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Severe acute respiratory syndrome coronavirus 2, the etiologic agent of coronavirus disease 2019
(COVID-19) and the cause of the current pandemic, produces multiform manifestations throughout the
body, causing indiscriminate damage to multiple organ systems, particularly the lungs, heart, brain,
kidney, and vasculature. The aim of this review is to provide a new assessment of the data already
available for COVID-19, exploring it as a transient molecular disease that causes negative regulation of
angiotensin-converting enzyme 2, and consequently, deregulates the renin-angiotensin-aldosterone
system, promoting important changes in the microcirculatory environment. Another goal of the article
is to show how these microcirculatory changes may be responsible for the wide variety of injury
mechanisms observed in different organs in this disease. The new concept of COVID-19 provides a
unifying pathophysiological picture of this infection and offers fresh insights for a rational treatment
strategy to combat this ongoing pandemic. (Am J Pathol 2021, 191: 1154e1164; https://doi.org/
10.1016/j.ajpath.2021.04.010)
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Even a full year after the initial outbreak and spread of se-
vere acute respiratory syndrome coronavirus-2 (SARS-
CoV-2), its mechanisms of disease are still widely debated.
Although the lungs are believed to be the only target organ,
other organs and tissues can be affected, leading to a wide
variety of clinical conditions in patients with coronavirus
disease 2019 (COVID-19). Although the prognosis is
favorable in most patients, critical illness, manifested by
respiratory distress, thromboembolism, shock, multiorgan
failure, and eventually death, has been reported in approx-
imately 5% of cases.1 Several studies have linked this virus
to a defective immune response, with excessive cytokine
release as a fundamental aspect of the COVID-19 patho-
genesis.2 However, the way in which this disease causes
damage to tissues in various organs is still under
investigation.
stigative Pathology. Published by Elsevier Inc
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The current article aims to provide an analysis from
experienced pathologists regarding the pathophysiological
changes resulting from COVID-19. Herein, it is proposed
that SARS-CoV-2 provokes a transient molecular disease
involving angiotensin-converting enzyme 2 (ACE2) down-
regulation and consequent renin-angiotensin-aldosterone
system (RAAS) dysregulation, with these phenomena
being at least partially responsible for the multifocal tissue
.
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COVID-19: a Transient Molecular Disease?
damage in the microcirculatory environment and playing a
fundamental role in the pathogenesis of this disease.
SARS-CoV-2 Infection and ACE2 Down-
Regulation

Entry into host cells is the first step of viral infection. In
humans, coronaviruses gain entry into host cells by way of
their transmembrane spike (S) glycoprotein, which com-
prises S1 and S2 subunits. The S1 subunit is responsible for
binding to the host cell receptor, and the S2 subunit assists
with virusehost cell fusion.3 SARS-CoV-2 gains access to
host cells by engaging the protein ACE2, a transmembrane
carboxypeptidase expressed in nearly all human organs and
tissues to varying degrees.4 ACE2 exists in two forms, a
membrane-bound form and a soluble form, and SARS-CoV-
2 entry into the host cell is mediated by binding of viral S
protein to the membrane-bound form.5 SARS-CoV-2 down-
regulates these receptors by taking advantage of at least two
host proteases: type II transmembrane serine protease (ie,
TMPRSS2), which facilitates viral ingress by cleaving the S
antigen into S1 (the active binding site), and disintegrin and
metalloproteinase domain-containing protein 17 (ie,
ADAM17), which down-regulates ACE2 by spreading it
together with the attached virus through blood circulation.6,7

Although SARS-CoV also binds to ACE2, SARS-CoV-2
has 10-fold to 20-fold greater binding affinity than SARS-
CoV.8 Therefore, regarding the mechanism of infection,
what makes SARS-CoV-2 novel (compared with other
common respiratory pathogens such as influenza and para-
influenza viruses) is the use of ACE2, a specific protein, as
its receptor.

