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ASCs derived from burn patients are more ")
prone to increased oxidative metabolism
and reactive oxygen species upon

passaging
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Abstract

Background: Patients with severe burn injury (over 20% of the total body surface area) experience profound
hypermetabolism which significantly prolongs wound healing. Adipose-derived stem cells (ASCs) have been
proposed as an attractive solution for treating burn wounds, including the potential for autologous ASC expansion.
While subcutaneous adipocytes display an altered metabolic profile post-burn, it is not known if this is the case
with the stem cells associated with the adipose tissue.

Methods: ASCs were isolated from discarded burn skin of severely injured human subjects (BH, n =6) and
unburned subcutaneous adipose tissue of patients undergoing elective abdominoplasty (UH, n=6) and were
analyzed at passages 2, 4, and 6. Flow cytometry was used to quantify ASC cell surface markers CD90, CD105, and
CD73. Mitochondrial abundance and reactive oxygen species (ROS) production were determined with MitoTracker
Green and MitoSOX Red, respectively, while JC-10 Mitochondrial Membrane Potential Assays were also performed.
Mitochondrial respiration and glycolysis were analyzed with a high-resolution respirometer (Seahorse XFe24
Analyzer).
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but not UH ASCs.

investigation.

Results: There was no difference in age between BH and UH (34 + 6 and 41 + 4 years, respectively, P=0.49). While
passage 2 ASCs had lower ASC marker expression than subsequent passages, there were no significant differences
in the expression between BH and UH ASCs. Similarly, no differences in mitochondrial abundance or membrane
potential were found amongst passages or groups. Two-way ANOVA showed a significant effect (P < 0.01) of
passaging on mitochondrial ROS production, with increased ROS in BH ASCs at later passages. Oxidative
phosphorylation capacities (leak and maximal respiration) increased significantly in BH ASCs (P = 0.035) but not UH
ASCs. On the contrary, basal glycolysis significantly decreased in BH ASCs (P=0.011) with subsequent passaging,

Conclusions: In conclusion, ASCs from burned individuals become increasingly oxidative and less glycolytic upon
passaging when compared to ASCs from unburned patients. This increase in oxidative capacities was associated
with ROS production in later passages. While the autologous expansion of ASCs holds great promise for treating
burned patients with limited donor sites, the potential negative consequences of using them require further
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Background

Severely burned patients (e.g., >20% total body surface
area (TBSA)) undergo a state of prolonged hyperinflam-
mation and hypermetabolism lasting years post-burn that
impairs wound healing [1]. If left unchecked, these burn-
induced disturbances may also lead to additional deleteri-
ous co-morbidities, such as sepsis, multiple organ dysfunc-
tion, and death [2—5]. Moreover, it has been shown that
the rate of wound healing differs in survivors versus those
that succumb to their injury [6]. Even with increased sur-
vival associated with improved care of burned patients,
there is often the need for multiple surgeries due to inad-
equate outcomes and unsuccesful wound healing. This is
especially the case with extensive burns where there are
limited donor sites for autografting during surgery.

In these scenarios, the potential for using tissue en-
gineering strategies for coverage of excised burn skin
has been of great interest. While a recently FDA-
approved strategy uses autologous cells [7], explor-
ation of novel allogeneic therapies is an attractive so-
lution to treat burned patients [8]. To this end,
adipose-derived stem cells (ASCs) are a type of mesen-
chymal stem cell that possess immunosuppressive ac-
tivity, making their allogeneic use possible [9, 10]. In
fact, ASCs have been suggested for use in COVID-19
symptoms due to their anti-inflammatory activity [11].
ASCs have other properties that also render them
promising, including their angiogenic activity [12] and
ease of isolation, including debrided burn tissue [13,
14]. Pluripotent ASCs possess differentiation capabil-
ities that accelerate wound healing [15] and can even
stimulate closure of hard-to-treat chronic wounds by
growth factor secretion [16]. Evidence to support the
therapeutic potential of ASCs to improve wound heal-
ing after thermal burns were previously demonstrated
in small and large animal models [17-19].

