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Abstract

Screening mammography reduces breast cancer mortality; however, when used to examine women 

with dense breasts, its performance and resulting benefits are reduced. Increased breast density is 

an independent risk factor for breast cancer. Digital breast tomosynthesis (DBT), ultrasound (US), 

molecular breast imaging (MBI), MRI, and contrast-enhanced mammography (CEM) each have 

shown improved cancer detection in dense breasts when compared with 2D digital mammography 

(DM). DBT is the preferred mammographic technique for producing a simultaneous reduction in 

recalls (i.e., additional imaging). US further increases cancer detection after DM or DBT and 

reduces interval cancers (cancers detected in the interval between recommended screening 

examinations), but it also produces substantial additional false-positive findings. MBI improves 

cancer detection with an effective radiation dose that is approximately fourfold that of DM or DBT 

but is still within accepted limits. MRI provides the greatest increase in cancer detection and 

reduces interval cancers and late-stage disease; abbreviated techniques will reduce cost and 

improve availability. CEM appears to offer performance similar to that of MRI, but further 

validation is needed. Dense breast notification will soon be a national standard; therefore, 

understanding the performance of mammography and supplemental modalities is necessary to 

optimize screening for women with dense breasts.

Keywords

breast density; contrast-enhanced mammography; molecular breast imaging; MRI; tomosynthesis; 
ultrasound

Address correspondence to W. A. Berg (wendieberg@gmail.com). 

HHS Public Access
Author manuscript
AJR Am J Roentgenol. Author manuscript; available in PMC 2022 February 01.

Published in final edited form as:
AJR Am J Roentgenol. 2021 February ; 216(2): 275–294. doi:10.2214/AJR.20.24436.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mammography and Breast Density

Mammography is the only imaging modality proven to reduce breast cancer mortality, as 

shown in both randomized controlled trials and observational studies [1, 2]. In the United 

States, women with an average risk for breast cancer are advised to commence 

mammographic screening between 40 and 50 years old and continue screening annually or 

biennially through age 74 years or for as long as they are in good health [3–5]. The greatest 

benefit is observed when annual mammography begins at age 40 years [6]. With the peak 

breast cancer incidence occurring in Hispanic and Black women at a younger age (in their 

forties [7]), it is particularly important to begin annual screening of these populations by age 

40 years.

However, not all women benefit equally from mammography. Mammographic performance 

is dependent on breast density. Breast density refers to the amount of fibroglandular tissue 

relative to fat and is determined either visually or quantitatively on mammography. The BI-

RADS 5th edition delineates four categories of breast density (from least to most 

fibroglandular tissue): category A (fatty), B (scattered), C (heterogeneously dense), and D 

(extremely dense) [8] (Fig. 1). Categories C and D denote dense tissue. Although malignant 

calcifications remain well visualized, noncalcified cancers (approximately 45% of invasive 

cancers [9]) can be masked by dense tissue. The sensitivity range of mammography is 81–

93% for fatty breasts, 84–90% for breasts with scattered fibroglandular density, 69–81% for 

heterogeneously dense breasts, and 57–71% for extremely dense breasts [10].

Dense breasts are common. Approximately 36% of women more than 40 years old have 

heterogeneously dense breasts, and 7% have extremely dense breasts [11]. To date, 38 states 

and the District of Columbia have enacted dense breast notification laws to alert patients to 

the possibility of false-negative mammography results caused by dense tissue masking 

cancer detection; specific information and recommendations (if any) provided to patients 

vary from state to state. National standardized reporting criteria are being developed by the 

U.S. Food and Drug Administration [12].

Knowledge of breast density is critical because mammographic performance and resultant 

screening outcomes are significantly impacted. Both increased false-positives findings [10, 

13] and reduced cancer detection are seen for women with dense breasts [14]. Lower 

reductions in breast cancer mortality have been shown for women with dense breasts [15, 

16], who have more interval cancers than do women with nondense breasts [17].

