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CopulaNet: Learning residue co-evolution directly
from multiple sequence alignment for protein
structure prediction
Fusong Ju 1,2, Jianwei Zhu 3✉, Bin Shao3, Lupeng Kong1,2, Tie-Yan Liu3, Wei-Mou Zheng2,4 &

Dongbo Bu 1,2✉

Residue co-evolution has become the primary principle for estimating inter-residue distances

of a protein, which are crucially important for predicting protein structure. Most existing

approaches adopt an indirect strategy, i.e., inferring residue co-evolution based on some

hand-crafted features, say, a covariance matrix, calculated from multiple sequence alignment

(MSA) of target protein. This indirect strategy, however, cannot fully exploit the information

carried by MSA. Here, we report an end-to-end deep neural network, CopulaNet, to estimate

residue co-evolution directly from MSA. The key elements of CopulaNet include: (i) an

encoder to model context-specific mutation for each residue; (ii) an aggregator to model

residue co-evolution, and thereafter estimate inter-residue distances. Using CASP13 (the 13th

Critical Assessment of Protein Structure Prediction) target proteins as representatives, we

demonstrate that CopulaNet can predict protein structure with improved accuracy and

efficiency. This study represents a step toward improved end-to-end prediction of inter-

residue distances and protein tertiary structures.
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Proteins play critical roles in a wide-range of biological
processes including catalyzing metabolic reactions,
responding to stimuli, and transporting molecules. These

biological activities are largely determined by the fine details of
protein tertiary structures 1. Protein structures can be experi-
mentally determined using nuclear magnetic resonance, X-ray
crystallography, and cryogenic electron microscopy2; however,
these technologies are usually difficult and time-consuming and
cannot keep pace with the rapid accumulation of protein
sequences3. An alternative way is protein structure prediction,
which predicts structure for a target protein purely from its
amino acid sequence. Generally speaking, protein structure pre-
diction approaches are usually more efficient than the experi-
mental technologies for protein structure determination4,5.

Major progresses have been made during previous years in
protein structure prediction and inter-residue contacts/distances
have played important roles. Most of the recent protein structure
prediction approaches, such as AlphaFold6 and trRosetta7,
employ roughly the same three-step diagram: i) estimating inter-
residue contacts/distances; ii) constructing a potential function
based on the estimated contacts/distances; and iii) optimizing the
potential function to build a tertiary structure with minimal
potential. This diagram has been shown to be successful when the
estimated inter-residue contacts/distances are sufficiently
accurate.

The state-of-the-art approaches to estimating the inter-residue
contacts/distances share the same cornerstones, i.e., constructing
multiple sequence alignment (MSA) for a target protein of
interest and then performing residue co-evolution analysis on the
resulting MSA8–10. The underlying rational is that two residues in
close spatial proximity always tend to co-evolve; thus, in turn,
residue co-evolutions could be exploited to accurately estimate
contacts/distances between residues. The co-evolution relation-
ship is usually inferred from residue correlations carried by MSA.
This strategy, however, is always hindered by the indirect corre-
lations among residues: the indirect correlations could lead to
transitivity in residue spatial proximity and thereafter incorrect
estimation of inter-residue contacts/distances. To derive the
direct couplings of residues, a variety of direct coupling analysis
(DCA) methods have been proposed using precision matrix (the
inverse of covariance matrix) or Potts model11–15. Currently the
DCA technique is widely used for estimating inter-residue con-
tacts/distances, especially combined with deep neural networks
for further refinement. For example, both AlphaFold6 and
RaptorX16 rely on the inter-residue contacts predicted by
CCMpred, a DCA-based approach using the Potts model17.

Although the DCA technique has been shown to be effective in
estimating inter-residue contacts/distances, it still suffers from
several drawbacks. An outstanding drawback is the considerable
information loss after transforming MSAs into hand-crafted
features, say covariance matrices. In fact, the DCA technique is
founded on the premise that the direct couplings between two
residues can be modeled using pairwise statistics such as
covariance9,10. However, this premise does not always hold. We
demonstrated this possibility using two artifactual proteins P1 and
P2 as counterexamples (Fig. 1). In protein P1, two residues R1 and
R2 are close, whereas in protein P2, they are far from each other.
Despite the substantial difference in the constructed MSAs for P1
and P2, the covariance matrices calculated from these MSAs are
completely identical, causing the DCA technique to give identical
distance estimations for proteins P1 and P2. In fact, for these two
MSAs, any statistic of a single residue, or pairwise statistics of two
residues, cannot distinguish them. Like the approaches based on
covariance matrix, the widely-used Potts model considers these
two types of statistics only, and thus also suffers from the lim-
itation illustrated in Fig. 1. Consequently, a more effective way to

extract direct couplings between residues from MSAs is highly
desirable.

Here, we report an end-to-end deep neural network frame-
work, called CopulaNet, for estimating inter-residue distances.
Unlike the existing methods, CopulaNet learns the conditional
joint-residue distributions directly from MSAs rather than the
hand-crafted features such as covariance matrices. The Copula-
Net consists of three key elements, namely, an MSA encoder, a
co-evolution aggregator, and a distance estimator. The MSA
encoder processes each homologous protein in MSA individually,
and embeds each residue to represent its context-specific muta-
tions observed from homologous proteins of the target protein.
For any two residues, the aggregator first calculates outer product
of their embeddings derived from each homologous protein, then
aggregates the outer products acquired from all homologous
proteins using average pooling, and finally yields a measure of co-
evolution between the two residues. Based on the obtained resi-
due co-evolution, we use a two-dimensional residual network to
estimate distance for any residue pairs.