In addition to allogeneic strategies with ASCs, the
presence of these cells in medical waste after burn de-
bridement opens the avenue for autologous treatments
or tissue engineering strategies [20]. This requires ASC
expansion in culture which importantly does not stimu-
late allogeneic T cells and thus maintains immunocom-
patibility [9]. However, placing ASCs in artificial culture
conditions requires precious time and may affect their
metabolic profile. While culture conditions seem to
affect ASC phenotype [21], much less is known about
how burn-induced metabolic alterations affect ASC ex-
pansion. It is known that severe burn trauma alters the
metabolic profile of subcutaneous adipose tissue in both
animals and humans [22, 23]. Specifically, adipose tissue
browning occurs post-burn, wherein increased metabolic
activity in adipose tissue contributes to the burn-related
hypermetabolism. Whether these changes are reflective
of alterations in the stem cells within adipose tissues is
currently unknown. The purpose of this study was to de-
termine the bioenergetic capacity by examining mito-
chondrial respiration and glycolysis of cultured ASCs
from burned and non-burned human patients. We hy-
pothesized that the systemic alterations (e.g., inflamma-
tion) present in burned patients would result in
hypermetabolic ASCs in culture, which was assessed
with high-resolution respirometry via a Seahorse
Analyzer.

Methods

Tissue culture of adipose-derived stem cells

This study was conducted under a protocol reviewed
and approved by the US Army Medical Research and
Development Command Institutional Review Board and
in accordance with the approved protocol. Burn patients
undergoing wound excision and abdominoplasty patients
undergoing elective surgery have consented to this study
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through an approved IRB protocol. ASCs were isolated
from severely burned patients (BH, # = 6) and unburned
abdominoplasty patients (UH, n=6) as previously de-
scribed [14]. ASCs were expanded in Mesenpro RS™
growth media containing growth supplements, 200 mM
L-glutamine, and antibiotic-antimycotic which were all
provided by Gibco (Thermo Fisher Scientific, Grand Is-
land, NY). The cells were incubated in 37°C and 5%
CO,, and upon reaching 80% confluency, they were tryp-
sinized and harvested for analysis at passages 2, 4, and 6
which have been previously characterized for these cells
[21]. Total cell count was determined with the trypan
blue exclusion method and counted using an automated
cell counter (Countess, Invitrogen™, Fisher Scientific,
Grand Island, NY).

ASC identification with flow cytometry

Although these cells have been previously characterized
for surface marker expression [14], flow cytometry was
used to determine the positive expression of ASC sur-
face proteins CD90, CD105, and CD73 (BD Biosciences,
Franklin Lakes, NJ). Cells were stained according to the
manufacturer’s instructions. Briefly, 100 pul of cell sus-
pension containing 250,000 cells was incubated with a 5-
ul Fc block (BD Biosciences, Franklin Lakes, NJ). Then,
15 pl of positive stem cell markers was added to the cells
and incubated for 30 min in a dark incubator at 37 °C
and 5% CO,. Afterwards, cells were centrifuged, washed
with Hanks” Balanced Salt Solution (HBSS), centrifuged
again, and resuspended with 500 pl of HBSS for flow cy-
tometry analysis.

Mitochondrial abundance was determined with Mito-
Tracker Green (Invitrogen™, Fisher Scientific, Grand Island,
NY) and mitochondrial ROS production with MitoSOX
Red (Invitrogen™, Fisher Scientific, Grand Island, NY). The
stock solution of the dyes was prepared which were further
diluted for a working concentration according to the manu-
facturer’s recommendation. Similarly to the ASC markers,
100 pl of cell suspension containing approximately 250,000
cells was incubated with MitoTracker Green at 200 nM
concentration and MitoSOX Red at 5uM concentration.
After incubation with the respective dye, the samples were
analyzed with the BD FACSCanto II system (BD Biosci-
ences, Franklin Lakes, NJ). This reaction was also carried
out in 6-well plates for fluorescent imaging of live cells
counterstained with 4’,6-diamidino-2-phenylindole (DAPI)
using a Zeiss Observer D1 inverted microscope (Carl Zeiss,
Thornwood, NY).

