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Abstract
Aims/hypothesis In previous work, we reported the HR for the risk (95% CI) of the secondary kidney composite endpoint (time
to first event of doubling of serum creatinine from baseline, renal dialysis/transplant or renal death) with ertugliflozin compared
with placebo as 0.81 (0.63, 1.04). The effect of ertugliflozin on exploratory kidney-related outcomes was evaluated using data
from the eValuation of ERTugliflozin effIcacy and Safety CardioVascular outcomes (VERTIS CV) trial (NCT01986881).
Methods Individuals with type 2 diabetes mellitus and established atherosclerotic CVDwere randomised to receive ertugliflozin
5 mg or 15 mg (observations from both doses were pooled), or matching placebo, added on to existing treatment. The kidney
composite outcome in VERTIS CV (reported previously) was time to first event of doubling of serum creatinine from baseline,
renal dialysis/transplant or renal death. The pre-specified exploratory composite outcome replaced doubling of serum creatinine
with sustained 40% decrease from baseline in eGFR. In addition, the impact of ertugliflozin on urinary albumin/creatinine ratio
(UACR) and eGFR over time was assessed.
Results A total of 8246 individuals were randomised and followed for a mean of 3.5 years. The exploratory kidney composite
outcome of sustained 40% reduction frombaseline in eGFR, chronic kidney dialysis/transplant or renal death occurred at a lower event
rate (events per 1000 person-years) in the ertugliflozin group than with the placebo group (6.0 vs 9.0); the HR (95% CI) was 0.66
(0.50, 0.88). At 60 months, in the ertugliflozin group, placebo-corrected changes from baseline (95% CIs) in UACR and eGFR were
−16.2% (−23.9, −7.6) and 2.6 ml min−1 [1.73 m]−2 (1.5, 3.6), respectively. Ertugliflozin was associated with a consistent decrease in
UACR and attenuation of eGFR decline across subgroups, with a suggested larger effect observed in the macroalbuminuria and
Kidney Disease: Improving Global Outcomes in Chronic Kidney Disease (KDIGO CKD) high/very high-risk subgroups.
Conclusions/interpretation Among individuals with type 2 diabetes and atherosclerotic CVD, ertugliflozin reduced the risk for
the pre-specified exploratory composite renal endpoint and was associated with preservation of eGFR and reduced UACR.
Trial registration ClinicalTrials.gov NCT01986881
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Abbreviations
AKI Acute kidney injury
CKD Chronic kidney disease
CKD-EPI Chronic Kidney Disease Epidemiology

Collaboration
cLDA Constrained longitudinal data analysis
CVOT Cardiovascular outcomes trial
DKD Diabetic kidney disease
FAS Full analysis set
KDIGO CKD Kidney Disease: Improving Global

Outcomes in Chronic Kidney Disease
MDRD Modification of Diet in Renal Disease
RMANCOVA Repeated measures ANCOVA
SBP Systolic BP
SGLT2 Sodium–glucose cotransporter 2
SMQ StandardMedical Dictionary for Regulatory

Activities Query
UACR Urine albumin/creatinine ratio
VERTIS CV eValuation of ERTugliflozin effIcacy and

Safety CardioVascular outcomes

Introduction

Ertugliflozin is a selective inhibitor of sodium–glucose
cotransporter 2 (SGLT2), leading to glucosuria, with HbA1c

lowering of 8.3–9.9 mmol/mol (0.8–0.9%) and 2–3 kg of

weight loss, and is approved for use as a glucose-lowering
therapy in type 2 diabetes mellitus [1]. SGLT2 inhibitors
induce other physiological effects, including natriuresis,
contributing to lowering of BP and beneficial effects on
kidney function [2]. Although glucosuria- and HbA1c-lower-
ing effects attenuate as eGFR decreases below a certain
threshold [3, 4], other effects (such as reductions in BP and
weight) of SGLT2 inhibitors tend to be preserved across the
range of eGFR that has been studied in humans [5].

In addition to lowering the urinary albumin/creatinine
ratio (UACR) [6], SGLT2 inhibitors reduce the risk of
the kidney composite, which includes a substantial
decrease in renal filtering capacity (doubling of serum
creatinine or a sustained 40% decrease in eGFR), renal
replacement therapy and renal death, in cardiovascular
outcome trials (CVOTs) in individuals with type 2 diabe-
tes [7–9] and in individuals with established diabetic
kidney disease (DKD) and macroalbuminuria [10]. In the
eValuation of ERTugliflozin effIcacy and Safety
CardioVascular outcomes (VERTIS CV) trial, the key
secondary composite kidney endpoint (time to first occur-
rence of the composite of doubling of baseline serum
creatinine, renal death, kidney dialysis/transplant) was not
significantly reduced, with a HR (95% CI) of 0.81 (0.63,
1.04). The impact of ertugliflozin on kidney function with
a definition used in other outcome studies [7, 9], such as
sustained 40% decline in eGFR, has not yet been reported.
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In the present analyses, our aim was to explore the effects
of ertugliflozin on pre-specified exploratory kidney endpoints
in the overall VERTIS CV trial population and according to
baseline kidney function status, and to evaluate the effect of
ertugliflozin on the incidence of acute kidney failure-related
adverse events.