Using CopulaNet as a core module, we develop an approach
(called ProFOLD) to protein structure prediction. Briefly speak-
ing, ProFOLD transforms the estimated distances into a potential
function, and realizes a tertiary structural conformation with
minimal potential. In the following sections, we first demonstrate
the concept of ProFOLD using protein T0992-D1 as an example,
then apply it to predict structures for the CASP13 target proteins
as representatives, and finally compare it with the state-of-the-art
prediction approaches. We also present analysis of contributions
by the key elements of CopulaNet.

Results
Approach summary. The ProFOLD approach is summarized in
Fig. 2. Using the CASP13 target protein T0992-D1 as an example,
we demonstrate the concept and main steps of ProFOLD for
protein structure prediction.

Protein T0992-D1 consists of a total of 107 residues (only the
first 13 residues are shown here for the sake of clear description).
For this protein, we first identified its homologs through
searching it against protein sequence databases including
Uniclust3018, UniRef9019 and Metaclust5020. The obtained
homologous proteins (2807 domains in total) were organized
into an MSA. Next, we applied CopulaNet to estimate inter-
residue distances directly from the constructed MSA. Here, we
inferred the distribution of inter-residue distance over pre-
defined 37 bins, rather than a single distance value. Four
examples of these distributions are shown in Supplementary
Fig. 1. In the case of residues LEU32 and TYR70, the most likely
distance interval was predicted to be (7.5Å, 8Å), which covers the
true distance 7.83Å. Finally, we transformed the estimated
distance distributions into a potential function, and then searched
for the structure conformation with the minimal potential
through potential minimization. ProFOLD reports the structural
conformation with sufficiently low potential as the final
prediction result (shown in the lower-right corner of Fig. 2),
which perfectly approximates the native structure
(TMscore: 0.84).

The core of our ProFOLD approach is CopulaNet, a deep
neural network specially designed to learn inter-residue distances
directly from MSA. CopulaNet achieves this objective using three
key modules, namely, MSA encoder, co-evolution aggregator, and
distance estimator, which are described as below.

MSA encoder aims to model the mutations of each individual
residue of target protein. Here, we represent an MSA with K
homologous proteins as K pairwise alignments, each of which
consists of a homologous protein aligned onto the target protein.
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For each individual alignment, MSA encoder identifies the
mutations of each residue of the target protein, and embeds the
mutations into a vector of 64 features.

As a residue’s mutation is highly related to its neighboring
residues, the MSA encoder should consider a residue of interest
together with its neighbors during embedding. For this end, we

design the encoder as a 1D convolutional residual network21 with
multiple convolution layers, thus enabling it to embed a residue
together with its neighbors.

Co-evolution aggregator measures the co-evolutions between
each pair of residues. For any two residues, the aggregator first
calculates outer product of their embedding features derived from
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Fig. 1 The limitation of the covariance-based methods in estimating inter-residue distances. a Two artifactual proteins P1 and P2. In protein P1, two
residues R1 and R2 are close, whereas in protein P2, they are far from each other. b The MSAs constructed for the two proteins show considerable
difference. c The covariance matrices calculated from these two MSAs are totally identical; thus, the covariance-based methods give the same estimation
of inter-residue distances for protein P1 and P2. This is contradict the true inter-residue distances. d Unlike the covariance matrices, the conditional joint-
residue distribution P(R1, R2∣R3) could effectively distinguish these two MSAs.
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Fig. 2 Predicting protein tertiary structure using ProFOLD. Here, we use the CASP13 target protein T0992-D1 as an example to describe the main steps
of ProFOLD. Only the first 13 residues are shown here for the sake of clear description. First, we search this protein against sequence databases to identify
its homologous proteins (2,807 proteins in total). Next, we use the acquired homologous protein to construct an MSA for this protein. Then we apply
CopulaNet to infer residue co-evolution directly from the MSA. CopulaNet uses an MSA encoder to model the mutation information for each residue of the
target protein, and then uses a co-evolution aggregator to measure the residue co-mutations. According to the acquired residue co-evolution information,
the distance estimator estimates inter-residue distances. Finally, we transform the estimated distance distributions into a potential function, and then
search for the structure conformation with the minimal potential. ProFOLD reports the structural conformation with sufficiently low potential as the final
prediction result (TMscore: 0.84).
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a certain homologous protein. As the embedding features of a
residue encode its mutations, the outer product of two residues’
embedding features could effectively measure the strength of co-
mutations between them. Next, by using an average-pooling layer,
the aggregator calculates the average outer product obtained from
all homologous proteins, thus providing thorough information of
co-evolutions between the two residues. Further details of outer
product and average-pooling layer are shown in the Methods
section and Supplementary Fig. 2.

Distance estimator aims to estimate inter-residue distances
according to the acquired residue co-evolutions. Previous studies
have revealed several structure-related patterns existing in the
inter-residue distances. Specifically, two contacting parallel β-
strands often form a diagonal line, whereas two contacting anti-
parallel β-strands often form an anti-diagonal line. In contrast,
two contacting helices usually form a dashed line22. Here, we
apply a 2D-ResNet to learn these patterns, and thereafter assign
these patterns to the estimated inter-residue distances.

To alleviate the difficulty in distance estimation, we transform
the distance estimation problem into a classification problem,
which is much easier to accomplish. In particular, as performed
by trRosetta7, we divide the inter-residue distance range into 37
intervals, i.e., (0Å, 2.5Å), (2.5Å, 3.0Å),⋯ , (19.5Å, 20.0Å), and
(20.0Å,+∞). For each residue pair, CopulaNet predicts a
distance distribution over the 37 intervals instead of a single
estimated distance value.