Interval cancer rates vary from 0.8 cancers per 1000 screenings in annual screening 

programs to 2.1 cancers per 1000 screenings in biennial screening programs [18, 19]. Some 

interval cancers reflect more aggressive biology (triple-negative or human epidermal growth 

factor receptor 2 [HER2; also known as ERBB2]–positive cancers) with rapid growth. Other 

interval cancers, however, are histologically similar to cancers detected on screening 

mammography and are likely masked in dense breast tissue [20, 21]. Interval cancers are 

13–18 times more common among women with extremely dense versus fatty breasts [22, 

23]. In tracking long-term outcomes from screening, Webb et al. [24] reported 609 deaths 

from breast cancer in a cohort screened for more than 10 years, with 60 of 609 deaths (9.9%) 
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attributable to interval cancers. More effective screening should reduce the frequency of 

interval cancers.

In addition to masking detection of some cancers, dense parenchyma is one of the strongest 

and most prevalent risk factors for breast cancer [25]. Compared to women with fatty 

breasts, women with extremely dense breasts have a four- to fivefold greater risk of breast 

cancer [22, 26]. Depending on age and hormonal status, women with heterogeneously and 

extremely dense tissue are 1.4–1.6 and 1.5–2.1 times more likely to have breast cancer 

develop, respectively, compared with women with scattered fibroglandular density [27].

Data on the histologic type, aggressiveness, size, and nodal status of breast cancers in dense 

breasts are sparse. Pooled analysis found that younger women (those < 55 years old) with 

dense breasts are more likely to have estrogen receptor–negative tumors than older women 

[28]; increasing tumor size and positive lymph node status correlated with increasing breast 

density.

Lymph node status remains the most important prognostic factor for breast cancer outcomes. 

Indeed, across randomized trials of mammography, only those that increased detection of 

node-negative invasive cancers reduced mortality [29]. Similarly, reducing late-stage disease 

significantly contributes to decreased mortality from breast cancer [30].

Although mammography has proven value in reducing breast cancer mortality, the negative 

impact of breast density on mammographic performance highlights the need for more 

effective screening strategies. Digital breast tomosynthesis (DBT), ultrasound (US), 

molecular breast imaging (MBI), MRI, and contrast-enhanced mammography (CEM) each 

have shown value in improving breast cancer detection in women with dense breasts. The 

metrics associated with improved outcomes (increased incremental cancer detection rate 

[ICDR], especially of node-negative invasive cancers; reduced interval cancers; and reduced 

late-stage disease) as well as recall rates will be examined for each modality. This 

comparative analysis of modality performance, in conjunction with information regarding 

availability and cost, can guide screening strategies for women with dense breasts.

Digital Breast Tomosynthesis

DBT is a digital mammographic technique in which multiple, angled, low-dose projection 

images are acquired and reconstructed into thin (typically 1 mm) slices [31]. By minimizing 

the impact of superimposed structures, tomosynthesis enhances lesion visibility and reduces 

unnecessary recalls due to summation artifacts [32]. Introduction of synthetic reconstructed 

2D mammography has allowed the radiation dose to remain comparable to that of 

conventional 2D DM [33] and has permitted DBT with synthetic reconstructions to replace 

DM.

DBT has been proven effective in screening. A multiinstitutional retrospective analysis 

revealed an ICDR of 1.2 cancers per 1000 screening examinations (95% CI, 0.8–1.6; p < 

0.001) when DBT is added to DM [34]. Two prospective European screening trials [35, 36] 

showed increases of 2.3 and 2.7 cancers per 1000 screening examinations with DBT. Of 

note, an improved cancer detection rate (CDR) is attributable to additional invasive tumors 
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rather than ductal carcinoma in situ, lessening the potential for overdiagnosis. Limited data 

exist regarding biologic subtypes of invasive cancers detected with DBT only, suggesting a 

trend toward detection of smaller (< 2 cm) tumors with luminal A–like characteristics [37, 

38]. Using TMIST (Tomosynthesis Mammographic Imaging Screening Trial) criteria 

(metastasis [including nodal metastasis], size ≥ 1 cm and either HER2-positive status or 

estrogen receptor– and progesterone receptor–negative status or both, or size ≥ 2 cm), 

Conant et al. [39] reported greater detection of cancers with poor prognosis using DBT 

versus DM, although differences were not significant. A doubling of the rate of detection of 

invasive lobular carcinoma has been observed [34], likely because of increased conspicuity 

of tumor spiculation and architectural distortion.

An ongoing criticism of screening mammography is its generation of false-positive recall 

findings, which prompt unnecessary additional imaging and intervention [4]. DBT reduces 

false-positive recalls due to summation artifact [32] and also because of its better depiction 

of multiplicity and bilaterality of circumscribed masses (allowing benign assessment [40]). 

