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INTRODUCTION

During the past four decades,  EUS has 
developed rapidly and has established itself  as 
a vital  tool in the diagnosis and treatment of  
digestive system diseases. [1] Nevertheless, there 
are still some limitations related to image‑related 
interpretation such as overlap of  various diagnoses, 
interobser ver variabi l i ty,  fa lse posit ives,  and 
false negatives. [2] Recent improvements in deep 
learning  (DL) techniques and computing power 
have made computer‑aided diagnosis  (CAD) system, 
a useful tool in the field of  medical imaging. [3] 
Furthermore, artificial intelligence  (AI)‑related image 
processing techniques have widely penetrated in 
various medical fields and have achieved some 
promising initial results.[4‑6] Processing and analyzing 
EUS images utilizing AI‑related CAD  (AI‑CAD) 
may overcome limitations of  diagnostic EUS and 
improve differentiation of  benign and malignant 
processes as well as decrease interobserver variability 
in endosonography which is an operator‑dependent 
technique.

WHAT IS ARTIFICIAL INTELLIGENCE?

AI can be simply described as “a computer program 
that can learn and utilize data to accomplish specific 
goals and tasks flexibly and appropriately.”[7] Machine 
learning  (ML),[8] as an important branch of  AI, 
mainly includes three types of  learning: supervised, 
unsupervised, and reinforcement. Supervised learning 
is mainly applied in the study of  diagnostic imaging, 
such as artificial neural networks  (ANNs) and support 
vector machines  (SVMs). An ANN is a mathematical 
model that is meant to mimic the characteristics 
of  a biological neural network. ANNs achieve this 
through simulating the process of  stimulation and 
inhibition of  neurons in a complex human neural 
network and applying this format to the operation 
of  complex data. As a result, ANNs have become a 
popular classification model for diagnoses based on 
EUS images and have been widely applied in medical 
imaging recognition, analysis, and processing. A  series 
of  previous studies on tumor imaging analysis based 
on an ANN suggested that the ANN contributed 
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to the segmentation, recognition, and detection of  
tumor imaging. Based on the principle of  margin 
maximization, [9] SVMs classify the data into two 
categories by creating a boundary, which is referred 
to as a separating hyperplane to complete the pattern 
recognition. Compared with ANNs, SVMs have the 
advantages of  high training efficiency and repeatability. 
Nevertheless, researchers need to mark classification 
features manually, and when the number of  samples 
increases, the learning time will be correspondingly 
prolonged. DL is developed from ML,[10] in which 
convolutional neural networks  (CNNs) served as a DL 
algorithm based on the processing of  human visual 
signals. In contrast to the traditional CAD algorithms, 
which require manual trial and error, CNNs utilize 
the image itself  as input and automatically learn to 
identify the most appropriate features. There has been 
a wide range of  AI application in analyzing medical 
imaging, including the detection of  colon polyps, the 
differentiation of  benign and malignant tumors, and 
the evaluation of  tumor invasion depth.[11]

OVERVIEW OF ARTIFICIAL INTELLIGENCE 
IN DIAGNOSTIC EUS

Norton et  al.[12] in 2001 first reported on the use of  a 
CAD system based on digital imaging analysis  (DIA) 
to distinguish focal pancreatitis images from those of  
pancreatic cancer  (PC) on EUS. When the sensitivity of  
the malignant diseases was set at 100% to minimize the 
chance of  missed malignant tumor diagnosis, its overall 
diagnostic accuracy was 80%, which was similar to 
diagnostic accuracy of  85% using the traditional EUS 
examination and 83% using a blinded method. These 
findings suggested that utilizing DIA to analyze EUS 
images was both feasible and accurate compared with 
other human diagnostic results. Although the above 
DIA was not complicated and with small sample size 
and poorer EUS image resolution compared to the 
current times, some may not even call this technique as 
AI‑CAD in contemporary terms. However, this project 
successfully laid the foundation for further investigation 
of  AI in EUS imaging. Hence, the concept of  digital 
analysis of  EUS images is not that new and is 20  years 
old. However, the DIA of  EUS images did not reach 
routine clinical application over the past two decades. 
As stated by Bhutani in 2008,[13] “until a DIA program 
is commercialized, standardized, and integrated into 
standard, conventional EUS equipment, it may only 
stay as a promising research tool and will not gain 
widespread clinical acceptance by the busy endoscopist.”

The interest in DIA was probably somewhat 
dormant until recently when there have been marked 
advances in applying AI in all areas of  medicine 
including other areas gastrointestinal endoscopy 
such as colon polyp detection, Barrett’s esophagus, 
detecting early gastric cancer, and capsule endoscopy 
of  small  bowel. [14] This has also awakened the 
sleeping giants in EUS in academia and industry 
to pursue AI in EUS with renewed gusto and 
enthusiasm. Research on the application of  AI in 
EUS is still in early stages and of  development. 
This editorial highlights some possible applications 
of  AI in EUS that can potentially the diagnostic 
capabilities of  EUS.