Estimating inter-residue distances using CopulaNet. Using
CopulaNet, ProFOLD estimated inter-residue distances for all
104 CASP13 protein domains. For the sake of fair comparison, we
evaluated these estimations in terms of precision of the predicted
inter-residue contacts rather than inter-residue distances. Speci-
fically, for two residues, we summed up the predicted probability
mass of the intervals with distance below 8Å, and used the sum as
predicted probability for the two residue being in contact. As
shown in Fig. 3, on the 31 FM domains, ProFOLD achieved
prediction precision of 0.840, 0.713 and 0.567 for the most
probable L/5, L/2 and L long-range residue contacts, which is

significantly higher than A7D (AlphaFold), the winner group of
CASP13, by 0.128, 0.117 and 0.097, respectively. We also com-
pared with the updated RaptorX23. The prediction results of the
updated RaptorX were obtained through re-running it using
identical MSA to ProFOLD (see Supplementary material for
details). As shown in Supplementary Table 1, ProFOLD achieved
higher prediction precision than the state-of-the-art approaches.

We further analyzed the contributions of CopulaNet’s
components for estimating inter-residue distances. As mentioned
above, the uniqueness of CopulaNet lies at the use of a learnable
"encoder and aggregator” framework rather than traditional
statistical models, to infer residue co-evolutions. The obtained
residue co-evolutions are further fed into a 2D ResNet to assign
the structure-related patterns to inter-residue distances. To
examine the contributions by the encoder and aggregator, we
built a variant that contains these components only through
disabling the 2D ResNet in ProFOLD. The resulting variant,
denoted as ProFOLD w/o R, was evaluated and compared against
the standard ProFOLD.

As shown in Fig. 4, even using the "encoder and aggregator”
framework alone, the variant ProFOLD w/o R achieved a
precision of 0.382 for the top L contact predictions on the
CASP13 FM targets. The application of the 2D ResNet in
ProFOLD further improved the precision by 0.185. In addition,
for both CASP13 FM targets and validation dataset, the
performance of ProFOLD w/o R increases with the receptive
field size, implying that encoding more neighbors surrounding
residues will greatly facilitate distance estimating (Fig. 4). In the
study, we used an MSA encoder with a receptive field size of 33
(16 1D convolution layers, each layer with a kernel size of 3).

We also implemented three baseline models through replacing
the "encoder and aggregator” components of ProFOLD with
covariance matrix (a full L × L × 21 × 21 matrix) and CCMpred
output (also a full L × L × 21 × 21 matrix), respectively. The
baseline model that trains our 2D ResNet using the CCMpred
output together with sequence profile is denoted as baseline-
CCM, whereas the baseline model that trains our 2D ResNet
using covariance matrix together with sequence profile is denoted
as baseline-Cov. We further implemented a baseline model

Fig. 3 Precision of the predicted inter-residue contacts. Here, the most probable L/5, L/2 and L long-range residue contacts are shown, where L
represents protein length. The phrase "long-range" refers to two residues with sequence separation over 24 residues. For all CASP13 target proteins,
ProFOLD outperformed the state-of-the-art approaches. In particular, for the 31 FM domains, ProFOLD achieved precision of 0.840, 0.713 and 0.567 for
the most probable L/5, L/2 and L contacts, which is significantly higher than AlphaFold, by 0.128, 0.117 and 0.097, respectively.
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(called baseline-CF) that uses comprehensive features, including
amino acid types, sequence profile, predicted secondary structure,
mutual information, covariance matrix and CCMpred output (see
Supplementary material for further details).

The performance of these two baseline models is summarized
in Supplementary Table 2. As shown in this table, on the 31
CASP13 FM targets, ProFOLD achieved higher precision for
long-range contact predictions than the baseline model baseline-
CCM (0.567 vs. 0.466, 0.713 vs. 0.603, and 0.840 vs. 0.738 for the
most probable L, L/2 and L/5 contacts, respectively) and baseline-
Cov (0.567 vs. 0.449, 0.713 vs. 0.591, 0.840 vs. 0.713 for the most
probable L, L/2 and L/5 contacts, respectively). Although
baseline-CF uses comprehensive features and shows performance
improvement, ProFOLD still outperformed baseline-CF (0.567 vs.
0.481, 0.713 vs. 0.621, 0.840 vs. 0.749 for the most probable L, L/2
and L/5 contacts, respectively). The superiority of ProFOLD over
these baseline models is also observed on the validation set, even
if shallow 2DResNet is used.

Taken together, these results clearly suggested that the main
contribution to estimation of inter-residue distances comes from
the learnable "encoder and aggregator” framework.

Predicting protein tertiary structures using ProFOLD. We
applied ProFOLD to predict protein tertiary structures and
compared it with the state-of-the-art approaches including
AlphaFold (A7D group in CASP13)6, trRosetta7, top server
groups, and top human groups reported by the CASP13 orga-
nizer. The prediction results of AlphaFold, top human groups
and top server groups were downloaded from CASP13 official
website (https://predictioncenter.org/download_area/CASP13/
predictions_trimmed_to_domains/), whereas the prediction
results of trRosetta were obtained through re-running it using
identical MSA to ProFOLD. The details of these prediction
results are summarized in Supplementary Table 3 and Fig. 3.

