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M A T E R I A L S  S C I E N C E

Charged skyrmions and topological origin 
of superconductivity in magic-angle graphene
Eslam Khalaf1, Shubhayu Chatterjee2, Nick Bultinck2,3, Michael P. Zaletel2, Ashvin Vishwanath1*

Topological solitons, a class of stable nonlinear excitations, appear in diverse domains as in the Skyrme model of 
nuclear forces. Here, we argue that similar excitations play an important role in a remarkable material obtained 
on stacking and twisting two sheets of graphene. Close to a magic twist angle, insulating behavior is observed, 
which gives way to superconductivity on doping. Here, we propose a unifying description of both observations. 
A symmetry breaking condensate leads to the ordered insulator, while topological solitons in the condensate— 
skyrmions—are shown to be charge 2e bosons. Condensation of skyrmions leads to a superconductor, whose 
physical properties we calculate. More generally, we show how topological textures can mitigate Coulomb repulsion 
and provide a previously unexplored route to superconductivity. Our mechanism not only clarifies why several 
other moiré materials do not show superconductivity but also points to unexplored platforms where robust 
superconductivity is anticipated.

INTRODUCTION
Typically, when charge is added to an insulator, electron or hole ex-
citations are produced, leading to charge conduction. Can solitons 
play the role of charge carriers? This unusual scenario can be realized 
through electrically charged topological textures, which have been 
theoretically proposed in various contexts (1–7), although physical 
realizations are rare. The only experimentally established instance 
takes place in quantum Hall ferromagnets, where topological textures 
of spin in the form of skyrmions acquire a charge due to the Landau 
level topology and are found to be the lowest energy charge exci-
tations (8–14). On the other hand, finding situations where Cooper 
pairing occurs between charged topological textures, rather than 
between electrons, is even harder to come by. For example, in the 
aforementioned quantum Hall ferromagnets where charged topo-
logical textures have been experimentally established, strong breaking 
of time-reversal symmetry makes superconductivity highly unlikely. 
Obtaining robust superconductivity from topological textures typically 
requires simultaneously satisfying two conditions: (i) an unbroken 
time-reversal symmetry and (ii) the existence of stable low–energy 
charge 2e topological textures. The latter can be achieved if the fun-
damental defects have charge 2e or by pairing charge e defects of the 
same electric charge. Here, we show that all these criteria are satis-
fied in a simple model consisting of two time reversal–related quan-
tum Hall (or flat Chern band) ferromagnets with purely repulsive 
interactions, coupled via tunneling. Such a model, we point out, cap-
tures the essential physics of magic-angle graphene, making it a 
promising candidate for superconductivity arising from the pairing 
of topological textures, a mechanism that is fundamentally different 
from the conventional electron-phonon mechanism.

Let us start with a brief review of magic-angle twisted bilayer 
graphene (MATBG). Two sheets of graphene twisted relative to one 
another generate a moiré pattern and, correspondingly, a reduced 
Brillouin zone in reciprocal space. Previous work demonstrated that 
the reconstruction of the electronic bands by the moiré lattice leads 

to minibands with extremely narrow bandwidth near charge neutral-
ity at a magic angle ∼1° (15–18), separated by a bandgap from other 
bands. Recent experiments (19–22) revealed marked new physics 
near the same magic angle. Band gaps arising from the moiré poten-
tial are expected and observed at electron filling T = ± 4 per moiré 
unit cell. In addition, insulators at other integer filling including 
T = ± 2 (19, 21, 22) and in some experiments also at T = 0 (22, 23) 
and at certain odd integer fillings have also been observed and are 
attributed to the effects of electron-electron interaction. Furthermore, 
superconductivity has been repeatedly observed in twisted bilayer 
graphene, although its precise relation to the correlated insulating 
phase remains to be determined. While early experiments observed 
the superconductivity in the vicinity of the T = − 2 correlated insu-
lator, subsequently, a wider extent of superconductivity has been 
observed (23, 24).

RESULTS
Quantum Hall ferromagnetism model of magic-angle graphene
We begin by noting an important feature of the nearly flat bands 
near charge neutrality. Electrons in graphene carry both a spin (s = 
↑, ↓) and a twofold valley degeneracy ( = K, K′) which would sug-
gest that filling each moiré lattice site would require four electrons. 
In reality, it takes twice as many electrons to fill the nearly flat bands, 
since they consist of two connected bands as shown in Fig. 1. Con-
ventionally, one distinguishes the two bands by their kinetic energy, 
but in view of the narrow bandwidth, other linear combinations may 
be preferable. A different choice is the sublattice basis, which sepa-
rates bands on the basis of their weight on the two sites  = A, B of 
the honeycomb lattice of monolayer graphene. This basis arises nat-
urally in the ideal chiral limit of (25), where the sublattice polariza-
tion is complete but can also be defined at physical parameter values 
as explained in (26). Even for realistic parameters, the sublattice 
polarization is substantial, so a reasonable approximation is to 
ignore sublattice off diagonal terms in the density operator (26). This 
sublattice polarized (SP) approximation will be assumed through-
out this paper.

A remarkable feature of the sublattice basis is that individual 
bands in this basis carry Chern number. This allows for a mapping 
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of MATBG to a pair of time reversal–related copies of quantum 
Hall–like systems. The presence of flavors then relates our problem 
to quantum Hall ferromagnetism, as advocated in (26). This map-
ping to a generalized spin-valley ferromagnet is broadly consistent 
with the observation of a cascade of polarization transitions on 
varying electron density (27, 28), and it acquires a particularly sim-
ple form in the vicinity of half-filling  = ± 2 when the spin degree 
of freedom can be neglected. In this case, the low-energy physics is 
dominated by four flat bands, each band being labeled by a valley 
and sublattice index.

The valley/sublattice resolved flat bands are characterized by 
Chern number C = ± 1. Labeling sublattice (valley) by (), we have 
C = , which is opposite for opposite valleys due to time-reversal 
symmetry 𝒯 and also opposite for opposite sublattices within the 
same valley due to the combination of twofold rotation and time- 
reversal C2𝒯. Thus, the flat bands can be conveniently studied by 
introducing the pseudospin spinors + = (cKA, cK′B)T and − = (cKB, 
cK′A)T for the ± Chern sectors as shown in Fig. 1. A summary of the 
two different basis (valley/sublattice and Chern sector/pseudospin) 
and the relationship between them is provided in Table 1, together 
with the implementation of each symmetry in both basis.