Methods

Study design and oversight The design, primary results and
full study protocol (protocol MK-8835-004) of the VERTIS
CV trial have been previously published [11, 12]. The
VERTIS CV trial (ClinicalTrials.gov registration no.
NCT01986881) was a prospective, multicentre, randomised,
double-blind, placebo-controlled, parallel-group, event-driven
trial in individuals with type 2 diabetes and established athero-
sclerotic CVD comparing two doses of ertugliflozin (prospec-
tively planned to be pooled for analyses) vs placebo. VERTIS
CVwas initiated in 2013. On the basis of evolving knowledge
of the potential role of SGLT2 inhibitors in reducing the risk
of cardiovascular events, the study was amended in 2015 to
increase participant numbers so that these potential benefits
could be adequately explored. The statistical analysis plan for
the exploratory kidney outcomes was completed prior to data-
base lock, before the results were known (see electronic
supplementary material [ESM] Statistical analysis plan); thus,
these are pre-specified analyses.

Study population The full details of trial eligibility criteria
have been previously described [11, 12]. The trial recruited
individuals with type 2 diabetes and established atherosclerot-
ic CVD, with baseline eGFR ≥30 ml min−1 [1.73 m]−2. The
trial was conducted in accordance with the principles of Good
Clinical Practice and was approved by the appropriate institu-
tional review boards and regulatory agencies, with all partic-
ipants providing written informed consent.

Classification by baseline kidney category Three baseline
kidney function classification schemes were pre-specified
and used for subgroup analyses: (1) eGFR; (2) UACR; and
(3) the Kidney Disease: Improving Global Outcomes in
Chronic Kidney Disease (KDIGO CKD) risk categories,
which combine eGFR and UACR. For the eGFR category,
baseline eGFR was calculated using the Modification of
Diet in Renal Disease (MDRD) study equation [13]; partici-
pants were classified into chronic kidney disease (CKD) stage
1, stage 2 or stage 3 if eGFR was ≥90 ml min−1 [1.73 m]−2,
≥60ml min−1 [1.73 m]−2 and <90 or <60 ml min−1 [1.73 m]−2,
respectively. For the classification by baseline UACR, partic-
ipan t s were c l a s s i f i ed in to normoa lbuminur i a ,
microalbuminuria or macroalbuminuria categories if UACR
(mg/mmol [mg/g]) was <3.39 (<30), ≥3.39 and ≤33.9 (≥30

and ≤300) or >33.9 (>300), respectively. The KDIGO CKD
risk category (low, moderate and high/very high risk) was
based on the prognosis of CKD by eGFR (calculated with
the MDRD equation) and albuminuria categories heat map
(ESM Fig. 1) [14]. Individuals assigned to the KDIGO CKD
high- and very high-risk categories were pooled for the anal-
yses. For classification, a baseline eGFR and/or UACR value
was required. For the analyses of eGFR over time in the over-
all population, both the MDRD and Chronic Kidney Disease
Epidemiology Collaboration (CKD-EPI) equations were
used; the CKD-EPI equation was used for the analyses of
eGFR over time in subgroups, as this formula has superior
operating characteristics in terms of precision and accuracy
and is more frequently used in clinical practice.

Key kidney outcomes All analyses reported here were pre-
specified, either in the statistical analysis plan of the trial or
in a separate analysis plan completed prior to database lock
and unblinding (see ESM Statistical analysis plan). Briefly,
results are reported for the hierarchically tested secondary
composite kidney outcome (doubling of baseline serum creat-
inine, kidney dialysis/transplant or renal death), as well as the
individual components of the composite, and a sensitivity
analysis based on sustained doubling of serum creatinine
(defined as the occurrence of a value that met the cut-off
criterion that was followed, more than 30 days later, by a
subsequent value that also met the cut-off criterion), chronic
kidney dialysis/transplant or renal death. As a sustained 40%
decline from baseline in eGFR is an appropriate surrogate
endpoint for kidney failure that allows for the accrual of more
events in a shorter period of time [15], we carried out a pre-
specified exploratory composite kidney outcome analysis of a
sustained 40% reduction from baseline in eGFR (defined as
the occurrence of a value that met the cut-off criterion that was
followed, more than 30 days later, by a subsequent value that
also met the cut-off criterion), chronic kidney dialysis/
transplant or renal death. The pre-specified exploratory
composite kidney endpoint analysis was performed in the
pooled ertugliflozin population and by ertugliflozin dose
(5 mg and 15 mg). Changes in albuminuria over time and
shifts in albuminuria status, as well as eGFR over time by
treatment group, are also reported. Multiple events occurring
in the same individual were counted on the first event only.
All analyses were carried out for the overall population and in
subgroups defined by baseline kidney function. The incidence
of adverse events related to acute kidney failure was evaluated
using the Acute Renal Failure Standard Medical Dictionary
for Regulatory Activities Query (SMQ) in the overall popula-
tion and by two baseline eGFR subgroups (eGFR
<60mlmin−1 [1.73 m]−2 and eGFR ≥60mlmin−1 [1.73m]−2).