In conjunction with gains in cancer detection, DBT achieves a simultaneous 2% absolute 

recall rate reduction (relative reduction, 15–17%) [34–36]. Conant et al. [39] showed that 

these gains were sustained over multiple rounds of DBT screening. However, interval cancer 

rates were not significantly impacted by DBT [39], as was also reported by Bahl et al. [41].

Given the inverse relationship between mammographic sensitivity and increasing density, 

stratification of DBT performance by breast density is of particular interest. Table 1 

summarizes four studies [13, 35, 42, 43] that evaluated screening outcomes for women who 

underwent DBT plus DM versus DM alone, as stratified by breast density. DBT consistently 

increased the CDR and decreased recalls for both dense and nondense tissue. Rafferty et al. 

[43] observed the greatest gain in cancer detection and recall reduction for women with 

heterogeneously dense breasts (Fig. 2). No improvement in cancer detection was noted for 

women with extremely dense breasts (Fig. 3), although false-positive recalls were reduced 

[43]. Østerås et al. [42] observed improved CDR but no reduction in recalls for women with 

extremely dense breasts (Table 1). Lowry et al. [44] observed reduced recalls and improved 

CDR on incidence screening DBT (versus DM) for women with heterogeneously dense 

breasts but not for women with extremely dense breasts.

The improved CDR and reduced recalls of DBT versus DM are expected to produce 

improved health care outcomes at an equivalent or reduced cost [45–47]. Most major 

insurance carriers now cover DBT, and at least 17 states and the District of Columbia 

mandate insurance coverage for screening DBT [48]. Despite the use of DBT, limitations in 

detecting cancer persist, particularly in women with extremely dense breasts. Such women 

receive the greatest benefit from supplemental screening strategies.

Screening Ultrasound: Technique

Unlike other methods of supplemental screening, screening US requires neither ionizing 

radiation nor IV contrast agents. There are several methods of performing whole-breast US, 

including handheld US (HHUS) performed by a physician (usually a radiologist), HHUS 

performed by a technologist, and automated US (AUS). Training is necessary; for HHUS, 
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the minimum experience required of American College of Radiologic Imaging Network 

(ACRIN) 6666 investigators was 500 breast US examinations [49]. US billing is currently 

coded as either limited breast US (Current Procedural Terminology [CPT] code 76642) or 

complete breast US (CPT code 76641), which does not specify screening or diagnostic use, 

with a charge designated for each breast (using a right or left modifier). ICD-10 

(International Classification of Diseases, 10th revision) code R92.2 (incomplete examination 

due to dense breasts) is used with ICD-10 diagnosis code Z12.39 (other screening). 

Insurance typically will cover screening US when it is ordered by a health care provider, 

although deductibles and copayments apply in most states.

HHUS methods should use a high-frequency linear-array transducer of at least 12 MHz and, 

ideally, 17–18 MHz. Surveying is most efficient when performed in the transverse and 

sagittal planes; the axilla can be electively included. For negative examinations, 

documentation should include at least one image from each quadrant and the retroareolar 

region, as validated in the ACRIN 6666 protocol [49]. For simple cysts, a single image is 

sufficient, and documentation is encouraged to reduce recalls from mammography and DBT 

(the ACRIN 6666 protocol required that only the largest simple cyst in each quadrant be 

documented). For lesions other than simple cysts, orthogonal images should be obtained 

without and with calipers in a manner that captures their longest diameter (often radial [like 

a clock hand] along the duct system), with horizontal and anteroposterior diameters 

documented on that image and the horizontal diameter documented on the orthogonal view. 

Power Doppler imaging can be used to document slow flow. Harmonics can help clear 

artifactual internal echoes in small cysts or clustered microcysts. Elastography can be 

applied to assess lesion stiffness. A cine loop can be obtained for later review when doing 

batch reading and can be helpful when technologists performing HHUS are uncertain about 

vague findings.

Technical recall occasionally is needed to distinguish artifactual shadowing at the interface 

of fat lobules, or intraductal debris, from a true mass. An isolated, circumscribed, oval 

hypoechoic or isoechoic mass that is seen on US only can be assessed as BI-RADS category 

3 (probably benign), and follow-up at the annual screening US examination is reasonable 

[50]. Failure to document a mass that is undergoing monitoring can also prompt a technical 

recall (at no additional charge).