As shown in Fig. 5a and Supplementary Table 3, on the 31 FM
CASP13 datasets, ProFOLD outperformed the state-of-the-art
approaches. Specifically, when using the popular cut-off threshold
for high-quality structures (TMscore ≥0.70)6, ProFOLD predicted
high-quality structures for 18 out of the 31 domains, whereas
AlphaFold and trRosetta predicted high-quality structure for only
12 and 7 domains, respectively. Moreover, the average TMscore
of ProFOLD’s prediction results is 0.662, which is much higher
than that of trRosetta (0.584) and A7D (0.580). Head-to-head
comparison clearly demonstrates the advantages of ProFOLD
over AlphaFold: for 24 out of the 31 FM domains, ProFOLD

outperformed AlphaFold (Fig. 5b). ProFOLD also outperformed
trRosetta on these FM targets (Supplementary Fig. 4).

We also evaluated ProFOLD on the 61 CASP13 TBM and 12
TBM/FM target proteins. For these proteins, although similar
template structures are available, ProFOLD predicted their
structures in pure ab initio mode without any reference to the
template structure information. As shown in Supplementary
Table 3, for these targets, the average TMscore of ProFOLD’s
prediction results is 0.784, which is extremely close to the state-
of-the-art template-modeling approach Zhang-server (0.787).
These results clearly illustrated that the structural information
carried by templates might not be necessary for protein structure
prediction. Using the accurate estimation of inter-residue
distances by CopulaNet, ProFOLD could predict high-quality
protein structures without aids of template structures.

We further examined the possible factors that may affect the
successful application of ProFOLD. Previous studies have already
shown that the quality of predicted structures is highly related to
Meff, the number of effective homologous proteins recorded in
MSA14. As shown in Fig. 6a, the correlation coefficient between
the logarithm of Meff and the quality of predicted structures by
ProFOLD is as high as 0.69. Therefore, as long as the Meff of a
target protein exceeds 20, TMscore of the predicted structure for
this protein is expected to be over 0.60 with high confidence. For
proteins T0953s2-D3, T0981-D2, T0991-D1, and T0998-D1,
ProFOLD could not predict high-quality structures. The reason
might be the lack of sufficient homologous proteins: for these
proteins, Meff is as small as less than 20. How to improve
CopulaNet and ProFOLD to suit the target proteins with only a
few homologous proteins remains a future study.

For an approach to protein structure prediction, an interesting
and important question is whether we can judge the quality of its
prediction results in advance. When the native structure of target
protein is already known, we can easily evaluate a predicted
structure through comparing it with the native structure;
however, thing will become challenging when the native
structure is not available. Here, for each structure predicted by
ProFOLD, we calculate the average probability of top L predicted
contacts (denoted as PPC), and use it as estimated quality of the
predicted structure. As shown in Fig. 6b, the correlation efficient
between PPC and TMscore of the predicted structures is 0.82.
This strong correlation enables us to judge the quality of
predicted structure by ProFOLD in advance. Specifically, if a
target protein has an estimated PPC over 0.60, the TMscore of
the predicted structure by ProFOLD is expected to be over 0.60
with high confidence.

Fig. 4 Precision of the predicted inter-residue contacts by the variant ProFOLD w/o R. a For the 31 CASP13 FM targets, the precision increases with the
receptive field size and finally reaches 0.382. b On the validation set with 1820 proteins, the precision also increases with the receptive field size and finally
reaches 0.424. Even using the "encoder and aggregator'' framework alone, the variant ProFOLD w/o R still outperformed CCMpred on the two datasets
(0.219 and 0.382, respectively).
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When applying ProFOLD on a target protein having multiple
domains, we can either predict structure for the whole target
protein, or predict structure for each domain individually. In the
above experiments, we evaluated our approach using MSAs
constructed from domain sequences. For more thorough
investigations, we have repeated the entire evaluation using
MSAs constructed from the whole-target sequences. As shown in
Supplementary Table 3, when using the MSA constructed from
the domain sequence, both trRosetta and ProFOLD predict better
protein structures than using the MSA constructed from the
whole-target sequences (0.668 vs. 0.620 for trRosetta, and 0.743
vs. 0.719 for ProFOLD). However, when considering the 31 FM
target proteins only, ProFOLD performs slightly better with the
MSA constructed from whole-target sequences.

Contribution analysis of ProFOLD’s components. To better
understand the contribution of ProFOLD’s components, we built
variants of ProFOLD through disabling each component

individually and then compared these variants with the complete
ProFOLD approach. In particular, we first disabled the 2D ResNet
in distance estimator and thus obtained a variant called ProFOLD
w/o R. We further disabled the MSA encoder and obtained
another variant called ProFOLD w/o E+R. For any two residues
in target protein, ProFOLD w/o E+R captures the correlation
between them without consideration of their neighboring resi-
dues; thus, it has roughly the same power to the approach that
uses covariance matrix for distance estimation.

Using protein T1022s1-D1 as an example, we showed the
qualitative comparison of the variants in Fig. 7. When neither
MSA encoder nor 2D ResNet is used, the variant ProFOLD w/o E
+R performed poorly and failed to generate high-quality distance
estimations. This result is consistent with the previous observa-
tion on the low performance of the covariance-based
approaches11. When equipped with the MSA encoder module,
the variant ProFOLD w/o R could generate relatively more
accurate distance estimations than ProFOLD w/o E+R. Further-
more, as both MSA encoder and 2D ResNet are enabled, the

Fig. 5 Quality of the predicted tertiary structures for CASP13 FM target proteins. a ProFOLD predicted more high-quality structures than the state-of-
the-art approaches. When using the popular cut-off threshold for high-quality structures (TMscore ≥0.70), ProFOLD predicted high-quality structures for
18 out of the 31 domains, whereas AlphaFold and trRosetta predicted high-quality structure for only 12 and 7 domains, respectively. b Head-to-head
comparison clearly demonstrates the advantages of ProFOLD over AlphaFold: for 24 out of the 31 FM domains, ProFOLD outperformed AlphaFold.

