c33 and reductions in acute
diabetes-related events and all-cause hospitalizations.34

Insulin delivery. The benefits of SAP with predictive low-
glucose suspend functionality have also been demonstrat-
ed.35–41 Weiss et al. reported that in-home use of a hybrid
closed-loop was associated with reductions in nocturnal hy-
poglycemia events compared with use when the low-glucose
suspend function was disengaged.41 Use of hybrid closed-
loop in adults and adolescents with T1D has also been shown
to increase time in glycemic range and reductions in HbA1c,
hyperglycemia, and hypoglycemia.37 Similar results were
reported by Bergenstal et al.36

We have also seen promising evidence of improved gly-
cemic control with use of closed-loop control insulin delivery
systems.42–44 In a recent randomized-controlled trial, 168
T1D patients, the use of closed-loop control was associated
with a higher %TIR compared with SAP.45 A subset of the
study was then randomly assigned to hybrid closed-loop with
low-glucose suspend and followed for an additional 3
months.46 Similar to the previous findings, participants who
switched to hybrid closed-loop experienced significant re-
ductions in time in glycemic range and increased HbA1c, but
with similar reductions in hypoglycemia in both groups.

Telemedicine/telemonitoring technologies

There is a growing body of evidence that supports various
applications of telemedicine and telemonitoring technologies
as effective alternative methods of health care delivery.
Several recent meta-analyses and systematic reviews of
randomized-controlled trials have demonstrated the addition
of telemedicine and telemonitoring interventions in adult and
pediatric patients with T1D and T2D.47–55 Telemedicine in-
terventions appear to be most effective when HCP used Web
portals or text messaging to communicate with patients and
when telemedicine facilitated medication adjustment.47

A recent randomized-controlled trial involving 74 T1D
adults followed for 1 year showed similar reductions in
HbA1c between those supported by teleconsultations or
standard care (-1.9 mmol/mol [-0.17%] vs. -0.8 mmol/mol
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[-0.07%], respectively, P = 0.60).54 However, participants
randomized to teleconsultation interventions reported no se-
vere hypoglycemia events compared with six hypoglycemia-
related emergency room admissions in the standard care
group. Most reported increased satisfaction with these inter-
ventions, improved self-management, time savings, and cost
reductions.

An earlier study by Charpentier et al. looked at the impact
of using an app-based software program (Diabeo) for remote
insulin-dosing advice with and without follow-up tele-
consultations among 180 adult T1D patients treated with
basal-bolus therapy.55 Use of the program with teleconsults
resulted in a 0.91% HbA1c reduction, and a 0.67% reduction
without teleconsult follow-up.

Dixon et al. recently reported a study that investigated use
of a novel telehealth technology/care model (Virtual Dia-
betes Clinic) that combines connected devices (e.g., blood
glucose meter, rtCGM, remote lifestyle coaching, and clini-
cal support with a mobile app.56

Preliminary data among T2D adults who used rtCGM
(n = 740) suggested that participation in the Virtual Diabetes
Clinic program was associated with a significant improve-
ment in HbA1c with up to 6 months follow-up in those not
meeting treatment targets. HbA1c decreased by 2.3% – 1.9%,
0.7% – 1.0%, and 0.2% – 0.8% across baseline categories of
>9.0%, 8.0%–9.0%, and 7.0% to <8.0%, respectively (all
P < 0.001). Participation in the Virtual Diabetes Clinic program
has also been associated with reductions in diabetes-related
distress as measured by the Diabetes Distress Scale, specifically
in the subscale score for regimen-related distress.57

In a recent meta-analysis of 32 randomized-controlled
trials that included 5108 women with gestational diabetes,
use of telemedicine-based interventions was associated with
significant improvements in HbA1c, fasting blood glucose,
and 2-h postprandial blood glucose compared with standard
care.58 The telemedicine group also experienced better neo-
natal outcomes, including lower incidences of cesarean section,
neonatal hypoglycemia, premature rupture of membranes,
macrosomia, pregnancy-induced hypertension or preeclamp-
sia, preterm birth, neonatal asphyxia, and polyhydramnios.