ACE2 is a key modulator of the RAAS, an intricate
interlinked system that regulates physiological and patho-
logic functions of the cardiovascular, renal, and pulmonary
systems.9e11 Aside from regulating arterial blood pressure,
cardiac function, and fluid balance, the RAAS plays a major
role in immunity.12 Under normal circumstances, ACE2
terminates the action of angiotensin (Ang) I and Ang II by
cleaving these peptides into Ang 1-9 and Ang 1-7, respec-
tively. In the absence of ACE2 (due to viral blockade and
down-regulation), both Ang I and Ang II accumulate.
However, because ACE is not engaged by the virus, the
conversion of Ang I to Ang II continues unabated, leading
to unopposed accumulation of Ang II. Ang II is the bio-
logically active mediator of effects of the RAAS, whose
functions are controlled by two G proteinecoupled re-
ceptors, Ang II type 1 receptor (AT1R) and Ang II type 2
receptor.9e11 Abnormal activation of the Ang II/AT1R
component of RAAS has been implicated in several path-
ologic conditions, including the development of end-organ
damage through the activation of proinflammatory and
profibrotic cascades.13 Therefore, COVID-19einduced
ACE/ACE2 imbalance promoting Ang II upregulation in the
microcirculatory environment may favor local
The American Journal of Pathology - ajp.amjpathol.org
inflammation, capillary leakage, a procoagulant state,
mitochondrial oxidative damage, reactive oxygen species
production, and IL-6 up-regulation, inducing coagulation
and an immune response.5,6,14 A detailed review of these
mechanisms can be found elsewhere.12,15e17
Immunothrombosis (Thromboinflammation)
and COVID-19

Immunothrombosis is a consequence of the evolutionarily
conserved link between blood coagulation and innate im-
munity, and it is regarded as a newly revised, crucial
element of intravascular immunity that encompasses a wide
range of host strategies to detect and protect against path-
ogens in the vasculature.18,19 It is a complex mechanism of
host protection against pathogens resulting from the inter-
action between innate immunity effector systems (eg,
monocytes/macrophages, neutrophils, the complement sys-
tem) and platelets and coagulation factors, favoring the
development of microthrombi within the micro-
circulation.18e20 Regardless of the initiating event, the host
response to injury and/or pathogen invasion includes the
local delivery of active tissue factor, the degradation of
endogenous anticoagulants, and the release of neutrophil
extracellular traps (NETs) that provide a scaffold procoa-
gulant consisting of DNA, histones, and neutrophil serine
proteases. NETosis sequesters platelets in the microcircu-
lation, causing increased fibrineplatelet interactions and the
formation of microthrombi.21 Ordinarily, combat against the
pathogen remains restricted to the intravascular compart-
ment, triggering minimal host parenchymal damage. How-
ever, on a large scale, immunothrombosis can be a major
biological process fostering the pathologies associated with
thrombosis in the microvasculature and promoting tissue
damage.22,23

The mechanisms by which SARS-CoV-2 induces
microthrombosis remain incompletely understood. A
sequence of events has been proposed, as described here.
SARS-CoV-2 can directly invade type II pneumocytes.24,25

Infected cells undergo pyroptosis, leading to the release of
danger-associated molecular patterns and triggering the
release of proinflammatory cytokines and chemokines into
the environment.26,27 The activated alveolar endothelium
then up-regulates the expression of von Willebrand factor
and adhesion molecules, including inter-cellular adhesion
molecule-1, vitronectin receptor (alpha v beta 3 integrin), P-
selectin, and E-selectin, leading to recruitment of platelets
and leukocytes and complement activation.25 Neutrophils
release NETs, causing direct activation of the classical
complement pathway. Complement activation potentiates
these mechanisms by increasing endothelial and monocyte
tissue factor and further platelet activation, and amplifying
endothelial inflammation, which increases the production of
proinflammatory cytokines from the endothelium. These
include the following: IL-1; IL-8; regulated on activation,
1155
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normal T-cell expressed and secreted; IL-6; and monocyte
chemoattractant protein-1.28,29 The hypoxic environment
can induce hypoxia-inducible factors, which up-regulate
endothelial tissue factor expression. These mechanisms ul-
timately lead to the unchecked generation of thrombin,
resulting in thrombus formation.12,30,31

