Skip to main content
. 2021 May 5;11:9630. doi: 10.1038/s41598-021-88919-9

Table 3.

Classification accuracy of NeurDNet when only the first-visit tremor assessments are included in the test set.

Classifier Binary features Probabilistic features
25% 35% 45% 55% 65% 75% 25% 35% 45% 55% 65% 75%
RF (entropy) 87.31 85.30 83.66 81.90 81.43 79.60 86.78 86.13 84.78 82.36 81.53 81.05
RF (gini) 87.59 85.80 83.50 82.03 80.96 79.77 86.66 85.63 84.83 82.23 81.38 80.83
SVM (rbf) 87.05 85.89 84.51 82.07 81.45 78.66 88.26 86.50 86.13 82.81 82.22 79.85
SVM (linear) 85.85 82.56 82.47 81.15 79.81 77.90 86.82 84.86 83.83 82.39 81.34 80.14
NB 84.99 83.93 79.95 81.65 77.07 75.61 87.60 86.44 85.11 84.54 82.57 81.09
LR 87.43 85.26 84.05 81.88 80.92 78.78 88.08 86.62 86.30 83.52 82.74 80.94
AdaBoost 86.26 82.53 82.70 80.21 77.69 76.46 85.79 83.59 82.32 80.78 78.63 75.06
LDA (svd) 81.13 78.10 76.10 70.13 67.04 67.82 79.12 77.02 76.49 71.58 66.14 62.99
LDA (lsqr) 81.13 78.10 76.04 70.13 62.49 49.41 79.12 77.02 76.49 71.58 66.14 51.06
QDA 79.18 80.77 77.65 70.20 62.15 60.04 93.05 89.66 77.59 71.63 59.92 54.01
DT (entropy) 80.85 79.04 78.25 76.60 76.42 74.96 79.76 79.14 78.44 77.39 75.61 73.82
DT (gini) 81.78 80.40 78.63 76.86 75.54 73.97 80.35 77.90 78.09 77.47 76.28 74.15
MLP (10) 85.41 83.33 82.54 78.90 78.09 77.60 83.31 81.84 81.50 79.72 78.15 77.83
MLP (30) 85.74 82.76 81.48 79.00 78.42 77.23 83.80 82.24 81.87 79.70 78.22 77.55

The classification accuracy is measured across different choices of second-stage classifier, including random forests (RF), support vector machines (SVM), Naive Bayes Classifier(NB), logistic regression (LR), AdaBoost classifier (AB), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), decision trees (DT), and multi layer perceptron (MLP).