The Hamiltonian arises from projecting the Coulomb interaction 
V(r) into the flat bands

  ℋ = ∫  d   2  k   k  †   h  k      k   +   1 ─ 2  ∫  d   2  r n(r ) V(r −  r ′   ) n( r ′  )  (1)

where n(r) is the deviation of the density  n(r ) =  ∑ γ=±      Ψ γ  † (r )  Ψ  γ  (r)  
from its average value. The Fourier components of n(r) depend on 
the detailed structure of the Bloch wave functions u;k(r), which 
can be conveniently encapsulated in the “form” factor expression 
for the density, which can be written within the SP approxima-
tion as (26)

   n  q   =   ∑ 
k,=±

     F  q  (k )  e   i   q  (k)    ,k  †      ,k+q    (2)

Note that the form factor is diagonal in the Chern sectors 
with equal amplitude F and opposite phase  for opposite Chern 
sectors. It follows that nq, and hence the interaction, is symmetric 
under independent pseudospin rotations U+(2) × U−(2) in each 
C = ± sector.

At half-filling, the ground state of the interaction   ℋ  C   =  
1 _ 2   ∑ q     δ  n  q    V  q   δ  n  −q    can be determined exactly for any purely repul-
sive interaction, Vq > 0 ∀q. In this case, ℋC is a sum of positive 
definite terms, so any state that is annihilated by each nq ∣⟩ = 0 is 
a ground state. This is satisfied by a manifold of C = 0 states, ∣⟩, 
obtained by choosing a direction n± in pseudospin space for each of 
the ± Chern sectors and “filling” the pseudospin bands independent 
of k, yielding a pseudospin ferromagnet in each Chern sector. Thus

  〈Ω ∣  Ψ ±  †   𝛈  Ψ  ±   ∣ Ω〉 =  n  ±    (3)

As a brief aside, we note that there is another possible set of 
ground states of ℋC with Chern number ∣C∣ = 2, obtained by 

Fig. 1. Defining pseudospin. Linear combinations of the nearly flat bands of twisted bilayer graphene (left) give rise to pseudospin bands with opposite Chern numbers. 
Two states with the same pseudospin that lie in opposite Chern sectors have identical valley wave functions but are distinguished by A-B sublattice polarization (red and 
blue; third column from left). In this figure, we have omitted spin. Half-filling of this spinless model with net Chern number C = 0, at energies below the interaction scale, 
corresponds to quantum Hall pseudospin ferromagnets in each Chern band, described by unit vectors n±.

Table 1. Definition of new variables—Chern sector and pseudospin, 
from the valley and sublattice degrees of freedom. Actions of 
symmetries on the internal indices are shown on the right, in both set of 
variables. In addition, the independent pseudospin rotations in the Chern 
sectors are generated by the P± where the projectors   P  ±   =  1 _ 2 (1 ±    z  )  
single out a specific Chern sector. 

From valley/sublattice to Chern/pseudospin

(, ) → (, )

 = (x, y, z) = (x, yz, zz)

 = (x, y, z) = (xx, xy, z)

Basis

Valley z = K/K′

Sublattice z = A/B

Chern sector z = zz = + /−

Pseudospin z = z = ↑ps/↓ps

Symmetries

Symm (, ) basis (, ) basis

T xK xxK

C2 xx x

UV(1) eiz eiz
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filling only one of the two Chern sectors. These states, however, do 
not admit nontrivial topological pseudospin textures and strongly 
break time-reversal symmetry, making them incompatible with super-
conductivity and, as a result, not relevant for our discussion.

Now let us reintroduce the single-particle dispersion h whose form 
is constrained by the pseudospin and C2𝒯 symmetry

  h(k ) =     x   h  x  (k ) +     y   h  y  (k)  (4)

It is important to stress here that the form of h(k) above is the 
most general form of the dispersion allowed by the symmetries of 
the chiral model, and we do not assume the flat band limit. Devia-
tion from the chiral limit introduces an extra term proportional to 
z0 (other terms are prohibited either by C2𝒯 or particle-hole sym-
metry), which was shown in (26) to be relatively small. This means 
that the main effect of deviation from the chiral limit is altering the 
values of hx, y(k) rather than introducing new terms in Eq. 4. Thus, 
Eq. 4 takes realistic dispersion fully into account.

The dispersion h(k) acts as tunneling between states with the same 
pseudospin and momentum in opposite Chern sectors. Its main effect 
in the limit of strong interaction is to introduce a “superexchange” 
term J ∼ h2/U, where U is the typical interaction scale, which anti-
ferromagnetically couples the pseudospins in opposite Chern sectors 
as shown in Fig. 2. This reduces the SU(2) × SU(2) symmetry of the 
interaction Hamiltonian, down to a single SU(2). The generation of 
such superexchange term is quite generic for any pair of opposite Chern 
number tunneling-coupled ferromagnets with SU(2) spin rotation 
symmetry, as shown in the Supplementary Materials, and it plays a 
crucial role in the skyrmion superconductivity discussed below. It 
also plays an important role in selecting the insulating ground state 
among the quantum Hall ferromagnetic states, favoring those for which 
the pseudospins in the two Chern sectors are antialigned, n+ = − n− = n. 
In the language of (26), the resulting state corresponds to the Kramers 
intervalley-coherent state (K-IVC) state if n lies in the XY plane. In 
this phase, the conservation of valley charge is spontaneously broken 
(hence, intervalley coherence), which corresponds to a tripling of the 
unit cell on the graphene lattice scale. On the other hand, if n points 
along the Z direction, then the valley charge is conserved, and this 
order corresponds to the valley Hall state. Anisotropies neglected 
here that arise on going beyond the SP approximation prefer n or-
dering in the nx, ny plane and select the K-IVC order.

In the following sections we show the deviation from the perfect 
sublattice polarization (Fig. 3), pairing of charged topological fea-
tures (Fig. 4) and the energetics of charged excitations (Fig. 5), and 
discuss these in detail.