Statistical analysis The analyses of kidney composite
endpoints and each individual component were performed on
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the intention-to-treat population (all randomised participants).
The analyses of eGFR and UACR endpoints were carried out
on the full analysis set (FAS; randomised participants who
received one or more doses of blinded study medication and
had one or more measurements of the analysis endpoint). The
analyses of eGFR andUACR endpoints were performed on the
pooled ertugliflozin population and by ertugliflozin dose (5 mg
and 15 mg). Data after the initiation of glycaemic rescue ther-
apy were included; however, data obtained more than 2 days
after the last dose of study medication were excluded from the
change-from-baseline analyses of the eGFR and UACR
endpoints. The analyses of the adverse event of acute kidney
failure were carried out on the safety population (randomised
participants who took one or more doses of study medication);
adverse events occurring up to 30 days after the final dose of
study medication were included.

The time-to-event endpoints were analysed using a strati-
fied Cox proportional hazards model, including treatment
group as a covariate with cohort as a stratification factor
(cohort one [participants randomised before protocol amend-
ment, between December 2013 and July 2015] and cohort two
[participants randomised after protocol amendment, in 2016
and beyond]). For baseline subgroup analyses, the models
included terms for treatment, subgroup (categorical) and
treatment-by-subgroup interaction. The baseline subgroups
were evaluated by eGFR category, KDIGO CKD risk catego-
ries and UACR category. The p value of the interaction term is
presented for subgroup analyses. Time-to-event endpoints, if
no event had occurred, were censored at the time of the last
follow-up visit.

Mean changes from baseline in eGFR and UACR
endpoints over time were estimated using the constrained
longitudinal data analysis (cLDA) model for the overall popu-
lation. The model contained the fixed effects for treatment,
time, treatment-by-time interaction, baseline HbA1c and base-
line systolic BP (SBP) if the analysis model converged.
Owing to the non-normal distribution of UACR, UACR data
were log-transformed prior to analysis. The geometric means
and adjusted mean percentage change (derived from exponen-
tiation of adjusted estimates from the cLDAmodel) with 95%
CIs are presented by treatment and timepoint. The difference
between ertugliflozin treatment and placebo in mean percent-
age change in UACR from baseline was estimated and
presented. For subgroup analyses of eGFR and UACR, a
repeated measures ANCOVA (RMANCOVA) method was
used. The RMANCOVA model adjusted for baseline of
response variable, baseline HbA1c, treatment, time, subgroup,
treatment-by-subgroup interaction and treatment-by-
subgroup-by-time interaction. For subgroup analyses based
on factors that were already in the main model, the respective
term appeared in the model only once. In both cLDA and
RMANCOVA models, time was treated as a categorical vari-
able. An unstructured covariance matrix was used to model

the correlation among repeated measurements. When the
covariance structure did not converge, a Toeplitz covariance
structure was used. Summary statistics are provided for base-
line demographic and disease characteristics. In this explor-
atory kidney outcomes analysis, type 1 error of 5% was not
controlled for multiple testing. The nominal p values are
reported. All statistical analyses were performed using SAS
Version 9.4 (The SAS Institute, Cary, NC, USA).

Results

Baseline characteristics A total of 8246 individuals were
randomised and followed for a mean (SD) of 3.5 (1.2) years.
Of these, 2747 received placebo and 5499 received
ertugliflozin (5 mg or 15 mg doses). Details of participant
disposition and study conduct have been reported [12]. Of
the randomised individuals, 87–88% completed the trial alive,
8.5–9.2% died and 3.7–4.1%withdrew. Studymedication was
discontinued prematurely in 27.9% and 23.5% of participants
in the placebo and ertugliflozin groups, respectively. The
median duration of follow-up was 3.0 years. Table 1 summa-
rises the baseline characteristics in the overall population. In
the overall cohort, 2048 (24.8%), 4390 (53.2%) and 1807
(21.9%) individuals had CKD stage 1, 2 and 3 at baseline,
respectively. At baseline, 4783 (59.6%), 2492 (31.0%) and
755 (9.4%) individuals exhibited normoalbuminuria,
microalbuminuria and macroalbuminuria, respectively. The
number of participants assigned to the KDIGO CKD low-risk,
moderate-risk and high-/very high-risk categories at baseline
was 3916 (48.8%), 2568 (32.0%) and 1548 (19.3%), respec-
tively. At baseline, themean age of participants was 64.4 years,
mean duration of type 2 diabetes was 13.0 years, mean HbA1c