Activated platelets and neutrophils releasing NETs are
directly linked to thrombosis and inflammation, causing
organ damage and increasing mortality in cases of severe
COVID-19.21,32 Autopsy reports have suggested that
COVID-19einduced formation of NETs may contribute to
cytokine storms, vascular thrombosis, and acute respiratory
distress syndrome.33 Although a limited amount of NET
formation at inflammatory sites serves to limit blood loss
and prevent the spread of pathogens,18,19 NET formation in
COVID-19 is clearly dysregulated at multiple intravascular
sites, leading to rapid occlusion of microvessels.34 There-
fore, an unfavorable milieu can allow these phenomena to
spread uncontrollably in the circulation, promoting multi-
organ dysfunction.
Clinical Evidence of Thrombotic Disorders in
COVID-19: A Procoagulant Disease

Since the beginning of the pandemic, COVID-19 was
recognized as a hypercoagulatory disease associated with a
clinically high prevalence of thromboembolic events.35

Increased blood levels of D-dimer, fibrinogen, and fibrin
degradation products are frequently reported as useful bio-
markers of the severity of disease and predictors of adverse
outcomes.36 Venous and arterial thrombotic events were
seen in up to 30% of patients treated in the intensive care
unit, even with pharmacologic thromboprophylaxis, and
were associated with a 5.4-fold increase in the risk of
mortality.37 An autopsy series of patients with COVID-19
found deep vein thrombosis and pulmonary embolism in
58% and 73% of the cases, respectively, even without
clinical suspicion of venous thromboembolism.38,39 Acute
coronary syndrome/myocardial infarction40,41 and strokes42

have been associated with critically ill patients. Other events
related to macrothromboses have been reported in the
bowels43 and extremities,44 sometimes with important
clinical consequences.

Furthermore, COVID-19erelated microthrombi are
typical. Their discovery began with the suspicion that
COVID-19erelated acute respiratory distress syndrome,
with preserved lung mechanics despite the severity of
hypoxemia, occurred due to micro-obstructions in the pul-
monary vasculature.45e47 Indeed, the acronym Micro-
CLOTS (microvascular COVID-19 lung vessel obstructive
thromboinflammatory syndrome) was suggested as the
name for the disease phenotype of acute respiratory distress
syndrome/SARS-CoV-2.48 Scanning electron micrographs
of the pulmonary microvascular bed in patients with
COVID-19 exhibited substantial architectural distortion and
1156
significant intussusception (a type of neoangiogenesis)
related to microvascular occlusion.24 Magro et al47

described what is probably the earliest histopathologic
event in pulmonary COVID-19: multifocal microthrombotic
interstitial pneumonitis accompanied by a slight/moderate
intra-alveolar exudate. Other reports also found increased
fibrinous thrombi in the pulmonary microcirculation of pa-
tients who died of COVID-19.34,49e51 However, microvas-
cular damage caused by fibrinous thrombi, endotheliitis, and
complement activation was not limited to the lungs but was
also described in other organs and tissues: heart,52 skin,47,53

kidneys,54 and small intestine.55 Notably, displaced thrombi
traveling in the microcirculation of the sublingual region
were found in 85% (11 of 13) of patients with severe
COVID-19; four (31%) exhibited completely stagnated
capillaries, and eight (61%) showed abrupt interruptions in
blood flow, suggesting acute embolism. None of the patients
had evidence of disseminated intravascular coagulation.56

These findings may indicate that a procoagulant status
may be a hallmark event of COVID-19 and suggest that
when they spread widely, these microvascular obstructions
can promote tissue damage depending on their quantity and/
or the vulnerability of the affected organ. Altogether, these
circumstances strongly point to the vascular system on both
the macro and micro scales as an important target of
COVID-19.57 However, other organs and tissues are also
severely affected by SARS-CoV-2, leading us to pursue a
unifying pathophysiological explanation for the multivariate
clinical presentation of this unprecedented infection.
ACE2 Down-Regulation Promoting RAAS
Dysregulation