Charged topological textures and effective sigma model
Because of the band topology of the two Chern sectors, pseudospin 
skyrmions in n± carry electric charge (8, 9) of ±e. The charge den-
sity (r) = e(q+(r) − q−(r)), where   q  ±  (r ) =   1 _ 4π   n  ±   · ( ∂  x    n  ±   ×  ∂  y    n  ±  )  is the 
topological density in each Chern sector, which integrates to unity 
for a single skyrmion. Let us neglect the antiferromagnetic coupling J 
between the two Chern sectors for now, postponing discussion of 
its effect to the next section. Then, we find that the size of a charge 
“e” skyrmion in a single Chern sector is determined only by the 
Coulomb repulsion, which prefers to spread it out over the entire 
system. In this case, its energy is given only by the elastic contribu-
tion ESk = 4ps, where ps is the pseudospin stiffness associated with 
the n± vector fields (8, 10).

To determine whether skyrmions play the role of charge carri-
ers, we must compare their energy to that of other charge carriers in 
the system, in particular the particle-hole excitations. This question 
generally depends on system details—in quantum Hall systems at 
 = 1, the energy of a skyrmion pair, 8ps, is smaller than the particle- 
hole gap, ph, by a factor of 2. For MATBG, the ratio 8ps/ph can 
be computed numerically from the self-consistent Hartree-Fock cal-
culation, leading to the results shown in Fig. 3. For model parameters 
close to the ideal chiral limit, the ratio is close to the quantum Hall 
value of 0.5, whereas for realistic parameters, it is about 0.8 to 0.9 < 1 
so that, ignoring anisotropies, skyrmions are the lowest energy charge 
excitations. While anisotropies are absent in the SP approximation, 
we will leave a full calculation of skyrmion energetics in MATBG, 
including the most general kinds of anisotropy to future work. It is 
sufficient to note that they remain low-energy excitations, and we 
will proceed based on the premise that skyrmion excitations are im-
portant to the charge physics.

To derive the effective field theory for skyrmions, we integrate 
out the electrons while retaining the charge degree of freedom in 
the topological textures. We thus derive an effective description of 
MATBG by taking the pseudospin variables in the two Chern sec-
tors n± to be slowly varying fields leading to (see the Supplementary 
Materials for details)

   
 ℒ [  n  +  ,  n  −   ] =  ∑ = ±     (     1 ─ 2  A  M     A [  n     ] · ∂      n     +   

   ps   ─ 2    [∇  n    ]   2  )   
     

+ J  n  +   ·  n  −   − e +   1 ─ 2  ∫  d   2  r ′  (r ) V(r −  r ′   ) ( r ′  )
    (5)

where AM is the area of the moiré unit cell, given by    √ 
_

 3    a   2  _ 
2     2 

    (with  a =  
√ 
_

 3    a  CC   ). The first term is the Berry phase term, the second represents 
the elastic energy of the nonuniform pseudospin configurations with 

Fig. 2. Tunneling-induced superexchange J. (Top) Action of symmetries in the 
Chern and pseudospin basis. (Middle) Starting from the two pseudospin ferromagnets 
that are related by time-reversal symmetry, dispersion h acts as tunneling between 
C2z𝒯-related states (bottom) leading to a superexchange term J ∼ h2/U that acts as 
an antiferromagnetic coupling between pseudospins in opposite Chern sectors.
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ps ∼ 1 meV, and the third term includes the effects of antiferro-
magnetic coupling via the superexchange J ∼ 0.5 to 1 meV. The 
chemical potential couples to the charge deviations from the back-
ground, which is given by the skyrmion (antiskyrmion) topological 
charge in the + (−) Chern sector.

We note here that the deviation from the perfect sublattice polariza-
tion assumed so far leads to an additional term (n+, xy · n−, xy − n+, z · n−, z), 
with ≈ 0.5 meV for realistic MATBG parameters (cf. Fig. 4). This 
term favors out-of-plane ferromagnetic coupling and in-plane anti-
ferromagnetic coupling, thus acting as an easy-plane anisotropy, which 
selects the XY pseudospin antiferromagnetic order [this is the K-IVC 
order discussed in (26)]. The dependence of the sigma model param-
eter J and  on the angle and interaction parameters is shown in Fig. 4.

Superconductivity from skyrmion pairing
The antiferromagnetic coupling J between opposite Chern sectors 
leads to the binding of a skyrmion-antiskyrmion pair in the oppo-
site Chern sectors. The net charge of this combined object is Q = 
e(q+ − q−) = 2e, i.e., the exchange J has effectively resulted in an ex-
tended Cooper pair. Note the crucial interplay of antiferromagnetic 
coupling between opposite Chern bands; if we had had J < 0, then 
skyrmions would bind with skyrmions, leading to a charge-neutral 
object. Despite the long-range Coulomb interaction, such a bound 
state will form no matter how small J is, in the absence of other 
anisotropies. Roughly speaking, an isolated charge e skyrmion in a 
single Chern sector pays a “Zeeman” energy due to coupling to the 
uniform ferromagnetic order in the opposite sector via the exchange 
term J. This energy cost scales with the size R of the skyrmions 
as ∼JR2. As in the case of quantum Hall skyrmions (8), the compe-
tition with the Coulomb repulsion ∼U/R will lead to a finite size for 
such skyrmions and yields an extra energy penalty on top of the 
elastic contribution. On the other hand, a pair of antiferromagneti-
cally locked charge 2e skyrmions does not pay any exchange energy, 
which enables it to evade Coulomb repulsion by becoming very large. 
Hence, the extended nature of the skyrmion allows for a pairing 
mechanism, which evades the Coulomb repulsion while benefiting 
locally from the antiferromagnetic coupling.