was 66.5 mmol/mol (8.2%) and mean SBP was 133.3 mmHg.
At baseline, mean eGFRwas 76.0 ml min−1 [1.73 m]−2 and

the median for UACR was 2.1 mg/mmol (19.0 mg/g) in the
overall cohort. Baseline characteristics in the pooled
ertugliflozin population were similar to those of the
individual ertugliflozin 5 mg and 15 mg groups (ESM
Table 1). Baseline clinical variables, including mean eGFR
and median UACR, by the three kidney function categories
are shown in ESM Tables 2–4.

Pre-specified exploratory composite kidney outcomes The
hierarchically tested secondary composite kidney endpoint
in VERTIS CV (time to first occurrence of the composite of
doubling of baseline serum creatinine, kidney dialysis/
transplant or renal death) occurred at an event rate (events
per 1000 person-years) of 9.3 and 11.5 in the ertugliflozin
and placebo groups, respectively, with a HR (95% CI) of
0.81 (0.63, 1.04) (Fig. 1), as previously reported [12]. The
RR for the kidney composite endpoint with ertugliflozin
compared with placebo was generally similar across
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subgroups defined by baseline kidney function (p > 0.05 for
interaction; ESMTable 5). For the sensitivity analysis, the risk
of the composite of sustained doubling of serum creatinine,
chronic kidney dialysis/transplant or renal death occurred less
frequently at an event rate (events per 1000 person-years) of

2.3 in the ertugliflozin group and 3.5 in the placebo group,
with a HR (95% CI) of 0.65 (0.41, 1.02) (Fig. 1 and ESM Fig.
2). Similar results are reported in subgroups defined by base-
line kidney function compared with the overall cohort (ESM
Table 6).

Table 1 Baseline demographic
and disease characteristics of the
overall population (ITT)

Characteristic Placebo

(n = 2747)

Ertugliflozin, pooled

(n = 5499)

Total

(N = 8246)

Female sex, n (%) 844 (30.7) 1633 (29.7) 2477 (30.0)

Age, years 64.4±8.0 64.4±8.1 64.4±8.1

HbA1c, mmol/mol 66.3±10.3 66.6±10.5 66.5±10.4

HbA1c, % 8.2±0.9 8.2±1.0 8.2±1.0

Duration of T2DM, years 13.1±8.4 12.9±8.3 13.0±8.3

Haemoglobin, g/l 139.5±13.7 140.0±13.5 139.9±13.6

BMI, kg/m2 32.0±5.5 31.9±5.4 32.0±5.4

eGFR, ml min−1 [1.73 m]−2 (MDRD) 75.7±20.8 76.1±20.9 76.0±20.9

UACR, mg/mmol 2.1 (0.7–7.5) 2.0 (0.7–7.8) 2.1 (0.7–7.7)

UACR, mg/g 19.0 (6.0–66.5) 18.0 (6.0–69.0) 19.0 (6.0–68.0)

SBP, mmHg 133.1±13.9 133.5±13.7 133.3±13.8

Glucose-lowering agents, n (%)

Insulin 1344 (48.9) 2556 (46.5) 3900 (47.3)

Biguanides 2124 (77.3) 4168 (75.8) 6292 (76.3)

Antihypertensive agents, n (%)

Any antihypertensive 2632 (95.8) 5221 (94.9) 7853 (95.2)

RAAS inhibitor 2239 (81.5) 4447 (80.9) 6686 (81.1)

Diuretic 1196 (43.5) 2346 (42.7) 3542 (43.0)

Loop diuretic 426 (15.5) 826 (15.0) 1252 (15.2)

Mineralocorticoids receptor antagonists 224 (8.2) 450 (8.2) 674 (8.2)

Antiplatelet or antithrombotic drugs, n (%) 2446 (89.0) 4880 (88.7) 7326 (88.8)

Lipid-lowering agents, n (%) 2313 (84.2) 4655 (84.7) 6968 (84.5)

eGFR category, n (%)a

CKD stage 1 678 (24.7) 1370 (24.9) 2048 (24.8)

CKD stage 2 1461 (53.2) 2929 (53.3) 4390 (53.2)

CKD stage 3 608 (22.1) 1199 (21.8) 1807 (21.9)