A 12-month prospective pediatric study reported a sig-
nificant increase in the average number of clinician consul-
tations in 54 pediatric patients using telemedicine compared
with the previous year (2.9 – 1.3 vs. 2.0 – 1.3 times per year,
respectively [P < 0.0001]), with no significant changes in
HbA1c.59 More recently, Crossen et al. studied the effects of
home-based video visits in a cohort of pediatric T1D patients
with poor glycemic control.60 During the 12 months before
the study, clinic visits averaged 3.2 – 1.1. During the 6-month
study period, total clinician interactions increased to 5.8 – 1.5
(P < 0.001), which included 4.0 – 1.1 video visits and
1.8 – 0.6 clinic visits.

Opportunities

Leveraging the diabetes ecosystem

Continuous development of innovative digital health
technologies has created a diabetes ecosystem that is popu-
lated with a diverse offering of digital tools and capabilities,
including connected medical devices, social networking,
decision support software, remote coaching programs, and
rapidly advancing data analytics. The ultimate goal is create a

digital virtual diabetes clinic (D/VDC) that integrates core
components from the ecosystem into an overarching ar-
chitecture of feedback mechanisms that facilitate seamless
transfer of real-time diabetes data to monitor health status,
aid in diagnosis of pertinent concerns, guide therapy deci-
sions, and advise/adjust treatment directly between PwD
and HCP.

The first step in advancing the D/VDC is establishing
universal protocols and mechanisms for transferring glucose
and insulin data from PwD to HCP via cloud-based software
in which the data are presented in standardized, easy-to-
interpret formats (such as the ambulatory glucose profile)61

that are compatible with electronic health record (EHR)
systems. HCP can then choose from various telehealth
technologies (e.g., phone, text, videoconference) to provide
feedback to PwD as needed. Figure 1 presents a conceptual
representation of the D/VDC approach to diabetes care.

Potential outcomes of the D/VDC approach

Implementation of the D/VDC has the potential to address
many of the current obstacles to effective and efficient diabetes
management. Importantly, the D/VDC approach directly ad-
dresses therapy inertia by facilitating more timely and informed
therapy adjustments to avoid delays in treatment escalation.
This approach limits the costs associated with chronic disease
management due to frequent travel for face-to-face visits. The
expected result is improved overall diabetes control and greater
treatment satisfaction, both of which are associated with en-
hanced treatment adherence and quality of life.62

The ability of PwD to interact remotely via smartphones
and other communication devices can significantly increase
access to HCP and support programs (e.g., diabetes coaching,
online support groups). However, protocols for HCP fre-
quency of data review and how/when HCP respond to their
PwD must established.

Technologies for remote monitoring, counseling, and some
physical examinations (e.g., retinal scanning, foot examina-
tions, blood pressure measurement) are especially valuable in
providing care in rural areas or many low-income countries
where even basic health care services are scarce or nonexis-
tent. These technologies greatly expand the capacity of health
systems to meet the needs of the growing diabetes populations
despite the current and projected shortage of HCP.

Another expectation is enhanced population health man-
agement, which can manifest in several ways. The D/VDC
creates a large database of interventions and outcomes that
can be mined for risk stratification within various diabetes
populations and to standardize evidence-based best practices
that can be disseminated to HCP. This not only improves
efficiency in health resource allocation by providing
evidence-based guidance but also overcomes limitations in
HCP expertise. In particular, the use of remote monitoring
and subsequent interventions may minimize the number of
unnecessary F2F clinic visits, thereby freeing up HCP time to
address the needs of PwD who have more complicated needs.

All of these outcomes have the potential to lower the direct
and indirect costs of diabetes care. Improvements in diabetes
control will significantly reduce the number and severity of
preventable hospitalizations, emergency department visits,
and other health care services/medications associated with
treating the acute and long-term complications of diabetes.
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Although time efficiencies realized from the D/VDC approach
may also reduce the costs associated with delivery of health
care services, the costs associated with setting up and main-
taining equipment and infrastructure (e.g., broadband net-
works/facilities, computers, and licenses) cannot be ignored.
However, D/VDC should become cost effective in the long run.

Obstacles

Current tools and technologies provide the basic func-
tionality for the development of the envisioned D/VDC ap-
proach to care. However, a number of technical, policy,
regulatory, and logistical obstacles must be addressed to
bring this approach to fruition.

Lack of interoperability and data compatibility

Lack of interoperability between manufacturers and third-
party devices and software remains a critical obstacle to opti-
mizing use of the full array of tools within the diabetes eco-
system and forces end users to navigate with multiple disparate
manufacturers’ platforms, none of which will, alone, serve their
needs.63 Integrating data downloads from incompatible devices
also poses significant challenges to efficient clinic workflow
and reduces the time HCP can spend with PwD.