The inclusion of the easy-plane anisotropy  due to imperfect 
sublattice polarization affects the above scenario as follows. First, it 

leads to the deformation of skyrmions to a topologically equivalent 
configuration of a meron-antimeron pair to evade the penalty of 
out-of-plane pseudospin alignment. Second, it reduces the binding 
energy of antiferromagnetically locked skyrmion-antiskyrmion pair. 
This can be seen by noting that out-of-plane pseudospin only incurs 
an energy penalty for such skyrmion pairs but not for individual 
skyrmions (since the energy only has the term n+, zn−, z but not   n +,z  2   ). 
As a result, this term reduces the binding energy of the charge 2e 
skyrmion-antiskyrmion pairs and eventually leads to their unbind-
ing when it is sufficiently large. Evidence from a recent numerical 
study (29) suggests that the binding energy remains finite for the phys-
ically relevant parameter regime, which we will assume in what follows.

Superconductivity does not follow from pairing alone. To establish 
a nonzero superfluid stiffness and transition temperature Tc, the con-
densing 2e bound state must have a finite effective mass despite the 
flat-band dispersion of charge e skyrmions. This effective mass can 
be generated entirely by the Coulomb repulsion through the ex-
change scale J. This can be understood by noting that the skyrmion 
and antiskyrmion in opposite Chern sectors feel opposite effective 
magnetic fields   B  eff   =   2ħ _ e  A  M    . This leads to a Lorentz force that tends to 
pull them apart when they move together. Given that a skyrmion- 
antiskyrmion pair is bound together by J as shown in Fig. 5B, the 
restoring “spring” force balances the Lorentz force leading to an ef-
fective mass. More precisely, writing the Lagrangian for a skyrmion 
and an antiskyrmion at R+ and R−

  ℒ =   e  B  eff   ─ 2  ( R  +   ×  R  +   −  R  −   ×  R  −   ) −   k ─ 2    ( R  +   −  R  −  )   2 , k = 4πJ  (6)

and eliminating the relative coordinate R+ − R− in favor of the center- 
of-mass coordinates   R  s   =   R  +   +  R  −   _ 2    yields  ℒ =   (e  B  eff  )   2  _ 2k      R ̇   s  2   from which we 
can read off the effective mass

Fig. 4. Sigma model parameters. Pseudospin stiffness (top), antiferromagnetic 
coupling J and pseudospin easy-plane anisotropy  (bottom) as a function of the 
twist angle  for different values of the gate screening distance d for dielectric con-
stant ϵ = 9.5. All curves are computed using the analytic expressions provided in 
the Supplementary Materials using the band renormalization scheme of (68).

Fig. 3. Energetics of charged excitations. Ratio of the elastic energy of the 2e 
skyrmion to the particle-hole band gap in the nearly chiral (orange) and realistic 
(purple) limits, with stiffness and gap values extracted from self-consistent Hartree- 
Fock. Below the gray dashed line, the skyrmion energy lies within the particle-hole 
gap. Note that w0 and w1 are the interlayer hoppings in AA- and AB-stacked regions 
[see (25) for details].
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   M  pair   =    (e  B  eff  )   2  ─ k    =   π  ħ   2  ─ 
J  A M  2  

    (7)

and the transition temperature (30), related to the effective mass and 
stiffness through

   k  B    T  c   =   νπ  ħ   2  ─ 2  A  M    M  pair  
   = ν   J  A  M   ─ 2    (8)

where  is the skyrmion filling fraction. The effective mass sets 
the condensation scale of the composite objects. For MATBG, 
JAM ∼ 1 meV, leading to the scale Tc ∼ 1 to 5 K. We will verify these 
estimates using a field theoretical calculation of the phase diagram 
with doping.

Field theory description of the skyrmion superconductor at 
finite chemical potential
The antiferromagnetic coupling implies that the n+ and n− pseudo-
spins are antiferromagnetically locked in the ground state. In addi-
tion, the lowest energy charge excitation are also bound states of 
skyrmions in n+ and of antiskyrmions in n− where n+ = − n− = n, 
which can be understood as n-skyrmions, which carry charge 2e. 
Thus, we can integrate out the massive ferromagnetic fluctuations, 
n+ + n−, whose mass is proportional to J. The resulting field theory 
is then written solely in terms of the SO(3) vector n. Furthermore, 
we can rewrite this in the well-known CP1 representation by writing 
n = z†z, where we introduced the bosonic spinon field z = (z1, z2)T, 
which satisfies the constraint z†z = 1. (31–33). The overall phase of 
z is redundant, which leads to the gauge field a = − iz†∂z. The 
topological density is given by the flux of a and is tied to the charge 
density. Thus,   = −   ∂  x    a  y   −  ∂  y    a  x   _     = −   2 _ 2   f  xy    (31–33). Note that since the 
flux of a is tied to a conserved charge, monopole fluctuations, which 
change the flux in units of 2, are disallowed on symmetry grounds, 
unlike in the usual CP1 model. Thus, the dynamics of this model 
resembles that of the noncompact CP1 theory (34), which explicitly 
disallows monopoles.

The CP1 action takes the form

   
 S [z] = ∫  d   3  r {     Λ ─ g    ∣ D  μ   z∣   2  +   

2eμ ─ 2πc    f  xy   
    

 +   1 ─ 2c  ∫  d   2  r ′     
 f  xy  (r)

 ─ π    V(r −  r ′   )   
 f  xy  ( r ′  )

 ─ π    }   
    (9)

where D = (∂ − ia). Note that we rescaled the (imaginary) 
time as  τ =  1 _ c    r  z    and introduced the cutoff scale   = 1 /  √ 

_
  A  M     , the cou-

pling  g =  √ 
_

   J  A  M   _ 2    ps      , and velocity  c =   2 _ Λ   √ 
_

 2J  A  M    ρ  ps     .
In the following, we compute the phase diagram of the CP1 model 

at finite doping and interpret the results for MATBG. We use the 
large N approximation by extending to N complex fields (z1, z2, …zN). 
We start by reviewing the solution in the absence of doping and 
Coulomb interaction ( =  = V = 0), which was discussed in the 
pioneering works of (31, 32, 35). In this limit, the model has two 
phases: (i) an ordered phase for g < gc = 4 characterized by a finite 
expectation value of z with a Higgsed and (ii) a disordered phase 
for g > gc = 4 where the z variables are gapped and a is free. The 
gap is given by ∣∣ = (1 − gc/g), and the Lagrangian for the gauge 
field a has the standard Maxwell form  ∼   1 _ ∣  ∣   ( ∂      a     −  ∂      a    )   2   with 
an additional Chern-Simons coupling to the background U(1) electro-
magnetic field   ie _     ϵ      a      ∂      A     . The disordered phase actually describes 
a paired superfluid, which can be seen by integrating out the field a 
by introducing a dual-phase variable , which can be identified with 
the phase of the superfluid order parameter