Mitochondria membrane potential

The JC-10 Mitochondrial Membrane Potential Assay
(Sigma-Aldrich, St. Louis, MO) was used to determine
mitochondrial membrane integrity. ASCs were plated
(20,000 cells/well) in a microplate and incubated in a
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dark incubator at 37°C and 5% CO, overnight. ASCs
were dyed with JC-10 solution according to the manu-
facturer’s instructions with parallel groups treated with
vehicle only (negative control) and trifluoromethoxy car-
bonylcyanide phenylhydrazone (FCCP): a protonophore
and uncoupler of oxidative phosphorylation which depo-
larizes the mitochondrial membrane potential and
thus serves as a positive control. After the treatment and
incubation period, the plate was read with a plate reader
(Molecular Devices, Sunnyvale, CA) to measure the
fluorescence intensity at lex=490/lem =525nm and
Aex = 540/lem = 590 nm for ratio analysis. The ratio of
red/green fluorescence intensity is used to determine the
mitochondrial membrane potential.

Mitochondrial respiration and glycolysis with Seahorse
bioanalyzer

Cell Mito Stress Tests and the Glycolytic Rate Assays were
performed using a Seahorse XFe24 Analyzer (Agilent,
Santa Clara, CA). An equal number of cells (20,000 ASCs/
well) were seeded in Seahorse cell culture microplates
(Agilent, Santa Clara, CA) 1 day prior to the experiments
and incubated in MesenPro™ growth media at 37 °C and
5% CO, overnight. The sensor cartridges were hydrated in
Seahorse XF Calibrant Solution (Agilent, Santa Clara, CA)
overnight and incubated in a non-CO,, 37 °C incubator 1
day before the experiment. XF Assay media was prepared
according to the manufacturer’s instructions containing
Agilent Seahorse XF Base Medium, 10.5 mM glucose, 1
mM sodium pyruvate, 2mM L-glutamine, and 5mM
HEPES, and the pH was adjusted to 7.4. An automated
protocol for the Cell Mito Stress Test used serial injec-
tions of inhibitors and uncouplers to determine the oxy-
gen consumption rate (OCR) in each respiratory state.
After a period of equilibration, the basal OCR was deter-
mined. Then, 1.0 pM oligomycin, an ATP synthase inhibi-
tor, was added to determine leak respiration that is not
coupled to the ATP synthesis. Afterwards, 1.0 uyM FCCP
was added to determine the maximal respiration of the
electron transport chain. Finally, 0.5 pM rotenone/antimy-
cin A was added to inhibit complexes I and II, respect-
ively, to determine the residual respiration indicating
proton leak in the mitochondria after inhibition of the
electron transport chain.

An automated Glycolytic Rate Assay utilized both the
OCR and the extracellular acidification rate (ECAR) to
calculate the glycolytic proton efflux rate (PER). After the
basal glycolytic PER was measured, the compensatory gly-
colysis was measured by inhibiting oxidative phosphoryl-
ation by injecting the complex I and II inhibitors rotenone
and antimycin A (0.5 uM final concentration). Afterwards,
2-deoxy-D-glucose (50 mM final concentration) was added
to inhibit hexokinase, thereby inhibiting glycolysis to de-
termine the residual acidification. After glycolytic PER was
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determined for all states, the residual acidification values
were subtracted from basal and compensatory glycolysis
to account for acidification from other sources such as the
TCA cycle.