UACR category, n (%)b

Normoalbuminuria 1597 (59.5) 3186 (59.6) 4783 (59.6)

Microalbuminuria 845 (31.5) 1647 (30.8) 2492 (31.0)

Macroalbuminuria 242 (9.0) 513 (9.6) 755 (9.4)

KDIGO CKD risk category, n (%)c

Low risk of CKD 1307 (48.7) 2609 (48.8) 3916 (48.8)

Moderate risk of CKD 859 (32.0) 1709 (31.9) 2568 (32.0)

High/very high risk of CKD 517 (19.3) 1031 (19.3) 1548 (19.3)

Values are mean±SD or median (IQR) unless otherwise stated
a Participants required a baseline eGFR value for classification: n = 2747 for placebo; n = 5498 for ertuglifozin,
pooled; n = 8245 total
b Participants required a baseline UACR value for classification: n = 2684 for placebo; n = 5346 for ertugliflozin,
pooled; n = 8030 total
c Participants required baseline eGFR and UACR values for classification: n = 2683 for placebo; n = 5349 for
ertuglifozin, pooled; n = 8032 total

ITT, intention to treat; RAAS, renin–angiotensin–aldosterone system; T2DM, type 2 diabetes mellitus
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The pre-specified exploratory kidney composite outcome of
sustained 40% reduction from baseline in eGFR, chronic
kidney dialysis/transplant or renal death occurred at a lower
event rate (events per 1000 person-years) in the ertugliflozin
group than with placebo (6.0 vs 9.0), with a HR (95% CI) of
0.66 (0.50, 0.88) (Figs 1, 2). Similar results were obtained by
ertugliflozin dose compared with the pooled ertugliflozin
group, with HRs (95% CI) of 0.60 (0.42, 0.84) and 0.73
(0.53, 1.01) in the ertugliflozin 5 mg and ertugliflozin 15 mg
groups, respectively (ESM Fig. 3). The lower rate of the pre-
specified exploratory composite outcome in the ertugliflozin
group compared with the placebo group was due to a lower
rate of sustained 40% reduction from baseline in eGFR in the
ertugliflozin group (HR [95% CI]: 0.65 [0.49, 0.87]) (Fig. 1).

The risk reduction for the pre-specified exploratory kidney
composite endpoint with ertugliflozin compared with placebo
is presented in ESM Table 7. There was large overlap of the

95% CIs, and the p values for interaction by baseline kidney
function categories were non-significant.

Progression or regression in albuminuria category In the
overall population, ertugliflozin was associatedwith a reduced
risk of progression to microalbuminuria (in participants with
normoalbuminuria at baseline) or macroalbuminuria (in those
with normoalbuminuria or microalbuminuria at baseline)
compared with placebo (Fig. 1). Event rates for albuminuria
progression per 1000 person-years were 94.8 and 120.7 in the
ertugliflozin and placebo groups, respectively, with a HR
(95% CI) of 0.79 (0.72, 0.86).

In the overall population, ertugliflozin was associated with
an increased regression to microalbuminuria (in participants
with macroalbuminuria at baseline) or normoalbuminuria (in
those with microalbuminuria or macroalbuminuria at baseline)
compared with placebo. The event rate for regression of

0.25 0.5 1 2

Favours ertugliflozin Favours placebo

Endpoint

Placebo
N = 2747

Ertugliflozin
N = 5499

AERRn (%)

 Event rate
per 1000

person-years n (%)

 Event rate
per 1000

person-years HR (95% CI)
p

value

0.81 (0.63, 1.04) 0.08−2.22×SCr, RRT, or renal death

0.79 (0.62, 1.01) 0.06−2.32×SCr

0.96 (0.50, 1.83) 0.90−0.1RRT

0 0  2 (0.04) NANA0.1 0.1Renal death

0.65 (0.41, 1.02) 0.06−1.2Sensitivity analysis for the risk of sustained
2×SCr, chronic RRT, or renal death

6.0 0.66 (0.50, 0.88) <0.01−3.0RRT, or renal death

0.65 (0.49, 0.87) <0.01−3.0

Sustained 40% eGFR, chronic

Sustained 40% eGFR

<0.010.79 (0.72, 0.86)94.81310 (23.85)120.7767 (27.94) −25.9Progression of albuminuriaa

129 (4.70) 16.9 231 (4.21) 14.5 0.87 (0.70, 1.07) 0.19−2.4Acute renal failurea

108 (3.93) 11.5  175 (3.18)  9.3

 106 (3.86) 11.2  169 (3.07)  8.9

 14 (0.51) 1.5  27 (0.49)  1.4

 33 (1.2)  3.5 43 (0.78)  2.3

85 (3.09) 9.0 113 (2.05)