   S = ∫  d   2  rdτ {      ρ  SC   ─ 2    ( ∂  i   ϕ − 2e  A  i  )   2  +    χ  SC   ─ 2    ( ∂  τ   ϕ − 2e  A  τ  )   2  }     

     SC    =   6 ∣  ∣ c  ─ N  ,     SC   =    6 ∣  ∣  ─ cN    (10)

A B

C

Fig. 6. Large-N phase diagram for the doped CP1 model. (A) Plot of the charge 
2e skyrmion filling fraction , which is directly related to the flux fxy of the gauge 
field a, and (B) the gap for the spinon field ∆, which is directly proportional to the 
superfluid stiffness (cf. Eq. 10) in the superconducting phase plotted as a function 
of the chemical potential  and the dimensionless coupling g. The energies  and 
 are measured in units of the energy cutoff c. The black line represents the phase 
boundary between the insulator and the superconductor. In (C), we plot an estimate for 
superconducting Tc in the CPN − 1 model, computed using the relation: Tc =   3c∣Δ∣ _ N  k  B      while 
setting N = 2 and ps = 1 meV as a function of doping  for different values of J.

Fig. 5. Pairing of charged topological textures. (A) Single-charge e skyrmion in 
one of the Chern sector. Pseudospins in n+ and n− not antiferromagnetically aligned 
in the skyrmion core. (B) Skyrmion-antiskyrmion pair in n+ − n− binding together 
due to the antiferromagnetic coupling J, which favors local pseudospin antialignment 
forming a charge 2e object.
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The phase stiffness SC yields the temperature scale for super-
conductivity using the standard formula   T  c   =  π  ρ  SC   _ 2  k  B      (30). Let us now 
turn to producing the superconductor by varying the chemical po-
tential, rather than the coupling g.

For nonzero chemical potential , the phase diagram can be ob-
tained numerically by solving the mean-field self-consistency equa-
tion (see the Supplementary Materials) as a function of g and  as 
shown in Fig.  6. Note that a finite value  ∣    c   ∣ =  c _ g  (1 − g /  g  c  )  is 
needed to introduce skyrmions in the ordered phase g < gc. This 
value reduces to the elastic skyrmion energy 4ps for g ≪ gc, which 
serves as a check on the CPN theory. For larger , the skyrmion den-
sity  is obtained numerically. For any finite skyrmion density , the 
effective field theory takes the form (Eq. 10) describing a supercon-
ductor whose phase stiffness can be computed numerically as 
shown in Fig. 6. In the dilute limit  ≪ 1 and for g ≪ gc,  can be 
expressed in terms of the doping  leading to

   ρ  SC   ≈  3Λcνg _ 2πN   =  3J  A  M   ν _ πN  ,  χ  SC   ≈   3Λgν _ 2πNc  =   1 _ N    3ν _ 8π A  M     (11)

The superfluid stiffness (charge compressibility) of the super-
conductor is inversely proportional to the pseudospin compress-
ibility (psuedospin stiffness) of the zero doping insulator with the 
proportionality constant being, up to numerical prefactors, just the 
filling . This leads to Tc ∼ J in agreement with Eq. 8. The phase 
diagram of the chemical potential tuned CP1 theory with realistic 
parameters and screened Coulomb interaction should also be acces-
sible in future studies using the Monte Carlo technique (36).

To fix the pairing symmetry of the superconductor, consider the 
symmetries of the operator  that creates flux, ∇ × a = 2, which 
corresponds to the Cooper pair creation operator. Since flux is left 
invariant by pseudospin rotation,  is expected to be a pseudospin 
singlet. Hence, the Cooper pair operator must be one of   Δ  μ  (k) =  g  μ  
(k)  c −k  T    η  y    γ  μ    c  k   , which gives four possible pairings. Reverting to the 
picture of skyrmion-antiskyrmion pairing, we note that pairs reside 
in opposite Chern sectors, which eliminates two of the four pairing 
channels, leaving us with x, y ∝ yx, y. Of these, the first is antisym-
metric in internal indices leading to even pairing gx(−k) = gx(k), 
whereas the second is symmetric in internal indices leading to odd 
pairing gy(−k) = − gy(k). Further evaluating the rotation quantum 
number for these pairings (see the Supplementary Materials for de-
tails) (37–39), one sees that the natural zero angular momentum 
skyrmion corresponds to x ∝ yx = y, while the other y ∝ yy = 
xz option corresponds to a nonzero (odd) angular momentum.

Separately, it is worth noting that the pairing channels x, y are 
also the ones that correspond to the maximal gap in the presence of the 
insulating pseudospin antiferromagnetic background. This is readily 
seen by checking that the corresponding matrices anticommute in 
the Nambu basis (see the Supplementary Materials); thus, the insu-
lating and superconducting gaps add in quadrature when they are 
simultaneously present. Furthermore, taking into account the kinetic 
part of the Hamiltonian h, in Eq. 4, it is found to anticommute with 
x, leading to a bigger gap compared to y, which commutes with h.

SO(5) sigma model and WZW term
In the previous sections, we have mainly focused on the transition 
into the superconductor starting deep inside the K-IVC state by 
tuning the chemical potential, treated within the CP1 theory. However, 
following (4, 7, 40), it is instructive to derive an equivalent effective 
field theory, which deals with the insulator and superconductor on 

equal footing. Such a field theoretic description is known to include 
a topological WZW term. In the following, we will outline this der-
ivation in the context of magic-angle graphene including the effect 
of the chemical potential.