Fig. 6 Investigation of possible factors that might affect the performance of ProFOLD. Correlation between quality of the predicted structures and (a)
Meff, (b) the average probability of top L predicted contacts (PPC). For the CASP13 FM target proteins, the correlation coefficient between Meff and
TMscore of the predicted structures by ProFOLD is as high as 0.69. The correlation efficient between PPC and TMscore of the predicted structures is 0.82.
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complete ProFOLD approach gave distance estimations extremely
close to the true distance values. These results emphasize the
importance of considering neighboring residues in encoding step
as well as using the 2D ResNet to learn structure-related patterns
existing in inter-residue distances.

To investigate the effect of outer product in co-evolution
aggregator, we built another variant of ProFOLD (called
ProFOLD w/o OP) through disabling the outer product operation.
Specifically, we removed the term g(i, j) from equation 2, thus
modifying h(i, j) to be the concatenation of f(i) and f(j) only. As
shown in Supplementary Figure 5, for the short-range residue
contacts (between two residues with sequence separation of 6–11
residues), ProFOLD w/o OP showed roughly the same prediction
precision as ProFOLD. This is reasonable as the convolution
modules in MSA encoder has already effectively modeled the
short range relationship. In contrast, for the long-range residue
contacts, the prediction precision of ProFOLD w/o OP decreased
sharply to be significantly lower than ProFOLD. This result
clearly demonstrated the importance of the outer product
operation in modeling the long-range residue contacts, which
cannot be achieved using the convolutional network alone.

Efficiency of ProFOLD for protein structure prediction. As
described above, ProFOLD learns residue co-evolutions directly
from MSA rather than hand-crafted features such as covariance
matrix. An MSA might have ten of thousands of homologous
proteins, whereas the size of covariance matrix is fixed and
determined by the target protein length only. Thus, it is inter-
esting to investigate whether ProFOLD could accomplish protein
structure prediction within reasonable time on an average
computer.

The three key elements of CopulaNet, i.e., MSA encoder, co-
evolution aggregator and distance estimator, exhibit different
characteristics in running time and memory requirement.
Specifically, unlike the final distance estimator processing 2D
information of inter-residue co-evolutions, MSA encoder pro-
cesses 1D sequences only. Moreover, the outer product operations
could be efficiently accomplished using the fast matrix multi-
plication provided by the existing deep neural network
frameworks24. Thus, compared with distance estimator, both
MSA encoder and co-evolution aggregator modules use only a
small amount of computations, making the entire running time
insensitive to the number of homologous proteins. Moreover,
CopulaNet processes each homologous protein individually; thus,
the number of homologous proteins in MSA has little effect on
the amount of computer memory required for computing inter-
residue distances. ProFOLD also uses MSA sampling and distance

matrix cropping in training process, which could effectively
constrain memory usage and avoid potential overfitting as well
(see Method section and Supplementary material for further
details).

As results, for target proteins with less than 500 residues,
ProFOLD could accomplish the whole structure prediction
process within 3 hours on an average laptop computer (Intel
CPU 2.8G Hz, 16G memory).

Discussion
The results presented here for protein structure prediction using
ProFOLD have highlighted the special features of learning residue
co-evolutions directly from MSA. The abilities of our approach
have been clearly demonstrated using CASP13 target proteins as
representatives with improved quality of the predicted structures.
Using the end-to-end framework CopulaNet, ProFOLD could
accurately estimate inter-residue distances and thereafter predict
protein structures. The improved efficiency of ProFOLD is an
additional advantage, mainly due to the succinct architecture of
CopulaNet. It should also be mentioned that the basic idea and
architecture of CopulaNet can be readily modified to calculate
conditional joint distribution in other fields besides residue co-
evolution.

Although in the proof-of-concept study we demonstrated the
application of CopulaNet in ab initio prediction of protein
structures, the estimated inter-residue distances could also be
used to assist template-based prediction approaches. For example,
DeepThreader25 improves threading by incorporating inter-
residue distances into scoring function. EigenThreader26 and
CEThreader27 align target proteins with templates by considering
eigenvector decomposition of the predicted inter-residue con-
tacts. These approaches might benefit from the accurate estima-
tion of inter-residue distances provided by CopulaNet.

As CopulaNet attempts to learn residue co-evolution from
MSA, it requires that MSA should have sufficient homolog pro-
teins. For the MSAs with only a few homolog proteins, CopulaNet
usually cannot accurately estimate inter-residue distances. How to
reduce the amount requirement of homolog proteins remains a
future study.