Knowledge of the underlying biology and physiology of
ACE2 has accumulated over the last 20 years since its
discovery and has substantially improved our understanding
of the RAAS.10e12 Because ACE2 contributes critically to
the biology of SARS-CoV-2 infection, much attention has
been focused on the interplay between COVID-19 and
RAAS.58,59 The RAAS may also be indirectly involved in
the pathophysiology of other respiratory infections, but in
SARS-CoV-2 infection, it seems to play an important and
direct role in the development and progression of COVID-
19.58

ACE2 is expressed in almost all human tissues: its
expression level is high in the small intestine, testes, adipose
tissue, kidneys, heart, and thyroid; medium in the lungs,
colon, liver, bladder, and adrenal glands; and relatively low
in the blood vessels, spleen, bone marrow, brain, and
muscle.5,60 ACE2 is expressed as a cell-surface non-raft
protein with little intracellular localization, and the protein is
not readily internalized. However, binding of a coronavirus
S protein to ACE2 triggers enzyme internalization, down-
regulating its cell surface activity.61 Moreover, the viral S
subunit contains a cleavage site for furin and other
ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


Figure 1 Schematic representation of the dysregulation in the renin-angiotensin-aldosterone system caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). Renin converts angiotensinogen into angiotensin I (Ang I). Angiotensin-converting enzyme (ACE) converts Ang I into angiotensin
II (Ang II), which binds to its receptors Ang II type 1 receptor (AT1R) and Ang II type 2 receptor (AT2R). Ang II exerts most of its harmful cardiovascular
effects through the ACE/Ang II/AT1R axis. Usually, the major part of Ang II is converted by angiotensin-converting enzyme 2 (ACE2) to become Ang 1-7, which
activates the Mas receptor signaling pathway with protective effects in the microcirculatory environment. In coronavirus disease 2019, after the attachment of
SARS-CoV-2 spike protein to ACE2, its intracellular binding site down-regulates ACE2. Disintegrin and metalloproteinase domain-containing protein 17
(ADAM17), cleaving the ACE2 terminal, also contributes to the negative regulation of ACE2 by spreading it along with the attached virus through bloodstream.
The down-regulation of ACE2 culminates in Ang II upregulation, corroborating to a pro-inflammatory milieu. The kallikrein-kinin system is intensively
interwoven with the renin-angiotensin-aldosterone system through many pathways with complex reciprocal interaction metabolites, especially des-Arg9
bradykinin (DABK). ACE2 cleaves terminal residue of DABK, resulting in its deactivation. The derangement ACE2/DABK/bradykinin B1 receptor (BKB-1R) axis
activation creates a proinflammatory synergistic effect for SARS-CoV-2 in association with ACE/Ang II/AT1R axis activation. The complement system is
activated both by the Ang II/ACE2 axis and by recognizing SARS-CoV-2 by pattern recognition receptors (PRRs). The interaction of ACE2 with the coagulation
system is indirect and occurs by inhibiting fibrinolysis. In this context, the NF-kB pathway receives stimuli along three different axes: Ang II/AT1R, DABK/
BKB-1R, and SARS-CoV-2/PRRs/complement. NF-kB hyperactivation then promotes a positive feedback cycle between cytokine storm, endothelial dysfunction,
and tissue damage in the microcirculatory environment. BKB-2R, bradykinin B2 receptor; MasR, Ang 1-7 receptor Mas; PAI-1, plasminogen activator inhibitor-1.
Created with BioRender.com.
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proteases, which accelerates the cellular entry of SARS-
CoV-2.12 In addition to promoting ACE2 internalization,
SARS-CoV promotes the enzymatic shedding of the ACE2
ectodomain, resulting in both the generation of a soluble
form of ACE2 and an overall reduction in ACE2 content in
the infected cells.30 Because the S proteins of SARS-CoV-2
and SARS-CoV share 76% overall amino acid identity and
The American Journal of Pathology - ajp.amjpathol.org
display similar receptor-binding modules,30 it is likely that
SARS-CoV-2 also induces ACE2 shedding.

