Skip to main content
. 2021 May 5;11:9630. doi: 10.1038/s41598-021-88919-9

Table 2.

Classification accuracy of NeurDNet in the two cases of employing binary and probabilistic features.

Classifier Binary features Probabilistic features
25% 35% 45% 55% 65% 75% 25% 35% 45% 55% 65% 75%
RF (entropy) 85.69 84.24 82.91 81.94 82.43 78.68 86.18 85.43 83.79 82.66 82.20 78.21
RF (gini) 85.43 84.59 83.43 82.35 81.97 78.28 86.49 84.81 84.27 82.63 82.57 78.29
SVM (rbf) 85.68 84.65 84.24 82.19 83.10 79.46 86.33 85.83 85.38 82.09 82.68 79.01
SVM (linear) 84.26 82.69 82.08 81.34 80.78 78.02 85.83 84.77 83.60 82.36 82.02 78.57
NB 83.70 83.55 80.23 81.44 81.67 77.31 85.98 86.42 84.94 83.94 84.15 81.48
LR 85.76 84.41 84.09 83.10 82.83 79.49 87.29 86.10 85.28 83.65 83.38 79.74
AdaBoost 83.97 81.61 80.99 79.95 79.30 75.80 85.03 82.97 81.53 80.01 78.12 73.32
LDA (svd) 79.54 76.25 75.83 73.79 66.21 67.44 77.81 76.41 76.56 72.31 65.12 63.62
LDA (lsqr) 79.54 76.25 75.80 73.77 63.40 49.57 77.81 76.41 76.56 72.31 65.12 49.50
QDA 81.85 83.18 78.69 72.08 63.26 58.62 95.55 93.89 81.73 73.48 56.29 53.13
DT (entropy) 81.21 78.45 77.66 77.63 76.02 74.75 80.40 79.01 77.11 77.57 75.06 71.73
DT (gini) 80.45 80.16 78.51 77.25 77.32 75.25 77.99 78.29 76.89 76.35 74.29 71.84
MLP (10) 85.01 82.40 82.05 81.25 79.79 77.53 84.33 83.03 81.64 80.25 80.04 77.04
MLP (30) 84.64 82.84 82.02 80.85 79.63 77.49 84.53 82.80 81.79 80.50 80.33 77.45

The classification accuracy is measured across different choices of the second-stage classifier, including random forests (RF), support vector machines (SVM), Naive Bayes Classifier (NB), logistic regression (LR), AdaBoost classifier (AB), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), decision trees (DT), and multi layer perceptron (MLP).