Theoretical analysis suggests a possible failure case of our
approach. Consider three residues ri, rj, and rk in the target
protein, where both ri and rj are in contact with rk but there is no
contact between ri and rj. If the sequence distance between ri and
rk (and between rj and rk) is sufficiently long, MSA encoder
cannot perfectly model the effect of rk on ri and rj, thus perhaps
causing ProFOLD to incorrectly report a contact for residue ri
and rj. The increase of receptive field size in MSA encoder will

(a) ProFOLD w/o E+R (b) ProFOLD w/o R (c) ProFOLD

Fig. 7 Comparison of the predicted inter-residue distances (bottom left) with the ground-truth distances (upper right) for protein T1022s1-D1. a
ProFOLD w/o E+R performed poorly and failed to generate high-quality distance estimations. b When equipped with the MSA encoder module, the variant
ProFOLD w/o R could generate relatively accurate distance estimations. c When both MSA encoder and 2D ResNet are used, ProFOLD gave distance
estimations extremely close to the real distance values.
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partially alleviate this problem; however, when receptive field size
is already large, further increase of it will bring limited gains. A
perfect way to model long-distance influence among residues is
another future study.

In summary, our work on learning residue co-evolution
directly from MSA, together with recent developments in con-
structing high-quality MSAs, will undoubtedly contribute to more
accurate prediction of protein tertiary structures and thereafter
understanding protein functions.

Methods
Architecture of CopulaNet. CopulaNet consists of three key modules, i.e., MSA
encoder, co-evolution aggregator, and distance estimator.

MSA encoder embeds residue mutations using a 1D convolutional residual
network21. The residual network has 8 residual blocks, and each residual block
consists of two batch-norm layers, two 1D convolution layers with 64 filters (with
kernel size of 3) and exponential linear unit (ELU)28 nonlinearities (Supplementary
Fig. 6).

Co-evolution aggregator measures the co-mutations between two residues.
Before presenting the design of co-evolution aggregator module, we describe the
notations to be used first.

Consider a target protein with L residues t1t2⋯ tL, and a pre-built MSA
containing K homologous proteins. By applying MSA encoder on the k-th
homologous protein in MSA, we obtain a total of C × L embedding features,
denoted as Xk 2 RC ´ L , where C represents the number of output channels of MSA
encoder. For residue ti in the target protein, its embedding features extracted from
all homologous proteins are aggregated together. The aggregated embedding
features, denoted as f 2 RC ´ L , are calculated as follows.

f ðiÞ ¼ 1
Meff

∑
K

k¼1
wkXkðiÞ; ð1Þ

where wk denotes the weight of the k-th homologous protein, and Meff ¼ ∑K
k¼1 wk

represents the sum weight of all homologous proteins. Following the convention
established by PSICOV14, we calculate the weight wk as the inverse of the number
of similar homologous proteins that share at least 80% sequence identity with the
k-th homolog, and thus Meff represents the number of effective homologous
proteins recorded in the MSA.

For two residues ti and tj in target protein, the co-evolution aggregator measures
their co-mutations using aggregated co-evolution features hði; jÞ 2 RD , where D
denotes the number of output channels of co-evolution aggregator (D= 4224 in the
study), and h(i, j) refers to the concatenation of the aggregated embedding features
and their outer products:

hði; jÞ ¼ CONCATðf ðiÞ; f ðjÞ; gði; jÞÞ: ð2Þ
Here, gði; jÞ 2 RC ´C represents the aggregated outer products of the embedding
features for residue ti and tj, which is calculated as below.

gði; jÞ ¼ 1
Meff

∑
K

k¼1
wk½XkðiÞ � XkðjÞ�; ð3Þ

where “⊗ ” represents the outer product operation.
To summarize, the aggregated co-evolution features consist of C × 2 aggregated

embedding features and C × C aggregated outer product features. In this study, the
output channel size C of MSA encoder is set as 64. Thus, the co-evolution
aggregator generates a total of 4224 (64 × 2+ 64 × 64) aggregated co-evolution
features for any two residues in target protein. An example of the outer product
operation is shown in Supplementary Fig. 2 and explained in more details in
Supplementary material.

Distance estimator aims to estimate inter-residue distances according to the
obtained residue co-evolution using a 2D-ResNet with 72 residual blocks. Each
block consists of two batch-norm layers, two 2D dilated convolution layers, and
exponential linear unit (ELU) nonlinearities.

The further details of the training process are provided in Supplementary
material.

Hyperparameter settings of ProFOLD. The hyperparameters of ProFOLD were
set based on consideration of prediction performance and model size. Specifically,
we tested three variants of the 2DResNet used by ProFOLD (72 residual blocks, 96
channels), including "shallow” 2DResNet with only 36 residual blocks, "deeper”
2DResNet with 96 residual blocks, and "wide” 2DResNet with 128 channels.

As illustrated by Supplementary Table 4, the "shallow ProFOLD” shows
precision lower than the standard ProFOLD ("shallow ProFOLD": 0.544 vs.
standard ProFOLD: 0.567 for the most L probable long-range contacts). Similar
observations could be achieved for the two baseline models (Supplementary
Table 5). However, when using more channels, the "shallow but wide ProFOLD”
shows roughly the same precision as "shallow ProFOLD”. These results

demonstrated that the performance of ProFOLD is more sensitive to the number of
residual blocks than the number of channels. We also observed that when further
increasing the number of residual blocks, the precision is roughly fixed ("deeper
ProFOLD": 0.570 vs. standard ProFOLD: 0.567 for the most L probable long-range
contacts) but the number of parameters increases sharply.

To balance performance and model size, we used a 2DResNet with 72 residual
blocks and 96 channels in the study.

Benchmark dataset. In the study, we used the same benchmark dataset as
AlphaFold6. Briefly speaking, the benchmark dataset was constructed through
utilizing 35% sequence similarity cluster representatives of CATH (as of Mar. 16,
2018)29. It contains a total of 31,247 non-redundant domains, which was further
partitioned into training and validation sets (containing 29,247 and 1,820 proteins,
respectively). During the partitioning process, all domains from the same homo-
logous superfamily were allocated to the same partition, thus avoiding potential
overlap between partitions.