ARTIFICIAL INTELLIGENCE AND EUS 
ELASTOGRAPHY

EUS elastography  (EUS‑E) can provide supplementary 
information for traditional EUS, while simultaneously 
minimizing the examination cost without increasing 
patient morbidity and fatality.[15] EUS‑E can convert 
the properties of  tissue into visible images that are 
composed of  color pixels; this is achieved based 
on the elastic coefficients of  the analyzed tissue. 
As a result, endoscopic clinicians are able to detect 
possible pathological changes of  corresponding 
tissues or organs according to EUS‑E images. Săftoiu 
et  al.[16] first conducted real‑time quantitative analysis 
of  EUS‑E and found that real‑time EUS‑E produced 
ideal results because it avoided not only color 
perception errors and the motion artifacts caused 
by individual selection and manipulation bias but it 
also avoided the selection bias resulting from static 
image analyzing. In 2012, the European multicenter 
EUS‑E group launched a prospective, blinded study 
to evaluate the accuracy of  real‑time EUS‑E in 
the diagnosis of  focal pancreatic lesions with an 
ANN‑based CAD mode.[17] In the study, 744 EUS‑E 
images from 258  patients with focal pancreatic lesions 
were included. By retrieving the color hue histogram 
data from the dynamic sequence of  EUS‑E, and then, 
analyzing the data in a neural network to distinguish 
benign and malignant patterns automatically, the 
results showed that the sensitivity of  EUS‑E was 
87.6%, specificity was 82.9%, and positive predictive 
value  (PPV) and negative predictive value  (NPV) were, 
respectively, 96.3% and 57.2%. These results indicated 
that the ANN‑based CAD model could provide 
rapid and accurate diagnosis and assist in medical 
decision‑making.
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ARTIFICIAL INTELLIGENCE, 
CONTRAST‑ENHANCED EUS AND GUIDED 
FINE‑NEEDLE ASPIRATION

Since EUS‑FNA was reported in 1992, it has been 
widely applied in the diagnosis and treatment of  
intramural and extramural digestive tract lesions.[18] It 
is well known that EUS‑FNA is a multistep process, 
that can be affected by a variety of  uncertainties. It 
can be difficult at times to differentiate benign and 
malignant lesions and formulate subsequent treatment 
strategies based only on the clinical/imaging features 
and sample results of  EUS‑FNA.[19] For these reasons, 
some AI‑related algorithms aimed at promoting the 
diagnostic accuracy and efficiency of  EUS‑FNA have 
emerged in the recent 5  years. In 2015, Săftoiu et  al.[20] 
recruited 167  patients, including 112  patients with PC 
and 55  patients with chronic pancreatitis and mapped 
their time‑intensity curves  (TICs) using dynamic 
contrast‑enhanced EUS  (CE‑EUS) data performed on 
solid pancreatic masses; the study further quantified 
the 7 parameters of  TICs through a multilayer ANN. 
The results showed that the sensitivity, specificity, PPV, 
and NPV were 94.64%, 94.44%, 97.24%, and 89.47%, 
respectively. These findings indicated that this ANN 
could provide additional diagnostic value for human 
CE‑EUS and EUS‑FNA results. In 2019, Kurita et  al.[21] 
used AI based on DL to build a diagnostic algorithm 
and retrospectively analyzed the pancreatic cystic fluid 
from surgical specimens or EUS‑FNA specimens of  
85  patients with pancreatic cystic lesions. Factors such 
as carcinoembryonic antigen  (CEA), carbohydrate 
antigen 19‑9  (CA19‑9), cancer antigen 125, amylase, 
patient sex, cyst location, connection between pancreatic 
duct and cyst, cyst type, and cytology of  the collected 
cystic fluid were closely related to the algorithm, 
which can also predict the malignancy. The accuracy, 
specificity, and sensitivity of  the proposed algorithm 
were 92.9%, 91.9%, and 95.7%, respectively. Both the 
accuracy and sensitivity of  the proposed algorithm 
were higher than those of  CEA and cytology. Herein, 
it is reasonable to believe that the proposed algorithm 
can improve the diagnostic efficiency of  differentiating 
between benign and malignant pancreatic cystic lesions.