ACE2 serves as an endogenous inhibitor of inflammatory
signals associated with four major regulator systems:
RAAS, the kallikrein-kinin system, the coagulation cascade,
and the complement system.12,15,17,61e65 ACE2 plays a
fundamental role in regulating the RAAS by directly
1157
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Figure 2 Schematic representation showing
the pathologic consequences of negative regula-
tion of angiotensin-converting enzyme 2 (ACE2) in
coronavirus disease 19. After entering the body,
severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infects the alveolar epithelial by
engaging ACE2 and promoting its negative regu-
lation. The down-regulation of ACE2 leads to
renin-angiotensin-aldosterone system (RAAS)
dysregulation, which associated with the exacer-
bated innate immunity response, favors the
appearance of immunothromboses in the micro-
circulation. These immunothrombi result from the
activation of inflammatory and coagulation path-
ways through a cytokine storm, resulting in
endothelial dysregulation, leukocyte activation,
neutrophil extracellular trap (NET) generation,
complement deposition, and platelet consump-
tion. Pre-existing dysregulation of the RAAS in
elderly patients and patients with heart disease,
hypertension, diabetes mellitus, chronic diseases,
and obesity may contribute to an unfavorable
outcome in SARS-CoV-2. Tissue damage can occur
through a wide range of mechanisms, including
tissue hypoxia, damage by reactive oxygen species
(ROS), ischemia/necrosis, ischemia-reperfusion
injury, hemorrhage, and/or thromboembolism.
These changes, if left untreated, can lead to mul-
tiorgan dysfunction and death. Ang II, angio-
tensin II. Created with BioRender.com (Toronto,
Canada).

Ramos et al
converting Ang II to Ang 1-7.9,10,12,13 Ang II is the main
vascular effector of the RAAS and exerts its deleterious
effects on the cardiovascular system via AT1R by activating
vasoconstrictor, inflammatory, and fibrotic pathways. Ang II
accumulation also activates ADAM17 activity, thus
perpetuating membrane shedding of ACE2, RAAS
1158
overactivation, and inflammation.12,15,65 In addition, after
AT1R activation, Ang II can activate the NF-kB
pathway66,67 via stimulation of the phosphorylation of the
p65 subunit of NF-kB.68 This action leads to increased
production of IL-6, tumor necrosis factor-a, IL-1b, IL-10,
and IL-12.68,69 Although Ang II induces vasoconstriction
ajp.amjpathol.org - The American Journal of Pathology
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and promotes a proinflammatory/prothrombotic phenotype,
Ang 1-7 exerts vasodilatory, antiproliferative, anti-
coagulation, and antifibrotic activity via its specific Mas
receptor, thus counterbalancing the adverse effects of Ang II
mediated by AT1R.

5,15,61 Therefore, Ang 1-7, the main
product of ACE2 in the regulation of RAAS, plays a critical
role in maintaining microcirculatory balance through the
inhibition of proinflammatory and procoagulant pathways.61

The kallikrein-bradykinin (BK) system is intensively
interwoven with RAAS through many pathways with
complex reciprocal interaction metabolites, especially des-
Arg9-BK (DABK).70 DABK is a known pulmonary in-
flammatory factor.70,71 ACE2 cleaves terminal residue of
DABK, resulting in its deactivation.72,73 Activation of the
derangement ACE2/DABK/BK B1 receptor axis creates a
proinflammatory synergistic effect for SARS-CoV-2 in as-
sociation with activation of the ACE/Ang II/AT1R
axis.15,62,63 The resulting effect is a more inflammatory
state, neutrophil recruitment, and enhancement of patho-
logic pulmonary changes in severe COVID-19, including
NF-kB activity.62,63 The increased production of Ang II and
activation of AT1R can also occur via activation of the
complement cascade, including C5a and C5b-9, indicating
cross-talk between the RAAS and the complement system.74

