Table 2.
Classification accuracy of in the two cases of employing binary and probabilistic features.
Classifier | Binary features | Probabilistic features | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
25% | 35% | 45% | 55% | 65% | 75% | 25% | 35% | 45% | 55% | 65% | 75% | |
RF (entropy) | 85.69 | 84.24 | 82.91 | 81.94 | 82.43 | 78.68 | 86.18 | 85.43 | 83.79 | 82.66 | 82.20 | 78.21 |
RF (gini) | 85.43 | 84.59 | 83.43 | 82.35 | 81.97 | 78.28 | 86.49 | 84.81 | 84.27 | 82.63 | 82.57 | 78.29 |
SVM (rbf) | 85.68 | 84.65 | 84.24 | 82.19 | 83.10 | 79.46 | 86.33 | 85.83 | 85.38 | 82.09 | 82.68 | 79.01 |
SVM (linear) | 84.26 | 82.69 | 82.08 | 81.34 | 80.78 | 78.02 | 85.83 | 84.77 | 83.60 | 82.36 | 82.02 | 78.57 |
NB | 83.70 | 83.55 | 80.23 | 81.44 | 81.67 | 77.31 | 85.98 | 86.42 | 84.94 | 83.94 | 84.15 | 81.48 |
LR | 85.76 | 84.41 | 84.09 | 83.10 | 82.83 | 79.49 | 87.29 | 86.10 | 85.28 | 83.65 | 83.38 | 79.74 |
AdaBoost | 83.97 | 81.61 | 80.99 | 79.95 | 79.30 | 75.80 | 85.03 | 82.97 | 81.53 | 80.01 | 78.12 | 73.32 |
LDA (svd) | 79.54 | 76.25 | 75.83 | 73.79 | 66.21 | 67.44 | 77.81 | 76.41 | 76.56 | 72.31 | 65.12 | 63.62 |
LDA (lsqr) | 79.54 | 76.25 | 75.80 | 73.77 | 63.40 | 49.57 | 77.81 | 76.41 | 76.56 | 72.31 | 65.12 | 49.50 |
QDA | 81.85 | 83.18 | 78.69 | 72.08 | 63.26 | 58.62 | 95.55 | 93.89 | 81.73 | 73.48 | 56.29 | 53.13 |
DT (entropy) | 81.21 | 78.45 | 77.66 | 77.63 | 76.02 | 74.75 | 80.40 | 79.01 | 77.11 | 77.57 | 75.06 | 71.73 |
DT (gini) | 80.45 | 80.16 | 78.51 | 77.25 | 77.32 | 75.25 | 77.99 | 78.29 | 76.89 | 76.35 | 74.29 | 71.84 |
MLP (10) | 85.01 | 82.40 | 82.05 | 81.25 | 79.79 | 77.53 | 84.33 | 83.03 | 81.64 | 80.25 | 80.04 | 77.04 |
MLP (30) | 84.64 | 82.84 | 82.02 | 80.85 | 79.63 | 77.49 | 84.53 | 82.80 | 81.79 | 80.50 | 80.33 | 77.45 |
The classification accuracy is measured across different choices of the second-stage classifier, including random forests (RF), support vector machines (SVM), Naive Bayes Classifier (NB), logistic regression (LR), AdaBoost classifier (AB), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), decision trees (DT), and multi layer perceptron (MLP).