Although the European Union imposed standards for in-
teroperability in 2009, these standards are yet to be im-
plemented. No standards are in place in the United States.
Moreover, incompatibility between diabetes digital devices
and EHRs often requires HCP to ‘‘cut and paste’’ glucose and
insulin data into patient records, which limits retrospective
analysis of patient data, negatively impacts efficiency, and
contributes to clinician burnout.64 A dedicated, interoperable
diabetes record is often lacking.65

Lack of clarity on data ownership and accessibility

There is an ongoing debate about the ownership of medical
data among PwD, HCP, insurance companies, device man-
ufacturers, and software developers. Moreover, health data
captured in EHRs and manufacturer cloud portals are not
always accessible by PwD and their HCP. It was the agree-
ment of the ATTD panel that PwD should retain ownership
and unfettered access to their data.

Inadequate or inconsistent HCP reimbursement

Inadequate and/or inconsistent reimbursement for digital-
based interventions (e.g., downloading and interpreting
glucose data) and use of telemedicine have inhibited the
widespread use of such approaches. Many HCP are reluctant
to invest in information technology out of concern that their
time and investment may not be reimbursed. In some coun-
tries, such as the United States, uniformity in reimbursement
rates from region to region is lacking. Of key concern in the
United States are restrictions on practicing medicine across
state lines. This significantly limits opportunities to utilize
telemedicine technologies to their fullest potential.

Restrictive PwD insurance coverage

Although insurance coverage for diabetes medical devices
has improved over the years, eligibility criteria continue to
restrict the use of these devices among many PwD who would
benefit. For example, Medicare and many other private in-
surers only cover CGM systems for PwD who are treated with
intensive insulin therapy (‡3 injections/day or insulin pump)
and currently performing SMBG ‡4 times daily.

FIG. 1. Conceptual representation of D/VDC information flow and feedback. (A) Data from the device(s) are automat-
ically transmitted to a smartphone app, which provides immediate feedback to the user. (B) The app transfers the data to the
EHR via cloud-based, device-specific software and middleware. (C) HCP then access the data, which are presented in
standardized formats. HCP enter any therapy changes into the EHR and (D) contact the patient to set up an in-clinic visit or
schedule a remote consultation via one of the telemedicine tools. D/VDC, digital/virtual diabetes clinic; EHR, electronic health
record; HCP, health care professional.
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Sparse evidence supporting D/VDC approach

There is a lack of definitive evidence from appropriately
designed and well-conducted clinical trials. Because digital-
based interventions encompass a wide range of technologies
and applications, it is difficult to generalize findings from any
specific study. Although numerous studies have evaluated the
efficacy and usability of various tools and approaches, sys-
tematic reviews and meta-analyses have failed to provide
definitive guidance due to differences in study designs, dura-
tions of observation, populations, and the tools/technologies
studied. The cost and complexity of generating a robust
body of evidence that supports the viability of the D/VDC
approach remain a key challenge.

Requisites for Advancing D/VDC Approaches

Stakeholders include device manufacturers, online diabe-
tes service providers, software developers (apps and network
systems), EHR providers and developers, payers (public and
private), regulatory agencies, health system administrators,
and HCP.

Initiate stakeholder collaborations to achieve full
interoperability and data compatibility

Seamless transmission and interpretation of data can only
occur through universal interoperability among medical de-
vices, device-specific software, EHR systems, and other HCP
interface portals. The ATTD panel agreed that there is a clear
need to re-engineer EHRs to facilitate integration of patient-
generated data across the care continuum through protocols
that support traditional face-to-face and alternative care delivery
models while advancing data analytics for personalized, preci-
sion medicine and ensuring the delivery of many elements of
diabetes management advice remotely (e.g., telehealth).

The ideal would be to have the EHR communicate data
directly to the HCP. Current protocols for entering diabetes
data add an extra step that makes data interpretation more
burdensome for the HCP. Importantly, there is an ongoing
need to ensure privacy, confidentiality, and security with
seamless flow of data. This will require ongoing collabora-
tions between all stakeholders to develop device/app soft-
ware and EHR systems to achieve standardized data
interfaces and reports.

Medical organizations should consider formalizing advo-
cacy initiatives to pass legislation and/or regulatory policies
that enforce standards that require interoperability between
all devices and medically approved apps and all device
download software and EHR systems. Requiring data down-
loading capability in all new glucose monitoring devices
should also be considered.