We tested our methods on CASP13 targets, which consists of 104 domains
derived from 71 official targets (the first target was released on May 1, 2018). The
104 domains are officially split into three categories: FM (31 domains), FM/TBM
(12 domains) and TBM (61 domains). There is no overlap between training and
test sets as the CATH database used in the study were released before testing set.

MSA generation and representation. ProFOLD takes multiple sequence align-
ment of target protein as its only input. For proteins in training and test set, we
adopt the same pipeline to construct MSA, i.e., running DeepMSA30 (with default
parameters) against sequence databases Uniclust30 (as of Oct., 2017), UniRef90 (as
of Mar., 2018) and Metaclust50 (as of Jan., 2018). All these sequence databases
were released before independent test sets and thus there is no overlap between
sequence databases and test set.

In the study, we represent the obtained MSA as a collection of sequence pairs.
Each sequence pair contains the target protein and a homologous protein. We
construct two equal-length strings by adding gaps in aligned sequences so that
matching characters are aligned in successive positions (Fig. 2). Then we encode
each position as a binary vector of 41 elements, including 20 elements for target
protein and 21 elements for homologous protein. Here, the 20 elements for target
protein represent 20 amino acid types, and the 21 elements include an extra
element to represent gap.

Structure determination using distance potential. In the study, we build protein
tertiary structures from the predicted inter-residue distances in a similar way to
trRosetta7. Specifically, we first convert the estimated inter-residue distance dis-
tributions into a smooth potential function using the DFIRE31 paradigm. Then, we
use MinMover in PyRosetta32 to search for the tertiary structure with the minimal
potential, yielding coarse-grained models with residue centroid only. Finally, these
coarse-grained models are refined into full-atom models by executing FastRelax in
Rosetta.

Network training setup. To fit the memory limitation, and as a form of data
augmentation, we take a sample of at most 1000 sequences from MSA for a target
protein. The largest MSA in the training set consists of a total of 64,780 homo-
logous proteins (for protein 3qhpA). Processing such large MSAs requires large
memory, which exceeds the capacity of GPU used in the study. To suit the limited
GPU capacity, we randomly extract at most 1,000 homologous proteins as repre-
sentatives to construct an MSA with appropriate size. In addition, as performed by
AlphaFold6, we also split the distance matrix of a target protein into 128 × 128
crops, each of which contains pairwise distances between a group of 128 con-
secutive residues and another group of 128 consecutive residues. The details of
network settings are illustrated in Supplementary materials.

Using both MSA sampling and distance matrix cropping in training process, we
could effectively constrain memory usage and avoid potential overfitting as well. In
addition, all the training parameters in the proposed neural network are
independent of the size of target proteins. Hence, the neural network can handle
target proteins and MSAs with arbitrary size during inference.

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Our training, validation and test data splits are available via http://protein.ict.ac.cn/
ProFOLD. The following versions of public datasets were used in this study: PDB 2018-
03; CATH 2018-03; Uniclust30 2017-10; UniRef90 2018-03; and Metaclust 2018-01.

Code availability
All source codes and models of ProFOLD are publicly available through https://github.
com/fusong-ju/ProFOLD. We also developed a web server that is available through
http://protein.ict.ac.cn/ProFOLD.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22869-8

8 NATURE COMMUNICATIONS |         (2021) 12:2535 | https://doi.org/10.1038/s41467-021-22869-8 | www.nature.com/naturecommunications

http://protein.ict.ac.cn/ProFOLD
http://protein.ict.ac.cn/ProFOLD
https://github.com/fusong-ju/ProFOLD
https://github.com/fusong-ju/ProFOLD
http://protein.ict.ac.cn/ProFOLD
www.nature.com/naturecommunications


Received: 15 October 2020; Accepted: 28 March 2021;

References
1. Branden, Carl and Tooze, John. Introduction to protein structure. Garland

Science, New York, 2 edition, 1 1999.
2. Dill, K. A. & MacCallum, J. L. The protein-folding problem, 50 years on.

Science 338, 1042–1046 (2012).
3. Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for

automated protein structure and function prediction. Nat. Protoc. 5, 725–738
(2010).

4. Yang, J. et al. The I-TASSER suite: protein structure and function prediction.
Nat. Methods 12, 7–8 (2015).

5. Kuhlman, B. & Bradley, P. Advances in protein structure prediction and
design. Nat. Rev. Mol. Cell Biol. 20, 681–697 (2019).

6. Senior, A. W. et al. Improved protein structure prediction using potentials
from deep learning. Nature 577, 706–710 (2020).

7. Yang, J. et al. Improved protein structure prediction using predicted
interresidue orientations. Proc. Natl Acad. Sci. USA 117, 1496–1503 (2020).

8. Altschuh, D. A. N. I. È. L. E., Lesk, A. M., Bloomer, A. C. & Klug, A.
Correlation of co-ordinated amino acid substitutions with function in viruses
related to tobacco mosaic virus. J. Mol. Biol. 193, 693–707 (1987).

9. Weigt, M., White, R. A., Szurmant, H., Hoch, J. A. & Hwa, T. Identification of
direct residue contacts in protein–protein interaction by message passing.
Proc. Natl Acad. Sci. 106, 67–72 (2009).

10. De Juan, D., Pazos, F. & Valencia, A. Emerging methods in protein co-
evolution. Nat. Rev. Genet. 14, 249–261 (2013).