The most common AUS method uses a wide (15 cm), curved transducer to acquire 

transverse images with coronal and sagittal reconstructions. A minimum of three but 

sometimes five to six acquisitions are needed for breast coverage. A semiautomated 

approach uses an automated arm and standard transducer [51]. A final assessment typically 

can be rendered with HHUS, including BI-RADS category 4 or 5 lesions for which biopsy is 

recommended (with a process that should include contacting the patient and physician), 

whereas additional targeted US is needed for most AUS recalls; Doppler and elastography 

are not available during AUS.
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Outcomes of Screening Ultrasound Examinations

For women with dense breasts, the average ICDR was 2.0–2.7 cancers per 1000 screening 

examinations, using either an AUS or HHUS technique, and 88% of cancers detected only 

on screening US were invasive [52] (Fig. 4). Where details were available, when HHUS was 

performed by a physician, 497 of 554 invasive cancers (89.7%) detected were node negative, 

and when performed by a technologist, 102 of 123 invasive cancers (82.9%) were node 

negative; similarly, 63 of 69 invasive cancers (92%) detected on AUS were node negative 

[52]. In nearly every series, the mean size range of invasive cancers was 7–14 mm, and 

invasive lobular cancers represented 15–20% of those detected by screening US only.

On average, during the prevalence US screening round, biopsy will be recommended for 

approximately 3% of women [52], with a wide range of malignancy rates (2–30%) observed 

for suspicious findings seen on US only. The average absolute increase in recalls from 

screening US is 7.5% among those who undergo HHUS and 10.6% among those who 

undergo AUS [52]; as with all modalities, recall rates are lower with incidence screening 

than with prevalence screening.

Adding screening US to mammography reduces rates of interval cancer rates for women 

with dense breasts. The Japanese Strategic Anti-Cancer Randomized Trial randomized 

women 40–49 years old who had breast densities of all types to undergo either 

mammography alone or mammography plus HHUS and showed increased detection of 

node-negative invasive cancer in women undergoing screening US as well as half the 

interval cancer rate (at 0.5 cancers per 1000 screens) [53]. In the ACRIN 6666 protocol, the 

interval cancer rate was low (nine cases per 111 cancers overall), accounting for 8% of all 

cancers identified across 7473 screening examinations (i.e., 1.2 cancers per 1000 screening 

examinations) [54]. Similarly, Corsetti et al. [55] found an interval cancer rate of 1.1 cancers 

per 1000 women with dense breasts when screening US was added, which was comparable 

to the rate of 1.0 cancer per 1000 women with fatty breasts screened with mammography 

alone. Screening US has not been proven to reduce late-stage disease.

A few studies have evaluated the use of US after DBT for women with dense breasts, with a 

resulting ICDR of 0.9–2.6 invasive cancers detected per 1000 screening examinations with 

HHUS [56–58]. One series reported similar results with the use of AUS after DBT [59].

Barriers to implementing screening US include a high prevalence of benign cystic lesions 

[60], a shortage of trained personnel (for HHUS), and large numbers of images (for AUS). 

Artificial intelligence may facilitate interpretation of both HHUS and AUS (as reviewed in 

[52]). Among women who undergo screening MRI, screening US offers no added benefit 

[61].

Molecular Breast Imaging

MBI is a nuclear medicine technique (subject to state licensing requirements) that uses a 

dedicated gamma camera to depict preferential uptake of 99mTc-sestamibi in mitotically 

active breast tissue. Commercial MBI technology includes single-head dedicated sodium 
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iodide cameras (formerly known as breast-specific gamma imaging) or cadmium zinc 

telluride radiation detectors in a dual-head configuration.

The MBI examination consists of IV administration of 99mTc-sestamibi, typically 8 mCi 

(296 MBq), with imaging commencing immediately after injection. Patient preparation may 

include fasting for 3 hours before injection and use of peripheral blanket warming to 

increase breast uptake [62]. Bilateral craniocaudal and mediolateral oblique views are 

acquired for 7–10 minutes each (total time required for a routine four-view examination, 28–

40 minutes), with the patient seated and with light compression applied to limit motion [62, 

63].