To derive universal aspects of the field theory, such as the pres-
ence of a topological term, it is sufficient to adopt a convenient 
starting point where we take a dispersion with Dirac points for the 
nearly flat bands with a spontaneously induced single-particle gap 
(Dirac mass) that is much smaller than the dispersion. The dispersion 
can then be linearized close to the moiré Dirac points KM and   K  M  ′    where 
we expect a gap to be induced via a Dirac mass term. To deal with 
the insulating and superconducting states on equal footing, we in-
troduce the Nambu basis defined as

   χ k  T  = ( ψ  K  M  ,k  T  ,  ψ  K  M  ′  ,−k  †  )  (12)

Let us now introduce the Pauli matrices x, y, z, which act within 
the two-dimensional Nambu space in k. The Hamiltonian now 
takes the form

   ℋ  D   =  k  x    γ  x    ρ  z   +  k  y    γ  y   + ℳ  (13)

The mass ℳ is a matrix in , , and  spaces containing both the 
K-IVC and the superconducting order parameters, as well as the 
valley Hall order, which is a part of the antiferromagnetic manifold. 
All these correspond to anticommuting mass terms for the Dirac 
equation and hence can be written as ℳ =  ∑ i=1  5     n  i      i   , where the 
SO(5) order parameter    ̂  n    is defined as  (n, ℜ    SC  , ℑ    SC  ) . The corre-
sponding orders and the matrices i are shown in the Table 2.

We note that the massive Dirac Hamiltonian (Eq. 13) is invari-
ant under the particle-hole symmetry P = zyK (i.e., {ℋD, P} = 0), 
where K is the complex conjugation. As a result, it belongs to symmetry 
class C of the Altland-Zirnbauer classification (41). The mass term 
ℳparameterizes the symplectic Grassmanian manifold    Sp(4n) _ Sp(2n ) × Sp(2n)   
[our convention here is that Sp(2n) constitutes 2n × 2n symplectic 
matrices]. For our case, n = 1 and    Sp(4) _ Sp(2 ) × Sp(2)   is isomorphic to the 
four-sphere parameterized by the five-dimensional unit vector    ̂  n   . 
The topology of the symplectic Grassmanian      4   (     Sp(4n) _ Sp(2n ) × Sp(2n)  )   = Z   
is what allows for the existence of a WZW term in the action 
(42–44).

Following the standard procedure by integrating out the fermi-
ons and performing the gradient expansion (see the Supplementary 
Materials for details), we derive the following effective theory

  S =  S  WZW   + ∫ d  d   2  rℒ[   ̂  n  ]  (14)

where  ℒ [   ̂  n  ]  is given by

 
   
 ℒ [   ̂  n   ] =     

~   ─ 2    (∇   ̂  n  )   2  +     
~   ─ 2    ( ∂      ̂  n  )   2  + (g −  g  c   + 2  ~       2  ) ( n   2  −  ∣  ∣   2 )

     
+   n 3  2  + 2  ~       †   ∂      −    ─ 2   n · ( ∂  x   n ×  ∂  y   n)

    (15)

Table 2. SO(5) order parameters and Dirac mass terms.  

Order ReIVC ImIVC VH ReSC ImSC

   ̂ n   n1 n2 n3 n4 n5

 zxz zy zzz yxy yxx
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We see that the chemical potential enters the action in three dif-
ferent places. First, it couples to the topological density of the vector 
n representing the insulator. Note that since n now does not have a 
fixed length, this term is not quantized. Second, the chemical poten-
tial couples linearly to the first derivative of the superconducting 
gap and quadratically to its magnitude. The latter coupling affects 
the effective potential, favoring superconductivity at finite doping. 
We note that both couplings were considered before in the context 
of SO(5) theories for cuprates (45,  46), although the topological 
term, which we turn to next, was absent in that context.

SWZW is the well-known Wess-Zumino-Witten term, which can 
be written by introducing an auxillary integration variable as

   S  WZW   =   3i ─ 4π    ∫0  
1
   du∫  d   2  rdτ  ϵ   abcde   n  a    ∂  u    n  b    ∂  τ    n  c    ∂  x    n  d    ∂  y    n  e    (16)

At  = 0, this theory has the same form as the theory describing 
the transition between an antiferromagnet and a valence bond solid 
(37, 40, 47, 48). In this case, the vector    ̂  n    is always either fully in the 
superconducting (12) phase or the insulating (345) phase, i.e., there 
is no coexistence regime. At g = gc,  = 0, the model has been conjec-
tured to have an emergent SO(5) symmetry (49, 50), reduced to an 
SO(4) symmetry in the easy-plane limit. The existence of a WZW 
term implies that one cannot simultaneously disorder both the super-
conductor and the K-IVC/Valley Hall order without inducing either a 
gapless critical point (deconfined criticality) or topological order.

Role of spin quantum number
The spinless model discussed here is directly relevant to the vicinity 
of the half-filling insulator [at fillings  = ± (2 + ϵ)], where charge 
neutrality corresponds to  = 0. Achieving an insulator at half-filling 
requires polarizing a flavor (e.g., spin) and opening a gap at the 
Dirac point, presumably through developing a pseudospin quantum 
Hall ferromagnet (with n+ = − n−). Spin polarization means that for 
each valley, K and K′, only one spin species is filled, which may cor-
respond to a simple spin ferromagnet or a spin-valley locked state 
with spin anti-aligned in opposite valleys. The main assumption 
leading to the reduction to a spinless problem is that spin polariza-
tion takes place at a higher-energy scale than the scale relevant for 
superconductivity. This is strongly suggested by the cascade picture 
of (27,  28), which identified a relatively high temperature scale 
where flavor polarization takes place, before the development of in-
sulating or superconducting behavior at lower temperatures. As a 
result, one spin flavor is completely frozen at the scales relevant for 
superconductivity, allowing us to focus on the spinless problem. 
We note that most elements of our discussion remain valid even 
without the assumption of a frozen spin flavor—pseudospin skyrmions 
still carry charge and pair due to antiferromagnetic coupling—but 
the ground-state manifold has a more complicated structure and 
allows for other competing charged excitations.