Statistical analysis

Statistical analyses were conducted using the GraphPad
Prism software v7 (San Diego, CA). A two-way ANOVA
was performed to determine the significance of group
and passage, as well as significant interaction. The
Shapiro-Wilk tests were performed to determine the
normality of each dataset, with post hoc analyses per-
formed as appropriate. One-way ANOVA or Kruskal-
Wallis with Dunn’s multiple comparisons were done to
determine the differences due to passaging and a Fried-
man and Mann-Whitney post hoc testing were per-
formed to determine the between-group differences at
various passages. Unpaired ¢ tests were used for clinical
data. Values are presented as mean + SE. Statistical sig-
nificance was determined when P < 0.05.

Results

Patient characteristics

As shown in Table 1, burned patients presented with
56 + 8% total body surface area burns indicating exten-
sive trauma. Additionally, there was no difference in age
between the groups, with burn patients’ (BH) mean age
as 34 + 6 years and unburned patients’ (UH) mean age as
41 + 4 years (P =0.49).

ASC marker expression

Representative flow readouts and quantifications are
shown in Fig. 1 for ASC markers CD73 (Fig. 1a), CD105
(Fig. 1b), and CD90 (Fig. 1c). For each of these markers,
total percent positive cells were significantly lower at
passage 2 compared to the subsequently tested passages
for both patient groups, indicating a more heteroge-
neous population at lower passages. However, no signifi-
cant differences were found between UH and BH for any
of these ASC markers at all passages examined. By pas-
sage 4, the overwhelming majority of both BH and UH
ASCs were positive for these cell surface markers.

Table 1 Age of both burned (BH) and unburned (UH) patients,
with the extent of burn also indicated. Values are expressed as
mean + SEM

Age (years) TBSA (%)
BH 34+6 56+8
UH 41+4 -
P value 049 N/A
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Mitochondrial characteristics

Representative images for MitoTracker and mitochon-
drial ROS are shown in Fig. 2a and b, with flow cytome-
try quantification shown in Fig. 2c and d, respectively.
MitoTracker assays reveal abundant mitochondria in
both BH and UH ASCs, with all passages showing at
least 98% positive cells via flow cytometry (Fig. 2c).
Two-way repeated measures ANOVA revealed a signifi-
cant effect of passage (P=0.0216) wherein ASCs from
both groups produced more ROS in later passages. How-
ever, the difference due to burn did not reach statistical
significance (P =0.0641). When the post hoc Mann-
Whitney tests were performed, there were significantly
higher MitoSOX positive ASCs from BH patients
(10.27 + 1.25%) at passage 2 compared to UH ASCs
(6.76 £ 1.42%; P = 0.047). This was not true for passage 4
(P =0.485) or passage 6 (P=0.818). Two-way ANOVA
of the JC-10 assay revealed no effect of passage (P=
0.273) or burn (P =0.368) on mitochondrial membrane
potential (Fig. 2e).

ASC oxidative phosphorylation

To determine whether this increase in ROS was associ-
ated with higher oxidative phosphorylation capacities, a
Mito Stress Test was performed (Fig. 3). Two-way
ANOVA revealed a significant effect of burn (P=
0.0383) but not passaging (P =0.1396) on routine respir-
ation (Fig. 3a). Post hoc testing, however, did not show a
significant difference between BH and UH ASCs, even at
passage 6, which showed the biggest difference (P =
0.0853). Two-way ANOVA analysis of both leak (Fig. 3b)
and maximal respiration (Fig. 3c) revealed a trend for an
effect of passage, which did not quite obtain significance
(P=0.0536 and P =0.0620, respectively). However, post
hoc testing corrected for multiple comparisons (Sidak’s
tests) revealed that BH ASCs displayed higher oxidative
phosphorylation capacities at passage 6 compared to
earlier passages (p2 for leak, P =0.047, p4 for maximal,
P =0.0349), which was not true for UH ASCs.