Because MBI exploits functional behavior rather than x-ray attenuation, it can detect cancers 

masked by dense breast tissue [64]. In a single-center prospective trial of 1585 women with 

dense breasts and 21 cancers [65], addition of MBI increased sensitivity to 90% (19/21) 

relative to 24% (5/21) with mammography alone (p < 0.001), but it decreased specificity 

from 89% for mammography to 83% for mammography plus MBI (p < 0.001) and led to 

additional biopsies being performed for 47 of 1585 women (3.0%). The ICDR of MBI was 

6.9 invasive cancers per 1000 screening examinations or 8.8 cancers per 1000 screening 

examinations when DCIS was included. The rate of interval cancer detection was 1.3 

cancers per 1000 screens. Shermis et al. [66] reported similar results from a retrospective 

review of 1696 women who were undergoing supplemental screening with MBI in clinical 

practice: after negative results on DM, MBI yielded an invasive ICDR of 6.5 cancers per 

1000 screening examinations and an overall ICDR of 7.7 cancers per 1000 screening 

examinations. Across five studies assessing the performance of screening MBI in detecting 

63 breast cancers, 52 (83%) were detected by supplemental MBI only, with 37 (71%) of 

these 52 cancers found to be invasive; 26 of 30 invasive cancers for which node status was 

reported (87%) were node negative [64] (Fig. 5). Cancers not detected by MBI (n = 6) 

included three DCIS, two grade 1 invasive lobular cancers (size, 0.6 and 0.7 cm), and one 

grade 2 invasive ductal cancer (size, 0.3 cm) [64].

The ongoing prospective multicenter Density MATTERS (Molecular Breast Imaging and 

Tomosynthesis to Eliminate the Reservoir of Cancers) trial compares MBI with DBT for 

screening women with dense breasts. Inclusion of two annual screening rounds will provide 

data that are currently lacking regarding the impact of MBI on rates of interval cancer and 

advanced breast cancer (defined in this trial as cancer that is ≥ 2 cm or node positive).

MBI is an alternative for women who cannot undergo MRI [63]. The mean billing cost is 

$450, and reimbursement is approximately $300; coverage can require preauthorization. The 

benefit-to-risk ratios calculated for MBI screening of dense breasts overlap those for 

mammography [67]; however, concerns persist regarding the radiation risk from MBI.

Barriers to the use of MBI include the minimum examination time of 40 minutes and 

systemic whole-body radiation exposure. Dosimetry models show an effective dose of 

approximately 2 mSv for MBI versus 0.5 for DM or DBT with synthetic reconstructions; 2 

mSv is less than the annual background radiation limit (mean, 3.1 mSv) and therefore is 

considered low risk for harmful effects. Work is under way to validate processing algorithms 
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to allow further reductions in administered activity or acquisition time for MBI [68] that 

may reduce barriers to adoption. Direct biopsy capability is available from one vendor (GE 

Healthcare) and is in development by another (CMR Naviscan) [64].

MRI

Contrast-enhanced MRI is highly sensitive for breast cancer detection, is not limited by 

breast density, and is without ionizing radiation. The reported sensitivity of breast MRI 

alone is generally greater than 80%. Its specificity ranges from 83% to more than 98% and 

typically exceeds 90% on incidence screening rounds [69]. Cancer detection depends on 

differential vascularity and enhancement and therefore requires the use of gadolinium-based 

contrast agent. Low rates of adverse events (0.17%; 95% CI, 0.15–0.19%) [70] are observed, 

including nephrogenic systemic fibrosis [71]. Intracranial gadolinium deposition has been 

observed, but to date, gadolinium deposition has no clear adverse effects and is reduced with 

use of macrocyclic chelates [71].