It is worth noting that while the spinless model is particle-hole 
symmetric, we do not expect particle-hole symmetry in the real sys-
tem in the vicinity of half-filling. To see this, note that there are two 
scenarios for the  = ± insulator shown schematically in Fig. 7 where 
the opposite spin band lies outside or inside the Dirac gap. In the 
first scenario (i), electron (hole) doping at  = 2(−2) resembles 
doping a spinless version of the charge neutrality state, whereas hole 
(electron) doping resembles doping a spinless version of the full 
(empty) band structure; whereas in the second scenario (ii), there is 
no difference between particle and hole doping at half-filling and 

both reduce to a spinless version of the doped state near charge neu-
trality. The first scenario is strongly supported by the quantum os-
cillation measurements where the Landau fans are only observed at 
 = ± (2 + ϵ) but not at  = ± (2 − ϵ) with a degeneracy that is half 
that observed at charge neutrality (20–22). This is also supported by 
the cascade picture in (27, 28).

The pairing symmetry favored by skyrmion condensation (in 
the spinless model) is an intervalley singlet, with same sublattice 
pairing, i.e.,   ̂    =     

†       ′    
y       ′    

†   . To embed the spinless model within 
spinful TBG at  = 2, we need to polarize a flavor as explained above. 
If the polarized flavor is just spin, then we are left with pairing between 
equal spins. On the other hand, if the polarized flavor is more complex, 
for example, a spin-valley locked combination, the corresponding spin 
structure of the Cooper pair is also more involved. A general discussion 
of the spinful model is contained in the Supplementary Materials.

DISCUSSION
Let us compare and contrast the present work with previous theo-
retical discussions of skyrmion superconductivity. Starting with 
Dirac fermions, (3, 4) pointed out that charge 2e skyrmions can 
arise when interactions spontaneously create topological insulators 
from symmetry breaking. Further, if these skyrmion textures are 
the lowest energy charge excitations, (4, 51, 52) argued that doping 
could lead to superconductivity. Here, we have examined a micro-
scopic model with predominantly repulsive interactions and shown 
that it exhibits a related topological ground state with low–energy 
charge 2e skyrmions. Note that restricting to repulsion is necessary 
to establishing an electronic mechanism of superconductivity. To 
the best of our knowledge, this collection of properties has not been 
established before (53) in a microscopic model with repulsive inter-
actions. A distinction from the previous Dirac models is that the 2e 
skyrmion here is actually a composite of a skyrmion-antiskyrmion 
pair. Furthermore, our model is motivated by magic-angle graphene, 
which seems to naturally incorporate the requisite physics. We also 
have calculated the energetics of skyrmions and shown that in a 

A B

Fig. 7. MATBG close to half-filling  = 2. Two possible scenarios for the spin-polarized 
insulating state at half-filling: (A) The opposite spin band lies inside the gap of the 
pseudospin antiferromagnet (taken to be the K-IVC order here) or (B) the opposite 
spin band lies outside this gap. In both scenarios, doped electrons go into the upper 
K-IVC band. On the other hand, doped holes go into the opposite spin band for (A) 
but into the same spin K-IVC band for (B). We note here that for simplicity, we con-
sidered the case where flavor polarization corresponds to full spin polarization. 
Another possible flavor-polarized state would be the spin-valley locked state for 
which the same considerations apply.
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range of parameters, they are the lowest energy charge excitations. 
On doping skyrmions, we obtain a superconductor, whose transition 
temperature we calculate. In our theory, an essential role is played 
by J, which induces pairing between opposite skyrmion textures 
and arises from electron tunneling between Chern sectors. In par-
ticular, we provide a scenario where pairing can be achieved in the 
absence of any extrinsic attractive pairing mechanism, e.g., phonons. 
In addition, our mechanism explains how the large Coulomb repul-
sion can be evaded without screening or retardation, allowing for the 
smaller pseudospin antiferromagnetic coupling J ∼ h2/U ∼ 1 meV 
to overcome the larger Coulomb repulsion as summarized in Fig. 5.

The role of the coupling J as the source of pairing can account for 
the absence of superconductivity in MATBG samples, which are 
aligned with the hexagonal boron nitride (hBN) substrate. The lat-
ter generates a sublattice potential, which breaks C2𝒯 symmetry by 
inducing an energy gap of about 15 to 20 meV between the bands 
polarized on sublattices A and B (13, 54, 55). This acts as an oppo-
site Zeeman field in the opposite Chern sectors (a Zeeman field for 
the vector n), which (i) shrinks the charge 2e skyrmions and makes 
them energetically less favorable and (ii) introduces an energy de-
tuning between previously resonant bands, which suppresses the 
tunneling term responsible for the coupling J. This mechanism is 
also absent in other moiré systems lacking C2 symmetry such as 
twisted double bilayer graphene (56–58) and ABC graphene on 
hBN (59), which can also be viewed as consisting of two quantum 
Hall systems with opposite Chern numbers. In addition to the sup-
pression of J due to detuning from the broken C2 symmetry, the 
direct tunneling h is also strongly suppressed in these systems since 
the two opposite Chern sectors reside in opposite valleys and are 
thus very weakly coupled due to valley-charge conservation. Apart 
from pristine MATBG samples, the other platform that retains the 
relevant C2𝒯 symmetry is twisted trilayer (and multilayer) graphene 
with alternating twist as described in (60). In addition to having the 
same symmetries as MATBG, it was shown (60) that the wave func-
tions of these systems can be mapped exactly to those of MATBG, 
making them very attractive candidates for pseudospin antiferro-
magnetic order and skyrmion-mediated superconductivity and are 
promising platforms for future theoretical and experimental studies.

A natural question that arises is whether disorder, which is ex-
pected to locally break C2, would play an antagonistic role. Howev-
er, it is important to note that, in contrast to the global breaking of 
C2, the symmetry is not broken, on average, by disorder. For our 
mechanism, we only need C2 to hold on distances comparable to the 
moiré scale. Disorder that preserves C2, on average, and is suffi-
ciently smooth on the moiré scale is therefore not expected to sub-
stantially affect our conclusions.

It is worth emphasizing that the superconducting mechanism 
we discussed here is applicable to a much wider class of systems 
than just magic-angle graphene. The key requirements are a pair of 
quantum Hall (or Chern) ferromagnets, related by time-reversal 
symmetry, and coupled to one another by tunneling. This leads, via 
a superexchange process, to an antiferromagnetic coupling J, which 
is maximized when tunneling connects states at the same energy.