In addition, with the innovation of  AI image 
recognition technique and the development 
of  cytopathology, some researchers have applied 
AI‑related algorithms to the analysis of  EUS‑FNA 
specimen pathology results.[22] Inoue et  al.[23] proposed 
an ML‑based automated visual inspection method to 

assist in rapid on‑site evaluation  (ROSE) of  EUS‑FNA. 
In this method, the stationary  Gaussian mixed 
model  (GMM)  was used to classify the local statistics 
of  the specimens, aiming to clarify the relationship 
between the tumor cell content grade and the quality of  
the EUS‑FNA specimens. The results showed that the 
method could effectively display the regions containing 
tumor cells, thus assisting the ROSE with EUS‑FNA. 
In a retrospective analysis, Hashimoto et  al.[24] grouped 
the 2015 EUS‑FNA specimens at their center and 
then used a CNN algorithm to carry out sequential 
transfer learning on them. The results showed that the 
sensitivity, specificity, and accuracy of  the algorithm for 
the first group of  specimens were 78%, 60%, and 69%, 
respectively. The accuracy, sensitivity, and specificity 
of  the second group were 80%, 80%, and 80%, 
respectively. These findings preliminarily indicated that 
the algorithm can improve its diagnostic performance 
in a step‑by‑step manner and further improve the 
efficiency of  ROSE with EUS‑FNA through higher 
training and more effective system development.

ARTIFICIAL INTELLIGENCE AND 
ENDOBRONCHIAL ULTRASONOGRAPHY

Endobronchial ultrasonography  (EBUS) involves 
the insertion of  a small ultrasonic probe into the 
bronchoscope to effectively distinguish tumorous 
lesions from the surrounding tissues, blood vessels, 
and lymph nodes through real‑time ultrasound 
imaging.[25] EBUS can also be applied to the biopsy 
of  mediastinal‑occupying lesions and lymph nodes 
to obtain a histologic or cytologic pathological 
diagnosis. EBUS has become an important method 
for the differential diagnosis of  hilar and mediastinal 
enlarged lymph nodes.[26] A study designed by Fujiwara 
et  al.[27] showed that a well‑defined, rounded, tumor 
configuration, inhomogeneous echo, and abundant 
blood flow were independent predictors of  malignant 
lymph nodes under EBUS. However, these criteria 
could only be used to correctly distinguish benign from 
malignant lymph nodes in approximately 25% of  cases.

Based on the previously mentioned reasons, Tomlinson  
et  al.[28] performed genome‑wide transcriptional profiling 
and laboratory evaluation of  mediastinal lymph node 
samples from 88  patients using a new SVM algorithm 
applied in the transcriptional profiling analysis. The 
results suggested that the algorithm could distinguish 
between granuloma and granulomatous diseases, cancer, 
and reactive lymphadenopathy, and the diagnostic 
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sensitivity of  each test above was nearly 90%, which 
was higher than the existing tuberculous and cancer 
detection method. The findings confirmed that the 
SVM algorithm may significantly promote the clinical 
application of  EBUS‑mediated biopsy. Ozcelik et  al.[29] 
developed an AI diagnostic model using ANN. First, 
the EBUS images of  345 lymph nodes were obtained 
and divided into two groups of  300 and 45 lymph 
nodes, which were, respectively, used as input and 
output variables to verify the algorithm. The best 
diagnostic accuracy was 82%, with a sensitivity 89%, 
a specificity of  72%, and an area under the curve 
of  78.2%. In summary, the results suggest that the 
diagnostic model could improve the ability of  better 
evaluate both benign and malignant lymph nodes in 
EBUS images, but further studies will require more 
EBUS images to be used as input data.

EXPECTATION

With the development of  EUS equipment and 
the innovation of  image‑processing techniques, 
the application of  AI in diagnostic EUS has been 
increasingly broadened. As a highly specialized imaging 
technique, the future direction of  AI is not only 
focused on its use in various ultrasound procedures 
to accurately identify tumorous lesions but also to 
provide relevant interventional treatments based on 
the integration of  various procedures. Of  note, there 
are some limitations to the application of  AI in 
EUS imaging.[30] For instance, the number of  EUS 
images is overwhelmingly lower than that of  traditional 
imaging methods such as computed tomography and 
magnetic resonance imaging, and the use of  EUS 
to identify and diagnose rare and atypical diseases 
needs further study.[31] These challenges can be met 
by establishing a multicenter collaborative EUS image 
database at the national or global level. Moreover, there 
is a fatal “black box effect” in AI,[32] which means that 
computer judgment and recognition are invisible. In the 
context of  evidence‑based medicine, this is an urgent 
problem for physicians and AI researchers. Future AI 
visualization techniques may be helpful in solving these 
dilemmas. In summary, to achieve the ideal integration 
of  AI techniques into EUS with clinical diagnosis and 
treatment, more rigorous study and repeated verification 
in the clinical environment are still required.
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