Glycolysis

To determine whether this increase in oxidative phos-
phorylation occurred with concomitant changes in gly-
colysis, a Glycolytic Rate Assay was performed (Fig. 4).
Basal glycolysis was corrected for by subtracting pH
changes that were not due to glycolysis. Two-way
ANOVA revealed a significant effect of passaging on
ASC glycolysis (P =0.0019). However, post hoc testing
only revealed that BH ASCs displayed reduced glycolysis
at passage 6 when compared to passage 2 (P=0.011).
Another way to visualize the overall metabolic activity of
these cells is to plot glycolysis against oxidative phos-
phorylative capacities (Fig. 5). Doing so reveals that,
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Fig. 1 Flow cytometry of ASC markers. Representative flow cytometry readouts for ASC surface marker expression of CD73 (a), CD105 (b), and
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& &
ST

CD90 (e) for both burned human (BH) and unburned human (UH) patients. The bottom row shows quantification, which shows that while there
were no differences in any marker at any passage between BH and UH, there was a significantly lower expression of each marker at passage 2,
compared to subsequent passages. Expression of CD73 on UH ASCs was 70.8 £ 9.8, 958+ 3.9, and 97.6 + 1.3% at passages 2, 4, and 6, respectively,
while the expression on BH ASCs was 64.0 +8.6, 99.7 £ 0.1, and 99.2 + 0.4%, respectively. Expression of CD105 on UH ASCs was 52.3+11.7,83.8+
12,9, and 92.9 £ 32% at passages 2, 4, and 6, respectively, while the expression on BH ASCs was 47.4 +8.2, 946 £ 1.8, and 89.5 + 44%, respectively.
Expression of CD90 on UH ASCs was 753 +5.8, 944 + 54, and 985 + 0.8% at passages 2, 4, and 6, respectively, while expression on BH ASCs was

69.8+10.5,99.5+0.3, and 99.2 + 0.2%, respectively. *P < 0.05, **P < 0.01, ***P<0.001. N =6 patients in BH ASCs and UH ASCs at each passage

when compared to UH ASCs, BH ASCs become more
aerobic and less glycolytic with subsequent passaging.

Discussion

Adipose stem cells (ASCs) hold great promise for tissue
engineering strategies that replace damaged or missing
tissue such as after an extensive burn. Specifically for
burned patients, autologous strategies are of great inter-
est since medical waste tissue generated during excision
and grafting contains viable ASCs [14]. This strategy
would benefit from the expansion of these cells in cul-
ture for increased coverage area. However, it is not
known whether the significant systemic aberrations that
occur after burns negatively affect their expansion po-
tential. While it has been shown that culture conditions
can alter their expansion [21], the current study was
undertaken to see if their metabolic phenotype was al-
tered. The salient findings include that ASCs from

burned patients are relatively unchanged from other pa-
tients from a bioenergetics perspective, but that their
oxidative phosphorylation capacities increase with passa-
ging, as does the levels of mitochondrial ROS.

It has been recently shown that the sustained hyperme-
tabolism seen in burned patients is, in part, due to the
browning of the subcutaneous adipose tissue [23]. Both in
the acute and chronic time frames, this tissue displays in-
creased oxidative phosphorylation, mitochondrial mass,
and mitochondrial uncoupling that is associated with
higher expression of the adipose-specific uncoupling pro-
tein 1 (UCP1) [24, 25]. Interestingly, ASCs from burned
patients did not display increased oxygen consumption in
the basal or the leak states when compared to ASCs from
non-burned patients. Previously, it has been shown that
IL-6 derived from brown adipose tissue is important for
glucose homeostasis, and perhaps the lack of inflamma-
tory signals (not measured herein) in the tissue used in
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Fig. 2 Mitochondrial characteristics of ASCs in culture. Representative images of staining for MitoTracker (a) and MitoSOX (b) for BH and UH ASCs
across passages show relatively consistent quantities of mitochondrial content in green but increasing amount of ROS with passaging in red.
Quantification of these fluorescent dyes via flow cytometry shows that nearly all ASCs in both groups stained positive for MitoTracker (c), while
MitoSOX (d) expression increased significantly in passage 6 compared to passage 2 in BH ASCs. *P < 0.05. BH ASCs also displayed more MitoSox-
positive cells than UH ASCs at passage 2, ®P < 0.05. e The mitochondrial membrane potential dye, JC-10, was not different between the groups

the current study may have precluded metabolic differ-
ences in ASCs [26].