Let us mention a few other promising systems that incorporate 
all these ingredients. First, we have already briefly mentioned the 
multilayer graphene platform as described in (60), where each suc-
cessive layer is twisted by an alternating angle (i.e., , − , …), and 
where alternating layers, which are at the same angle, are in registry. 
These systems have shifted magic angles but otherwise retain all 

essential symmetries and are promising platforms for realizing 
skyrmion superconductivity. For the simplest alternating angle 
trilayer case, an additional ingredient is a coexisting Dirac node, 
which intersects the flat bands, but which is not expected to signifi-
cantly alter the physics due to its rapid dispersion (60). A second 
route involves strain-induced Landau levels in graphene, which have 
been observed (61), with opposite Chern number in opposite val-
leys. Here, spin plays the role of our pseudospin, although translation 
symmetry blocks tunneling between opposite valleys. Activating 
tunneling with an appropriate translation symmetry breaking order 
(e.g., a substrate with charge density wave order) can help realize 
the skyrmion superconductor on doping. Other potential realiza-
tions include any spinful valley-Chern insulator, e.g., twisted dou-
ble bilayer graphene, where again the crucial additional ingredient 
absent in current platforms is the presence of a source of translation 
symmetry breaking that opens up intervalley tunneling. More gen-
erally, two-dimensional materials with electronic bands harboring 
the same fragile topology as magic angle graphene (62–65) will be 
interesting future candidates if they can be also brought into the 
correlated regime. Alternately, consider a pair of Haldane models 
with opposite Chern numbers, with spin degeneracy. Here, spins 
play the role of our pseudospin. We note that such a model, dubbed 
as the “shift insulator,” has been recently studied in the context of 
crystalline topology (38). Further, adding repulsive interactions and 
tunneling between the opposite Chern sectors should realize the phys-
ics studied here when placed near quarter filling. Pursuing materials 
realization of these models, such as bilayers of anomalous quantum 
Hall ferromagnets, will be an interesting direction for future work.

Last, let us briefly discuss our proposal in light of recent experi-
ments on MATBG superconductivity. First, although we have chosen 
to discuss our scenario in terms of doping a parent pseudospin- 
ordered insulator, the presence of the insulating gap is not essential. 
While an insulating state serves as proxy for order, it is by no means 
necessary, since an ordered metallic phase can also obtain at integer 
filling, due to low-energy electron-hole pockets. The essential fea-
tures of the skyrmion pairing mechanism, however, remain intact, 
although a theoretical description must now include fermions in 
addition to the bosonic n degrees of freedom. Hence, our results are 
consistent with recent experimental reports of superconductivity in 
the absence of correlated insulating behavior (23, 24)—an interest-
ing question there is whether pseudospin order is present in the 
metallic state near integer filling. We note that in the calculation of 
The large N phase diagram, we find a superconducting phase with 
doping in the absence of long-range pseudospin order. Thus strictly, 
the only real requirement is short-ranged pseudospin order in which 
skyrmions can be defined. Second, an important energy scale in our 
theory is J ∼ t2/U, which controls the strength of superconductivity. 
This may provide a conceptual framework to help design better 
superconductors. For example, it is helpful to remember that in the 
interacting problem, not just U but also t increases with increasing 
the Coulomb scale, since the flat band dispersion is mostly generated 
by the interaction as discussed in (26).

The discovery of superconductivity in MATBG came as a bolt 
from the blue, and it would be unexpected if an explanation only 
invoked conventional ingredients. Instead, we believe that this 
observation calls for an unusual mechanism like the skyrmion pair-
ing one described here, which relies on characteristics unique to 
MATBG. More generally, we have identified a new mechanism for 
superconductivity from repulsion, and it will be interesting to 
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explore in the future a variety of other settings that realize the essen-
tial ingredients of Chern ferromagnets that are tunnel coupled to 
their time-reversed conjugates.

MATERIALS AND METHODS
In this section, we describe the procedure used to calculate the K-IVC 
stiffness IVC numerically. This pseudospin stiffness, referred to as 
ps previously, is used to estimate the energy ratio 8ps/PH 
in Fig. 3.

We start by threading valley flux  in, say, the x direction, and we 
choose a gauge that manifestly breaks translation in the x-direction 
Tx, but which preserves the modified translation symmetry   T x     
which is defined as a conventional translation, followed by a global 
valley rotation

   T  x  ϕ  =  e   i  
ϕ _ 2 L  x    ∑ r     c   † (r) τ  z  c(r)   T  x    (17)

where Lx is the length of the system in the x direction. Because the 
single-particle Hamiltonian commutes with   T x    , we can label the 
Bloch states with the modified momenta

    k +  ϕ   =  (   k  x   +   ϕ ─ 2  L  x    ,  k  y   )     (18)

in one valley and modified momenta

    k −  ϕ   =  (   k  x   −   ϕ ─ 2  L  x    ,  k  y   )     (19)

in the other valley. In practice, this means that we simply have to shift 
the momentum grids in the x direction in opposite ways in the two valleys.

On the shifted momentum grids, we numerically solve the Hartree- 
Fock self-consistency conditions allowing for an intervalley coher-
ence order parameter of the most general form consistent with the 
modified   T x     symmetry

   Δ   ϕ (k ) = 〈  ψ +, k +  ϕ   †    ψ  −, k −  ϕ    〉  (20)

In this expression, sublattice and spin indices are implicit.
Following this procedure, we obtain the ground-state energy of 

the K-IVC state as a function of . On general grounds [see, e.g., 
(66)], one knows that the ground-state energy depends on the flux as

   E  0   [  ] =  E  0   [ 0 ] +   (2    IVC  ) ─ 2     A ─ 
 L x  2 

       2  + O(    4 )   (21)

where A is the total area of the system. Note that we define IVC to 
be half of the actual stiffness to get rid of a spin degeneracy factor. 
We obtain the stiffness by fitting to this quadratic function at small 
 < 0.5. The simulations used to obtain the results shown in the 
main text were done on a 18 × 18 momentum grid, keeping only the 
two flat bands per spin and valley. For the Coulomb interaction, a 
dual-gate screened potential was used with a gate distance of 20 nm 
and a dielectric constant ϵ = 9.5. Note that after this work was re-
leased, (29, 67) appeared, on related topics.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/19/eabf5299/DC1
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