83 (3.02) 8.8 109 (1.98) 5.8

 32 (1.16) 3.4  41 (0.75)  2.1 0.64 (0.40, 1.01) 0.06−1.3Sustained 2×SCr

 4 (0.15) 0.4 8 (0.15) NANA0.4 0Chronic RRT

Fig. 1 Forest plot of the key kidney outcomes in the overall population
(ITT). ↓40% eGFR, 40% decline in eGFR; 2 × SCr, doubling of serum
creatinine; AERR, absolute event risk reduction; ITT, intention to treat;

RRT, renal replacement therapy (kidney dialysis or transplant). aThe
analysis was performed on the full analysis set population: placebo, n =
2745; ertugliflozin, n = 5493

HR 0.66 (95% CI 0.50, 0.88); p < 0.01 

All ertugliflozin Placebo

Time (years)
0 1 2 3 4 5

No. of participants at risk
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)Fig. 2 Kaplan–Meier plot for the

time to first event in the pre-
specified exploratory kidney
composite outcome (sustained
40% decrease from baseline in
eGFR, chronic renal dialysis/
transplant or renal death) in the
overall population (ITT). ITT,
intention to treat
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microalbuminuria and macroalbuminuria per 1000 person-
years was 87.7 and 72.3 in the ertugliflozin and placebo group,
respectively, with a HR (95% CI) of 1.23 (1.10, 1.36). While
beneficial effects on regression of albuminuria were observed
consistently among all subgroups, a larger effect is suggested in
the subgroup with greater baseline elevation of albuminuria, as
the p value for interaction was 0.04 (ESM Table 8).

UACR change over time In the overall cohort, ertugliflozin
was associated with a reduction in UACR compared with
placebo, and this persisted for the duration of the study (Fig.
3a). Placebo-adjusted per cent change (95% CI) in UACR at
18 weeks was −14.9 (−19.0, −10.6) in the ertugliflozin group.
At month 60, the placebo-adjusted per cent change (95% CI)
in UACR in the overall cohort was −16.2 (−23.9, −7.6) in the
ertugliflozin group. Results by ertugliflozin dose were similar
to those for the pooled cohort; at month 60, the placebo-
adjusted per cent change (95% CI) in UACR was −8.3
(−17.9, 2.5) and −23.5 (−31.5, −14.5) in the ertugliflozin
5 mg and ertugliflozin 15 mg groups, respectively (ESM
Fig. 4). In subgroups defined by baseline kidney function,
placebo-corrected changes from baseline with ertugliflozin

were larger in the subgroups of participants who had elevated
albuminuria at baseline (Fig. 3b–d and ESM Figs 5 and 6). At
month 60, placebo-adjusted per cent changes from baseline in
UACR (95%CI) were −8.8 (−18.4, 1.9), −25.7 (−36.6, −12.8)
and −33.5 (−52.0, −7.8) in participants treated with
e r tug l i f l oz in wi th base l ine normoa lbuminur i a ,
microalbuminuria and macroalbuminuria, respectively.

eGFR change over time In the overall cohort, least squares
mean change (95% CI) in eGFR from baseline to week 6
was −3.0 ml min−1 [1.73 m]−2 (−3.2, −2.7) and
−0.5 ml min−1 [1.73 m]−2 (−0.8, −0.1) in the ertugliflozin
and placebo groups, respectively (Fig. 4, calculated using
the CKD-EPI equation). After week 6, ertugliflozin was asso-
ciated with an attenuation in the decline of eGFR over time
compared with placebo; at month 60, the difference in least
squares mean change (95% CI) in eGFR from baseline with
ertugliflozin compared with placebo was 2.55 ml min−1

[1.73 m]−2 (1.50, 3.61) (p < 0.01). Values of eGFR over time
using the MDRD equation were similar when compared with
calculations using the CKD-EPI equation (ESM Fig. 7a).
Changes in eGFR over time by ertugliflozin dose when
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calculated by the CKD-EPI and MDRD equations were simi-
lar to those for the pooled ertugliflozin population (ESM Fig.
7b,c). Ertugliflozin was associated with consistent attenuation
of eGFR decline across subgroups, with a suggested larger
effect observed in the macroalbuminuria and KDIGO CKD
high-/very high-risk subgroups (Fig. 4b–d and ESM Figs 8,
9). At month 60, placebo-adjusted change from baseline in
eGFR (ml min−1 [1.73 m]−2 [95% CI]) was 2.06 (0.81,
3.31), 2.59 (0.79, 4.38) and 5.80 (2.11, 9.48) in participants
treated with ertugliflozin who had normoalbuminuria,
microalbuminuria and macroalbuminuria at baseline,
respectively.