We also did not see any appreciable differences in
MitoTracker staining which was true even at passage 2,
where flow cytometry data indicated a more heteroge-
neous population of cells. This was seen as higher side
scatter in those cells (P2, Fig. 1) and can also be seen in
the MitoTracker Staining (Fig. 2). The reduction in het-
erogeneity across passaging in these cells has been seen

previously [14]. This is also in line with other studies
showing the higher doubling rate of ASCs causes the
proportion of ASCs to increase upon passaging [27-30].
Regardless, we cannot rule out the effects of artificial
culture conditions affecting (even normalizing) the
metabolic activity of these ASCs. While fresh tissue (i.e.,
cells derived from adipose without passaging) from the
patients included in this study was not analyzed for
metabolic endpoints, this would be challenging due to
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the fact that isolation of ASCs is often dependent on
their expansion to avoid a heterogeneous population of
cells (i.e., stromal vascular fractions or SVF). Similarly,
the time from isolation to analysis, and subsequent pas-
saging could be a viable explanation for the lack of
metabolic alterations seen in the ASCs reported herein.
Alternatively, it is possible that ASCs do not contrib-
ute to metabolic changes seen in adipose tissue post-
burn. Subcutaneous browning has been proposed to be
driven by inflammatory processes such as NOD-, LRR-,
and pyrin domain-containing protein 3 (NLRP3) inflam-
masomes [31] and macrophage polarization [32]. Sys-
temic inflammation in burned patients is a serious
comorbidity proportional to the TBSA involved [33] and
does increase the bioenergetics capacity of circulating

lymphocytes [34]. Moreover, free radical activity has
been tied to survival in burn patients [35]. However, it
has been shown that the inflammation associated with
the SVF in burn tissue is not due to the ASCs, but rather
the other stromal cells present [36]. Thus, taken together
with the lack of differences in metabolic phenotype seen
herein, it is likely that both burn-induced inflammation
and hypermetabolism in adipose tissue originate from
adipocytes or other stromal cells as opposed to ASCs.

In this regard, various strategies using adipose tissue
have been used for regenerative medicine and wound
healing purposes. For example, not only isolated ASCs,
but also the SVF, has been shown to enhance wound heal-
ing and has been used in burn patients [37]. Moreover,
the cells within SVF have been utilized in tissue
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Fig. 5 Energy map of BH and UH ASCs across passages. Plotting the oxygen consumption rate (OCR) versus the glycolytic proton efflux (PER)
reveals that, when compared to UH ASCs, BH ASCs become more aerobic and less glycolytic as they are passaged )




Burmeister et al. Stem Cell Research & Therapy (2021) 12:270

engineering strategies in combination with, for example,
extracellular matrices and platelet-rich plasma [38-42],
which can affect the differentiation potential of ASCs [43].
Another consideration is that the strategy used to isolate
ASCs or SVF (for example, enzymatic vs. mechanical di-
gestion) might also alter their properties [44, 45]. Taken
one step further, whole-tissue fat grafting (to include adi-
pocytes) has potential use in burns and scarring [39, 46].
On the other extreme, the regenerative properties of ASCs
may be further selected for by harnessing the exosomes
released from them, or even the contents (e.g., micro-
RNAs) of those exosomes [47, 48]. While the exact isola-
tion method and the subset of adipose constituents may
result in different metabolic phenotypes, we chose to con-
centrate on cultured cells in order to aim for a
homogenous population of cells, which may have ob-
scured differences in the metabolism.