11. Morcos, F. et al. Direct-coupling analysis of residue coevolution captures
native contacts across many protein families. Proc. Natl Acad. Sci. USA 108,
E1293–E1301 (2011).

12. Marks, D. S. et al. Protein 3D structure computed from evolutionary sequence
variation. PLoS ONE 6, e28766 (2011).

13. Marks, D. S., Hopf, T. A. & Sander, C. Protein structure prediction from
sequence variation. Nat. Biotechnol. 30, 1072 (2012).

14. Jones, D. T., Buchan, DanielW. A., Cozzetto, D. & Pontil, M. PSICOV: precise
structural contact prediction using sparse inverse covariance estimation on
large multiple sequence alignments. Bioinformatics 28, 184–190 (2012).

15. Ekeberg, M., Lövkvist, C., Lan, Y., Weigt, M. & Aurell, E. Improved contact
prediction in proteins: using pseudolikelihoods to infer Potts models. Phys.
Rev. E 87, 012707 (2013).

16. Xu, J. Distance-based protein folding powered by deep learning. Proc. Natl
Acad. Sci. USA 116, 16856–16865 (2019).

17. Seemayer, S., Gruber, M. & Söding, J. CCMpred–fast and precise prediction of
protein residue–residue contacts from correlated mutations. Bioinformatics
30, 3128–3130 (2014).

18. Mirdita, M. et al. Uniclust databases of clustered and deeply annotated protein
sequences and alignments. Nucleic Acids Res. 45, D170–D176 (2017).

19. Suzek, B. E. et al. UniRef clusters: a comprehensive and scalable alternative for
improving sequence similarity searches. Bioinformatics 31, 926–932 (2015).

20. Steinegger, M. & Söding, J. Clustering huge protein sequence sets in linear
time. Nat. Commun. 9, 1–8 (2018).

21. He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing & Sun, Jian. Deep residual
learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 770–778, 2016.

22. Zhang, Qi et al. ISSEC: Inferring contacts among protein secondary structure
elements using deep object detection. BMC Bioinf. 21, 503 (2020).

23. Xu, Jinbo, Mcpartlon, Matthew and Li, Jin. Improved protein structure prediction
by deep learning irrespective of co-evolution information, bioRxiv, 2020.

24. Paszke, Adam, et al. PyTorch: an imperative style, high-performance deep
learning library. InAdvances in Neural Information Processing Systems,
8026–8037, 2019.

25. Zhu, J., Wang, S., Bu, D. & Xu, J. Protein threading using residue co-variation
and deep learning. Bioinformatics 34, i263–i273 (2018).

26. Buchan, DanielW. A. & Jones, D. T. EigenTHREADER: analogous protein
fold recognition by efficient contact map threading. Bioinformatics 33,
2684–2690 (2017).

27. Zheng, W. et al. Detecting distant-homology protein structures by aligning
deep neural-network based contact maps. PLoS Computational Biol. 15,
e1007411 (2019).

28. Clevert, Djork-Arné, Unterthiner, Thomas and Hochreiter, Sepp Fast and
accurate deep network learning by exponential linear units (ELUs), arXiv
preprint arXiv:1511.07289, 2015.

29. Dawson, N. L. et al. CATH: an expanded resource to predict protein
function through structure and sequence. Nucleic Acids Res. 45, D289–D295
(2017).

30. Zhang, C., Zheng, W., Mortuza, S. M., Li, Y. & Zhang, Y. DeepMSA:
constructing deep multiple sequence alignment to improve contact prediction
and fold-recognition for distant-homology proteins. Bioinformatics 36,
2105–2112 (2020).

31. Zhou, H. & Zhou, Y. Distance-scaled, finite ideal-gas reference state improves
structure-derived potentials of mean force for structure selection and stability
prediction. Protein Sci. 11, 2714–2726 (2002).

32. Chaudhury, S., Lyskov, S. & Gray, J. J. PyRosetta: a script-based interface for
implementing molecular modeling algorithms using rosetta. Bioinformatics
26, 689–691 (2010).

Acknowledgements
We would like to thank the National Key Research and Development Program of China
(2018YFC0910405, 2020YFA0907000), and the National Natural Science Foundation of
China (31671369, 31770775, 62072435) for providing financial supports for this study
and publication charges.

Author contributions
D.B. directed the protein structure prediction project. F.J., D.B. and J.Z. conceived the
study. F.J. designed and implemented the neural network, and performed the compu-
tation. F.J., J.Z., B.S., T.L., W.Z., and D.B. analyzed the experimental results. F.J., L.K. and
D.B. established the mathematical framework. F.J. and D.B. wrote and revised the
manuscript. All authors read and approved the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-22869-8.

Correspondence and requests for materials should be addressed to J.Z. or D.B.

Peer review informationNature Communications thanks Ivan Anishchanka and the
other, anonymous, reviewer for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22869-8 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:2535 | https://doi.org/10.1038/s41467-021-22869-8 | www.nature.com/naturecommunications 9

https://doi.org/10.1038/s41467-021-22869-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction
	Results
	Approach summary
	Estimating inter-residue distances using CopulaNet
	Predicting protein tertiary structures using ProFOLD
	Contribution analysis of ProFOLD’s components
	Efficiency of ProFOLD for protein structure prediction

	Discussion
	Methods
	Architecture of CopulaNet
	Hyperparameter settings of ProFOLD
	Benchmark dataset
	MSA generation and representation
	Structure determination using distance potential
	Network training setup

	Reporting Summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