Risk for acute renal failure In the overall population, the
proportion of participants with one or more kidney-related
adverse events (utilising the SMQ) did not differ between
the ertugliflozin and placebo groups (4.2% and 4.7%, respec-
tively). The event rates per 1000 person-years were 14.5
(ertugliflozin group) and 16.9 (placebo group), with a HR
(95% CI) of 0.87 (0.70, 1.07). The most frequent preferred
term from the SMQ was acute kidney injury (AKI), the

frequency of which was 2.2% and 1.8% for the placebo and
ertugliflozin groups, respectively. These kidney-related safety
findings were similar in participants with baseline eGFR <60
and ≥60 ml min−1 [1.73 m]−2. The proportion of participants
with a baseline eGFR <60 ml min−1 [1.73 m]−2 with one or
more kidney-related adverse events was similar in the
ertugliflozin and placebo groups (both 10.2%). In the
subgroup with baseline eGFR ≥60 ml min−1 [1.73 m]−2, the
proportion of participants with one or more kidney-related
adverse events was similar in the ertugliflozin and placebo
groups (2.5% and 3.1%, respectively).

Discussion

VERTIS CV is the fourth SGLT2 inhibitor CVOT to evaluate
kidney outcomes [7–9]. These outcomes have also been
examined in the dedicated DKD trial, Canagliflozin and
Renal Events in Diabetes with Established Nephropathy
Clinical Evaluation (CREDENCE) [10]. The results of the
VERTIS CV trial provide further evidence supporting the
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beneficial effects of this drug class on cardiovascular and
kidney outcomes. Based on this body of evidence, these ther-
apies have led to major revisions of clinical practice guidelines
for type 2 diabetes mellitus [16]. Our major findings for
ertugliflozin were as follows: reduced risk of the pre-
specified exploratory renal composite, which included a
sustained 40% decline in eGFR, chronic renal replacement
therapy or renal death; significantly reduced UACR compared
with placebo in participants with microalbuminuria or
macroalbuminuria at baseline; preserved kidney function,
especially in participants with macroalbuminuria at greatest
risk of DKD progression; and a renal safety profile that was
consistent with the known effects of SGLT2 inhibitors.

In previous CVOTs, SGLT2 inhibition reduced the risk of
important kidney secondary endpoints. In the Empagliflozin
Cardiovascular Outcome Event Trial in Type 2 Diabetes
Mellitus Patients–Removing Excess Glucose (EMPA-REG
OUTCOME), empagliflozin reduced the risk of the composite
kidney endpoint that included doubling of serum creatinine as
a measure of substantial decline in kidney function by 46%. In
the Canagliflozin Cardiovascular Assessment Study
(CANVAS) Program, involving a predominant atherosclerot-
ic CVD cohort, canagliflozin reduced the risk of sustained
40% decline in eGFR, kidney replacement therapy or renal
death by 40% [7, 8]. Interestingly, even in the lowest risk
cohort for atherosclerotic CVD and kidney disease progres-
sion enrolled in the Dapagliflozin Effect on Cardiovascular
Events–Thrombolysis in Myocardial Infarction 58
(DECLARE-TIMI 58) study, the renal composite was
reduced significantly with dapagliflozin vs placebo when
significant kidney function decline was defined by a sustained
40% decline in eGFR to <60 ml min−1 [1.73 m]−2 [9]. In the
VERTIS CV study, the secondary outcome of a kidney
composite involving a doubling of creatinine did not reach
statistical significance [12]. A possible explanation for the
difference is that these four studies had inconsistent defini-
tions of the kidney composite, specifically regarding the use
of doubling of serum creatinine (without a concomitant eGFR
level below 45 ml min−1 [1.73 m]−2, as was used in EMPA-
REG OUTCOME) and the requirement for sustainability of
the decline. Consistent with previous CVOTs [17, 18],
ertugliflozin reduced the risk of the renal composite endpoint
by 34% when sustained 40% decline in eGFR was used
instead of doubling of serum creatinine. The reduction in RR
for the kidney composite was observed across CKD stages,
levels of UACR and KDIGO CKD risk categories. Although
the definition of significant renal function decline using
sustained doubling of creatinine is considered accurate as a
renal endpoint, the overall risk of DKD progression in this
cohort was low and hence the power to demonstrate kidney
function loss of this magnitude was insufficient. By contrast,
kidney function preservation using the definition of a
sustained 40% decline in eGFR is likely a more precise

measure, especially in cohorts at lower risk for DKD progres-
sion, and therefore more appropriate in this setting.