The basal respiration values reported herein are similar
to previously reported values from ASCs isolated from the
abdominal fat [49]. While the anatomical location has not
been shown to drastically affect the metabolic profile of
ASCs, obesity has been shown to negatively affect the oxy-
gen consumption rate in ASCs [50]. There are methodo-
logical differences that may explain why we did not find a
similar observation, since we utilized the proton efflux rate
assay as opposed to using the extracellular acidification
rate found with the mitochondrial stress assay. This assay
is a robust measure of glycolysis that uses 2-deoxy-D-glu-
cose, which inhibits the phosphorylation of glucose by
hexokinase, to adjust for hydrogen protons not created by
a glycolytic source. However, the mitochondrial assay
media is not able to replicate the environment or substrate
availability ASCs are exposed to in situ.

Interestingly, the reduced oxygen consumption rate
from obese ASCs reported by Perez et al. was only seen
when glucose was the carbon source, and a switch to
short-chain fatty acids (SCFAs) reversed this effect. We
did not examine the presence of SCFAs in the current
study, but it has been shown that intestinal epithelial
cells (which utilize SCFAs) are impaired in burn injury
and work through an inflammasome pathway [51, 52].
While this is an interesting observation, adipose tissue
typically uses glucose as an energy source, which likely
would be abundant in burn patients that are typically in-
sulin resistant. In fact, whole-body glycolysis and lipoly-
sis rates are increased by 250 and 450%, respectively
[53], indicating an overabundance of substrates for the
glycolysis and oxidative pathways. Our findings of min-
imal differences in BH vs UH metabolism suggest that
this total body response may be driven by other tissues
(e.g., skeletal muscle) or cells within the adipose tissue
(adipocytes). As discussed earlier, it is well documented
that adipocytes display altered metabolism and that
mitochondrial function in the skeletal muscle is also
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altered by severe burns [54, 55]. Our data suggest that
the physiological response to hypermetabolic demand in
severe burn recovery is not met by alterations in the
ASC metabolism.

The finding of increased ROS with passaging in BH
ASCs may have implications for their expansion in tissue
engineering strategies. While increased ROS was seen
upon passaging in both BH and UH ASCs, it was only
significant in the BH cells. The association of increased
ROS with higher mitochondrial respirometry has been
shown previously in the context of comparing visceral
ASCs to subcutaneous ASCs [56]. The expression and
production of antioxidants were able to counteract a
certain extent of these differences and could be included
in the culture expansion of ASCs. In general, the BH
ASCs became highly oxidative and less glycolytic, which
could inform culture conditions for optimal expansion.

There are several limitations of this study worth men-
tioning. This represents a retrospective, observational
study that was not designed to examine the resting energy
expenditure of the patients, nor the metabolic phenotype
of isolated cells in fresh tissue. As such, this data is largely
de-identified, and associations with clinical outcomes or
demographics were not possible. Similarly, we cannot rule
out the effect of medications or comorbidities on the
glycolytic capacity of these cells. Additionally, the surpris-
ing lack of differences between BH and UH cells (despite
a relatively high TBSA involvement) dampened enthusi-
asm for exploring molecular mechanisms of mitochon-
drial changes, including uncoupling proteins or
mitochondrial fusion/fission proteins. Finally, the limited
sample size may have contributed to the lack of differ-
ences found between the two patient populations. How-
ever, the lack of differences emphasizes promise for the
strategy of expanding autologous ASCs from burned pa-
tients for the purposes of tissue engineering and wound
coverage.

Conclusions

Extensive thermal injury is accompanied by substantial
metabolic derangements that begin acutely and persist
for years. These same injuries also generate challenges in
terms of wound area coverage, which is ideally accom-
plished with autografting. Tissue engineering strategies
to try and cover these open wounds have explored the
use of autologous ASCs. To our knowledge, we report
the first experience suggesting that the metabolic conse-
quences of burn injury do not negatively affect the bio-
energetic capacity of isolated ASCs. However, we show
that culture of ASCs from burned patients begin to pro-
duce ROS and is accompanied by a more oxidative and
less glycolytic phenotype, which has implications for
their expansion ex vivo.
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