Finally, the interaction of ACE2 with the coagulation sys-
tem is indirect and occurs via two mechanisms: catalyzing
the production of Ang 1-9, which reduces plasminogen
activator and increases plasminogen activator inhibitor-1,
thus inhibiting fibrinolysis,75 and modulating the activity
of kallikrein, which in turn catalyzes the conversion of
plasminogen into plasmin.76 Together, these highly inte-
grated pathways certainly contribute to the overproduction
of inflammatory mediators, causing a cytokine storm and
feeding back a destructive circuit of immunothrombosis and
tissue damage in the microcirculatory environment. These
events appear to be crucial in the pathogenesis of COVID-
19. A schema showing the main pathways involving
ACE2 down-regulation is shown in Figure 1.
ACE2 Down-Regulation and Tissue Damage:
Clinical and Experimental Data

In a recent study conducted in patients with COVID-19, the
viral load and the severity of lung injury were strongly
associated with the circulating levels of Ang II.77 Moreover,
a cohort of 12 patients with COVID-19 showed markedly
elevated circulating Ang II levels compared with healthy
control subjects (linearly correlated with viral load),
providing a direct link between tissue ACE2 down-
regulation and systemic RAAS imbalance, which favors
multiorgan damage from SARS-CoV-2 infection.78

Although respiratory symptoms are predominant, acute
cardiac and kidney injuries, arrhythmias, cerebral symp-
toms, and gut and liver function abnormalities are being
reported in infected patients.12 This finding is relevant to the
The American Journal of Pathology - ajp.amjpathol.org
pulmonary, cardiac, and renal tissues of infected subjects,
especially patients with heart failure, diabetes, pulmonary
diseases, and hypertension, whose current clinical settings
are associated with RAAS dysregulation.72 Given these
premises, it seems reasonable to speculate that depletion of
ACE2 and activation of the ACE/Ang II/AT1R axis might
have a pivotal role in the clinical presentations of
COVID-19.

Based on experimental models of SARS, virus-induced
ACE2 suppression is believed to propagate acute lung injury
by leading to increased lung Ang II content.14 It was also
shown in non-SARS experimental studies. ACE2 knockout
mice exhibited acute respiratory distress syndrome/acute
lung injury pathology, characterized by increased vascular
permeability, increased pulmonary edema, neutrophil
accumulation, and deterioration of lung function compared
with normal wild-type control mice.14 ACE deficiency
partially rescued the severe lung injury phenotype of mice
that had a single mutation in the ACE2 gene, suggesting that
the balance of ACE and ACE2 levels is the key to lung
injury or lung protection during an inflammatory storm.79

Moreover, the hearts of ACE2 knockout mice exhibited
increased Ang II levels and up-regulation of hypoxia-
inducible genes, suggesting that cardiac function is modu-
lated by the balance between ACE and ACE2 and that the
increase in local cardiac Ang II is involved in these ab-
normalities. This is supported by the fact that the cardiac
phenotype and increased Ang II levels were completely
reversed by concomitant deletion of the ACE gene in ACE2
knockout mice.61 Recent studies suggest that ACE2 in-
fluences the electrical pathways of the heart. In ACE2
transgenic mice, cardiac conduction disturbances were pre-
sent, and some animals developed lethal ventricular fibril-
lation.80 Furthermore, Ang II is increased in damaged
tubules, suggesting its possible role as a mediator of renal
damage in experimental and human renal disorders. A dis-
rupted balance between intrarenal ACE and ACE2, with
consequent high levels of Ang II, might therefore contribute
to progressive renal damage.81 Collectively, this evidence
points to a conceptual framework in which ACE2 is a
central player in normal multiorgan functions, and its
negative regulation during infection can be a fundamental
event producing disease.
COVID-19: A Transient Acquired Regulatory
Molecular Disease Causing a Major Problem in
the Microcirculatory Environment

Prof. Ruy Pérez-Tamayo, M.D., Ph.D., a renowned
pathologist, stated that when a structurally normal protein is
present but its relative concentration in the different com-
partments of the organism is perturbed in association with
corresponding functional changes, the scenario constitutes a
molecular disease. Such diseases can be further classified as
regulatory (quantitative deviations from the norm) or
1159
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acquired (caused by “toxic substances” and treated by
removal of the responsible agent).82 Therefore, the current
article proposes that COVID-19 be considered an acquired
regulatory molecular disease characterized by a transient
down-regulation of ACE2 and, consequently RAAS dysre-
gulation, promoting elevated levels of Ang II in the
microcirculation, which, in association with the exacerbated
innate immunity induced by response of the virus, promotes
the spread of immunothrombosis in the microcirculatory
system throughout the body.