The effect of SGLT2 inhibitors on UACR lowering has
been consistently demonstrated, occurring in individuals with
type 2 diabetes with preserved and impaired kidney function
[6, 19], and tends to appear quickly after initiation of therapy,
regardless of background therapy [6, 20]. Therefore, the
impact of ertugliflozin on UACR in individuals with elevated
UACR at baseline was consistent with previous literature. The
observations that ertugliflozin reduced albuminuria progres-
sion and increased albuminuria regression are also aligned
with known effects of SGLT2 inhibitors [6]. An expanding
body of evidence supports the hypothesis that reduced
intraglomerular pressure on the basis of natriuresis-activated
tubuloglomerular feedback and other vasoactive pathways
attenuates glomerular hypertension [21, 22]. These haemody-
namic mechanisms are perhaps best illustrated by the obser-
vations that UACR lowering occurs rapidly and is reversible
shortly after cessation of therapy [6], and by the fact that
markers of reduced glomerular hypertension have been shown
consistently in response to SGLT2 inhibitors [21–23]. SGLT2
inhibitor trials have also served to identify patient clinical
profiles linked with kidney protection with these agents, espe-
cially people with albuminuria, as demonstrated by the rapid
rate of eGFR decline in patients with macroalbuminuria treat-
ed with placebo, emphasising the importance of measuring
UACR according to established clinical practice guidelines
[17, 18].

SGLT2 inhibitors have characteristic effects on kidney
function. In human mechanistic studies, empagliflozin
reduced inulin-based GFR and renal blood flow in individuals
with type 1 diabetes [21], in conjunction with an increase in
urine adenosine excretion [24] and a rise in renal vascular
resistance and afferent constriction [25], consistent with acti-
vation of tubuloglomerular feedback [26]. Effects on eGFR
occur acutely after a single dose [27] and then persist over
time [8]. Following the cessation of SGLT2 inhibitor therapy,
eGFR rebounds rapidly back towards baseline [8], consistent
with the haemodynamic effects of these agents [6, 28]. In the
current analysis, eGFR declined acutely with ertugliflozin and
was then better preserved over time compared with placebo.
Consistent with results of other SGLT2 inhibitor trials, a larger
effect of eGFR preservation over time (as measured by
placebo-adjusted difference) was observed in the subgroup
of participants who had macroalbuminuria at baseline (Fig.
3d) [6].

Reports from the US Food and Drug Administration’s
adverse event reporting system suggested higher AKI risk
with SGLT2 inhibitors. In individual CVOTs, AKI risk was
either neutral or reduced with SGLT2 inhibitors, and in meta-
analyses involving cardiorenal outcome studies, AKI risk was
reduced by approximately 25% [7–10, 17, 18]. Similarly, in
propensity-matched score analyses with electronic medical
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record data, AKI risk was lower with SGLT2 inhibitors than
with other glucose-lowering therapies [29]. Consistent with
this previous literature, our analysis found no indication of
an increase in AKI risk with ertugliflozin.

Our analysis does have limitations. We recognise that
although observations from this analysis are generally consis-
tent with renal-related effects in other trials with SGLT2 inhib-
itors, findings from this cohort with type 2 diabetes and
established atherosclerotic CVD may not be generalisable to
other groups of individuals. We used pre-specified explorato-
ry endpoints and did not control for type 1 error. The protocol
amendment at the end of 2015 resulted in two cohorts with
different durations of follow-up. A subgroup analysis of the
interaction of the secondary kidney outcome by cohort was
found to be non-significant. As reported in previous event-
driven trials, the number of participants decreased through
the observation period, limiting the interpretability of the
results for eGFR and UACR over time. Although valuable
as a measure of long-term kidney risk, UACR does have
inherent limitations due, in part, to variability of single
UACR measures. Nevertheless, the VERTIS CV trial includ-
ed a large sample size, which mitigated some of the inherent
limitations around the use of single UACR measurements at
each time point. Furthermore, the use of single measurements
and related variability would have biased our analysis towards
nul l . Hence, the effects of er tugl i f lozin may be
underestimated. Early and late haemodynamic effects of the
SGLT2 inhibitor class of medications may limit the interpret-
ability of the UACR results. The assessment of acute renal
failure was based on adverse event reporting by investigators;
however, a blinded external independent panel adjudicated all
important renal events for assessment of causality with study
medication. Finally, we recognise that the endpoints were
exploratory in nature; however, the use of sustained 40%
decline in eGFR rather than doubling of serum creatinine is
widely recognised as being clinically relevant and has been
used in other kidney protection studies [7, 9, 15, 30, 31].

In conclusion, when used in addition to standard of care
medications, ertugliflozin was associated with a decrease in
the risk of a sustained 40% decline in eGFR, with less albu-
minuria and with preservation of eGFR over time in individ-
uals with type 2 diabetes and established atherosclerotic CVD.
Observations from the VERTIS CV study suggest that the
effects of ertugliflozin on the kidneys are generally consistent
with the known benefits of SGLT2 inhibitors.
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