Most literature on screening MRI is limited to women with a high risk for breast cancer, for 

whom breast MRI markedly reduces interval cancers and late-stage disease. Among 1592 

screening examinations of 501 women, Sardanelli et al. [72] reported 16 additional cancers 

detected by MRI after mammography plus US (ICDR of MRI, 10 cancers per 1000 

screening examinations), three of which were interval cancers (interval cancer rate 1.9 

cancers per 1000 screening examinations). Vreemann et al. [73] reported findings for 2773 

women undergoing 9571 mammography and MRI examinations. Of 129 screen-detected 

cancers, 118 were seen on MRI (sensitivity, 91.5%). Forty-one interval cancers were 

reported: 16 produced symptoms (interval cancer rate 1.7 cancers per 1000 screening 

examinations, with most occurring in women with pathogenic BRCA1 mutations) and 25 

were diagnosed at prophylactic mastectomy. Warner et al. [74] observed a 70% reduction in 

stage II–IV breast cancers among 445 women with pathogenic BRCA mutations who were 

undergoing screening MRI, with one interval cancer in the MRI group and 38 in the matched 

comparison group. The average size of the invasive cancers was 0.9 cm in the MRI cohort 

versus 1.8 cm in the comparison group (p < 0.001). On the basis of findings from 1275 high-

risk screening MRI examinations that diagnosed 114 cancers (including 10 interval cancers 

[8.8%]), Heijnsdijk et al. [75] predicted a reduction in mortality of 48–61% with the use of 

MRI alone. Although MRI primarily has been studied for supplemental screening, 

increasing evidence indicates that mammography provides little additional benefit for some 

high-risk populations, particularly women younger than 40 years old who have pathogenic 

BRCA1 mutations [75–77].

Current guidelines from the American Cancer Society [78] and the National Comprehensive 

Cancer Network [79] recommend screening MRI for women at high risk for breast cancer, 

with screening beginning at age 25 years and with mammography included by age 30 years 

for those with known or suspected pathogenic BRCA1 or BRCA2 mutations; they also 

recommend that MRI be considered for women with lobular carcinoma in situ or atypical 

hyperplasia. Screening MRI should be stopped by age 75 years [79]. American College of 

Radiology guidelines also endorse screening MRI for women with a personal history of 

breast cancer and dense breasts or diagnosis by age 50 years [80].

Berg et al. Page 8

AJR Am J Roentgenol. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Increasing support exists for MRI screening of women with dense breasts, even when 

additional risk factors are not present. The MRI substudy from the ACRIN 6666 trial 

showed an ICDR of 14.7 cancers per 1000 women with the use of MRI after mammography 

plus US [54] (Table 2). Kuhl et al. [81] evaluated supplemental MRI in women with a 

lifetime risk of breast cancer of less than 15%; for the 60% (1282/2120) of women with 

dense breasts, the ICDR was at least 26 cancers per 1282 women screened (20.3 cancers per 

1000 screening examinations) and 11 cancers per 1282 women screened (8.6 cancers per 

1000 screening examinations) for incidence screening.

The Dutch DENSE trial (Dense Tissue and Early Breast Neoplasm Screening) trial invited 

women 50–75 years old who had normal findings on screening mammography and 

extremely dense breasts to undergo biennial screening with MRI and mammography versus 

mammography alone [82], with an acceptance rate of 59% (similar to the acceptance rate of 

58% in the ACRIN 6666 trial [83]). The first screening round yielded an MRI ICDR of 79 

cases per 4783 women screened (16.5 cancers per 1000 screening examinations), including 

64 invasive cancers and 15 DCIS (for an invasive ICDR of 13.4 cancers per 1000 screening 

examinations); 55 of 64 (86%) invasive cancers were node negative [82]. Use of MRI 

reduced the rate of interval cancers from 4.9 cancers per 1000 screening examinations to 0.8 

cancers per 1000 screening examinations. Preliminary results from the second MRI 

screening round showed substantial reduction in both the ICDR (5.9 cases per 1000 women 

with cancer of all types; 4.1 cancers per 1000 women with invasive cancers) and false-

positive recalls (21 recalls per 1000 screening examinations in the second round vs 80 

recalls per 1000 screening examinations in the first round) [84]. Barriers to screening MRI 

include claustrophobia, fear or intolerance of contrast injection, inconvenience, and fear of 

false-positive findings [83, 85].

Accredited breast MRI protocols currently require an unenhanced series, at least two 

contrast-enhanced series, and a T2-weighted series, resulting in typical scanning times of 

15–30 minutes. To reduce cost and increase availability, Kuhl et al. [86] introduced 

abbreviated MRI that uses an unenhanced and a single contrast-enhanced T1-weighted 

acquisition with subtracted and maximum intensity projections (Fig. 6).