Immunothrombosis results from the activation of in-
flammatory pathways through a cytokine storm, resulting in
endothelial dysregulation, leukocyte activation, NET gen-
eration, complement deposition, and platelet consump-
tion.22,23 These powerful pathways require strict regulation
to ensure that they are disarmed at the appropriate time and
place, and for the appropriate duration. Otherwise, they can
become extremely dangerous for the organism that they
normally protect.22 At least during bacterial infection,
immunothromboses appear to involve a limited number of
microvessels and often do not result in complete vessel
occlusion.18 The final extent of organ damage depends, in
addition to the primary insult, on the extent of the subse-
quent microvascular thromboinflammatory response. Unlike
thrombosis in the great arteries, thrombosis in the micro-
vessels can result in a relatively diffuse impairment of
perfusion and widespread dysfunction of the affected or-
gans.22 Taking this in account, it is rational to predict that
these inflammatory microthrombi could lead to a wide range
of tissue consequences, including tissue hypoxia, damage by
reactive oxygen species, ischemia/necrosis, ischemia/reper-
fusion injury, hemorrhage, and/or systemic thromboembo-
lism. A schematic view, with a summary of the sequence of
changes from the entry of SARS-CoV-2 into the lower
airways to the possible causes of tissue damage, is shown in
Figure 2.

These microthrombi may be especially prominent wher-
ever there are ACE2-positive cells, especially in the lungs,
heart, kidneys, brain, and endothelium.58 Interestingly, in
the pathophysiology of COVID-19, there seems to be
enormous spatiotemporal heterogeneity in the involvement
of organs.83 Therefore, histologic consequences may be
aggravated when occurring simultaneously in patients who
already have conditions involving a dysregulation of the
RAAS, such as heart diseases, hypertension, diabetes mel-
litus, chronic diseases, older age, and obesity.79,84 The
damage to the organs will vary depending on the quantity of
thrombi, the vulnerability of the tissue, the general condi-
tions of the patient (eg, old age, pre-existing diseases), and
genetic conditions (eg, sex, blood type, ethnicity, individual
immune response).16 Recently, it was proposed that an ACE
gene polymorphism, accounting for the differences in ACE
levels in the general population, may be responsible for
susceptibility to severe lung injury in patients with COVID-
19.85 The crude fatality rate of patients with COVID-19
without documented comorbidities is 0.9%, compared
1160
with 10.5% for patients with cardiovascular disease and
7.3% for patients with diabetes.86 All of these consider-
ations suggest the existence of a wide variety of injury
mechanisms that can occur in different organs in this dis-
ease. Therefore, the better these pathophysiological differ-
ences are understood, the more quickly therapies can be
developed to target specific organs.
In the initial phase, the virus can enter the peripheral

bloodstream via the lungs and may result in viremia.87 It
may then proceed to affect other organs expressing ACE2,
such as the heart and blood vessels, kidneys, and gastro-
intestinal tract. In this regard, viral entry via endothelial-
expressed ACE2 could represent a mechanism by which
the virus can enter and infect other tissues via proteolytic
processing and shedding, driving the systemic manifesta-
tions of COVID-19.12 It is important to remember that the
endothelium lines the lumen of the entire circulatory sys-
tem, from the chambers of the heart to the microcapillary
beds, and, quantitatively, approximately 98% of all endo-
thelial cells reside in the microvasculature, reflecting the
vast surface area of the microcirculatory system in the
human body.23,88 Therefore, endothelial dysfunction may
be the major issue in critically ill patients and can lead to
the development of multiorgan dysfunction syndrome and
death.23 The mechanisms of endothelial dysfunction that
occur in COVID-19 are not yet fully understood.89e92