Ensure that PwD retain ownership and unfettered
access to their data

Studies have shown that access to medical records is ben-
eficial for both patients and clinicians.66 Since 1997, the Eu-
ropean legislation has protected patients’ rights to access their
clinical data when requested and have control over who can
see and change that information.67 However, this does not
often occur. It was the agreement of the ATTD panel that PwD
should retain ownership and unfettered access to their data.

Provide adequate HCP reimbursement for use
of diabetes digital and telehealth technologies

The ATTD panel recommended initiation of collabora-
tions/coordination between stakeholders to develop and
implement reimbursement models that adequately support
HCP in the efficient utilization of D/VDC approaches.
Moreover, reimbursement should be extended to all relevant
HCP, including diabetes nurses, diabetes educators, dieti-
tians, and psychologists who expand the workforce by pro-
viding important education and counseling services. Given
the rapid adoption and demonstrated critical importance of
telemedicine in response to the COVID-19 pandemic, it is
likely that the relaxed regulations and reimbursement policies
become permanent. It recommended that medical organiza-
tions advocate for regulatory changes that further simplify
and expand the medical licensure across state and national
boundaries.

Ease restrictions for PwD insurance coverage

The coverage requirements for frequent SMBG and in-
tensive insulin therapy are unnecessarily restrictive and
medically unfounded. In a subanalysis of PwD who partici-
pated in the DIAMOND T1D21 and T2D22 trials, Ruedy et al.
reported a significant improvement in glycemic control
among older CGM users (age 67 – 5 years), but no association
between A1C reductions and SMBG frequency was ob-
served; 52% of the CGM users reported performing SMBG
<4 times daily at baseline.68

Moreover, results from recent database analyses of in-
dividuals who switched from SMBG to CGM showed no
correlation between prior daily frequency of blood glucose
monitoring and adverse diabetes-related events.69,70 The
ATTD panel agreed that the eligibility criteria for coverage
of digital diabetes technologies should be based on current
scientific evidence and frequently updated as new evidence
becomes available.

Generate evidence that addresses the information
needs of all stakeholders

D/VDC approaches must be adaptable, scalable, and
clearly demonstrate safety, efficacy, and cost effectiveness
using study designs and methodologies that address the needs
of all stakeholders. Importantly, as reported by Mayberry
et al., new approaches to the design, implementation, and
evaluation of mobile and Internet interventions for disad-
vantaged and vulnerable PWD are needed.71 Research pro-
grams should utilize both RCT designs in combination with
real-world observational studies.

Summary

Clinicians, health systems, payers, and policy makers are
challenged to develop effective strategies to address the in-
creasing global prevalence of diabetes and the growing
shortage of HCP. Digital diabetes technologies have the po-
tential to increase access to care, reduce costs, and improve
clinical outcomes and quality of life. Although often con-
sidered to be more futuristic than realistic, telemedicine
technologies have now proven to be the best option and, in
many cases, the only option for providing critical health care
for PwD as the COVID-19 pandemic runs its course.
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Indeed, one benefit of COVID-19 has been the rapid
adoption of telemedicine in many countries. In India, for
example, any form of telemedicine (including telephone
consultations) was considered illegal until the COVID-19
emergency hit the country. Within a week, telemedicine was
legalized in India and the government established guidelines
for all forms of telemedicine. It was widely adopted, and, in
fact, it may change the way medicine is practiced in the
future. These data facilitate ongoing quality improvement
within health systems and provide robust guidance for pay-
ers, policy makers, and regulatory agencies.

However, several obstacles must be addressed. Achieving
interoperability is a critical factor. Adequate reimbursement
schedules for devices and HCP services must be established.
Most critical is protecting data/device integrity and safe-
guarding privacy. In addition, insurers and regulatory agen-
cies must play a role in supporting D/VDC approaches
through less restrictive reimbursement policies and regula-
tions. Finally, all digital strategies must be scalable and
properly validated in carefully designed research programs to
demonstrate efficacy, safety, and cost effectiveness.

Overcoming these obstacles will require close collaboration
between all stakeholders. Also, it will require compromise, par-
ticularly in bringing manufacturers and software developers to-
gether to establish standards for interoperability and data sharing,
while keeping clinicians and PwD in the loop. The recommen-
dations presented here are intended to provide a starting point
for advancing D/VDC approaches to diabetes management.
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