In the ECOG-ACRIN Cancer Research Group 1141 multicenter trial, Comstock et al. [87] 

compared prevalence screening with abbreviated MRI (including T2-weighted images) with 

incidence DBT screening. Abbreviated MRI had superior sensitivity (96% vs 39%) but 

reduced specificity (87% vs 97%) among 1444 women with 26 cancers. Abbreviated MRI 

alone detected all 17 invasive cancers (with 16 of 17 [94%] node negative) and five of six 

DCIS (83%), missing one 7-cm high-grade DCIS seen on DBT; DBT detected seven of 17 

invasive cancers (41%) and two of six DCIS (33%), yielding an ICDR for abbreviated MRI 

of 14 cancers among 1444 women screened (9.7 cancers per 1000 screening examinations) 

including 10 invasive cancers among 1444 women screened (for an invasive ICDR of 6.9 

cancers per 1000 screening examinations; p = 0.002) (Table 2). The additional imaging rate 

(for recall or short-term follow-up) was 7.5% (108 additional examinations for 1444 women 

screened) for abbreviated MRI and 10.1% (146 additional examinations for 1444 screening 

examinations) for DBT (p = 0.02). The biopsy rate associated with abbreviated MRI was 

nearly fourfold that associated with DBT (107 vs 29 biopsies, representing 7.4% and 2.0% 
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of women, respectively) with a lower positive predictive value 3 (PPV3) for biopsy (19% for 

MRI vs 35.5% for DBT; p = 0.08).

Although MRI clearly depicts additional cancers, concern regarding overdiagnosis remains. 

Of importance, MRI depicts relatively more invasive cancers than DCIS [88]. Although MRI 

is more sensitive than mammography (89–92% vs 55–46%) for showing DCIS [89, 90], it 

appears relatively insensitive to low- and intermediate-grade DCIS [90, 91], potentially 

mitigating its contribution to overdiagnosis.

A few states and the District of Columbia require insurance coverage for screening MRI for 

women with dense breasts, or women at high risk for breast cancer, or both. In New Jersey 

and Pennsylvania, insurance is required to cover screening MRI for extremely dense breasts 

without other risk factors [48]. Nearly all health insurance will cover screening MRI for 

women at high risk, although many require preauthorization, and deductibles and 

copayments apply. Insofar as there is no CPT code for abbreviated MRI insurance billing, 

facilities typically bill patients directly, charging $250–500 [92]. Unenhanced MRI using 

DWI holds promise, but it is in the early stages of clinical validation at this time [93].

Contrast-Enhanced Mammography

CEM, also known as contrast-enhanced digital mammography or contrast-enhanced spectral 

mammography, capitalizes on vascular enhancement from injected iodinated contrast 

medium to depict cancers on mammography. Craniocaudal and mediolateral oblique views 

of each breast are obtained with low energy (24–30 kVp) and high energy (typically 40–45 

kVp) technique; the high-energy images exploit an abrupt increase in x-ray absorption at the 

K-edge of iodine (approximately 33 keV). Two images per view result: the low-energy 

image mimics standard 2D mammography, and the subtracted image shows areas of 

enhancement only (Figs. 7 and 8). Overall radiation exposure is approximately twice that 

observed with standard mammography but is well within accepted limits. Most data on CEM 

performance are from patients with newly diagnosed cancer. In a meta-analysis of 13 studies 

comparing CEM and MRI, Xiang et al. [94] found that the overall sensitivity of CEM 

mirrored that of MRI (97% each), but specificity was higher with CEM (0.66; 95% CI, 0.59–

0.71) than with MRI (0.52; 95% CI, 0.46–0.58).

Sorin et al. [95] reported results for 611 women who underwent screening CEM, 568 (93%) 

of whom had dense breasts and 295 (48.3%) of whom had a family or personal history of 

breast cancer. Of 21 malignancies, 11 were seen on mammography and 19 were seen on 