However, evidence suggests that aberrant immuno-
thrombosis contributes to thrombus formation in large
vessel disease, including atherothrombosis and deep
venous thromboembolism.93 Structural analysis of venous
clots revealed activated leukocytes and NETs within the
architecture of a thrombus, supporting the involvement of
leukocyte-mediated platelet activation and NET-driven
venous thromboembolism.94,95 Therefore, NETs, further
contributing to tissue damage, may be involved in the
pathogenesis of venous and arterial thrombosis in COVID-
19. Unraveling the pathologic basis of COVID-19 is
essential for our understanding of the pathophysiology of
this intriguing disease.
In the vast majority of conditions defined and/or accom-

panied by microvascular thrombosis, the diagnosis is typi-
cally made clinically and sometimes confirmed
histologically, when possible.22 Notably, the resolution of a
computed tomography angiogram or magnetic resonance
angiogram typically does not provide information about the
structure of microscopic vessels.22 Therefore, microvascular
thrombosis likely occurs at a more frequent rate than re-
ported due to difficulty in establishing this diagnosis. To
date, there is no specific laboratory surrogate for this entity.
Thus, early recognition is typically an important factor in
delivering effective therapy.
The interaction between the SARS-CoV-2 S protein and

ACE2 has generated abundant and renewed interest in the
RAAS. Many in the research community are asking
questions regarding whether and how the RAAS modu-
lates SARS-CoV-2 infectivity and COVID-19 morbidity
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and mortality.58,96 Therefore, efforts to obtain new clinical
and experimental evidence are important to confirm the
SARS-CoV-2/ACE2/RAAS interaction and how in-
terventions in this pathway can influence the pathogenesis
of COVID-19. Understanding the functions of ACE2 in
COVID-19 can help optimize current therapies and, ulti-
mately, guide the development of new therapeutic
strategies.
Conclusions

Emerging data show a crucial role of ACE2 down-
regulation in SARS-CoV-2 infection, promoting the dysre-
gulation of the RAAS and a consequent increase in the
levels of Ang II in the microcirculation, which, in turn, at
least in part, creates a proinflammatory and procoagulant
state that diffuses immunothromboses and tissue damage in
patients with COVID-19.

ACE2 serves as an endogenous inhibitor of inflammatory
signals associated with four major regulator systems: the
RAAS, the kallikrein-kinin system, the coagulation cascade,
and the complement system. Many of these pathways
certainly involve the regulation of the RAAS, strengthening
the hypothesis that the down-regulation of ACE2 must be
crucial in the pathogenesis of COVID-19.

This proposed new concept of COVID-19 as an acquired
regulatory molecular disease provides a unifying patho-
physiological picture of this infection in all organs, offering
a framework for a rational treatment strategy to combat this
new pandemic.

Pre-existing dysregulation of the RAAS in old age, heart
disease, hypertension, chronic diseases, diabetes mellitus,
and obesity combined with macrovascular damage induced
by SARS-CoV-2 may contribute to poor outcomes in
COVID-19.

The mechanisms of tissue damage in the microcirculatory
environment may include tissue hypoxia, reactive oxygen
species, ischemia/necrosis, ischemia/reperfusion injury,
hemorrhage, and/or systemic thromboembolism. NETs,
which further promote tissue damage, are probably involved
in the pathogenesis of arterial and venous thrombosis,
causing important ischemic events throughout the body.

All these considerations suggest the existence of a wide
variety of injury mechanisms, occurring in different organs.
A better understanding of these pathophysiological differ-
ences in specific organs may be essential for the develop-
ment of targeted therapies.

Based on mechanistic understanding, certain readily
available drugs that act on the expression of ACE2/Ang II
should be tested in a well-planned manner to assist in the
treatment of COVID-19.

Clinical evidence coupled with novel evidence from basic
research is required to confirm how SARS-CoV-2 interacts
with and modifies the RAAS and how this interaction may
influence COVID-19 pathogenesis.
The American Journal of Pathology - ajp.amjpathol.org
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