CEM (ICDR of CEM, eight cancers per 611 women screened; 13.1 cancers per 1000 

screening examinations; 95% CI, 6.2–21.1). Of eight malignancies seen on CEM only, seven 

were invasive, and two of four that underwent node staging had metastases. Sung et al. [96] 

reported 904 women who were undergoing CEM, 700 of whom had dense breasts (including 

the 307 women reported in [97]), with 15 women (1.7%) having reactions to contrast 

medium, one of which was moderate (dyspnea, which required diphenhydramine) and the 

remainder of which were mild (e.g., nausea or hives). Sixteen cancers were found; 14 (88%) 

were found on CEM and two interval cancers (interval cancer rate 2.2 cancers per 1000 

screening examinations); were found, one of which was seen on MRI and one of which was 
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seen on screening US 10 months later. Cancer was detected in 12 women with dense breasts; 

six of the cancers (50%) were detected on low-energy images, and 10 (83%) were detected 

on CEM. Six of the 12 cancers in dense breasts were seen on CEM only (an ICDR of 6.0 

cancers per 700 women screened or 8.6 cancers per 1000 screening examinations); four 

invasive cancers were found (median size, 0.8 cm), all of which were node negative. For 

CEM, overall specificity was 93.7% with a PPV3 of 29.4% (15 biopsies were malignant of 

51 biopsies performed because of suspicious findings on CEM). These promising results 

have prompted initiation of a multicenter trial [98] that will compare performance of CEM 

(to DBT plus US) in women with dense breasts who have an average to intermediate risk of 

breast cancer.

Several barriers to CEM adoption remain. Across 84 publications, encompassing results for 

14,012 women who underwent CEM, Zanardo et al. [99] reported that the pooled rate of 

adverse reactions was 0.82% (95% CI, 0.64–1.05%), and staff should be trained to recognize 

reactions to contrast medium. CEM currently lacks widespread direct biopsy capability for 

findings not visible on mammography or US, uncommonly resulting in the need for MRI-

guided biopsy. Most centers use the CPT code for 2D mammography for billing CEM; 

billing and reimbursement for the contrast component is variable.
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Consensus Opinions

• An increased risk for cancer and masking of noncalcified cancers reduce the 

potential benefit of mammographic screening in women with dense breasts: 

supplemental screening should be discussed, with patient tolerance and 

preferences considered. Table 3 summarizes performance characteristics and 

the extent of validation across the modalities discussed. Figure 9 presents the 

current approaches to supplemental screening in the context of other risk 

factors in addition to breast density.

• The use of screening DBT with synthetic reconstructions improves cancer 

detection, reduces recalls, and is achieved with a radiation dose comparable to 

that of DM; it therefore is the preferred mammographic technique for women 

with heterogeneously dense breasts. As measured by clinically detected 

interval cancers after a false-negative screening examination, the sensitivity of 

mammography in women with extremely dense breasts, however, is as low as 

57% and is not appreciably improved by DBT: supplemental screening should 

be performed.

• Although there is a relatively small additional cancer yield from US after 

mammography or DBT, interval cancer rates are reduced by screening US.

• MBI improves cancer detection in women with dense breasts, and assessment 

of the impact on interval cancer rates after DBT is in progress; however, this 

approach currently requires a 40-minute examination time and incurs whole-

body radiation exposure.

• The most validated approach producing the greatest improvement in cancer 

detection is contrast-enhanced MRI, even when it is performed after DBT. 

Interval cancer rates are decreased by MRI, as is late-stage disease (with the 

latter proven in high-risk women only). Abbreviated MRI will reduce cost and 

improve availability, but claustrophobia and other patient tolerance issues 

must be considered. MRI should be stopped by age 75 years, even for high-

risk women.

• CEM appears to have performance characteristics similar to those of MRI, but 

further validation is necessary, as is improved availability of direct biopsy 

capability.

• Dense breast notification will soon be the national standard; therefore, 

understanding the performance of mammography and supplemental screening 

options is incumbent on all physicians to optimize the screening of women 

with dense breasts. Out-of-pocket costs and the availability of technology 

influence implementation. In national databases, data directly attributing 

recalls and cancers detected to each modality used in screening would 

facilitate both audits and outcomes analyses.
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Fig. 1—. 
Left mediolateral oblique digital mammography (DM) images of cancer in breasts 

representing each of four BI-RADS breast density categories.

A, 61-year-old woman with pathogenic BRCA1 mutation. Screening DM image shows fatty 

breast and spiculated mass (arrow) that proved to be a 0.9-cm grade 3 invasive ductal 

carcinoma (IDC) that was estrogen receptor (ER) negative, progesterone receptor (PR) 

negative, and human epidermal growth factor receptor 2 (HER2 [also known as ERBB2]) 

negative with associated ductal carcinoma in situ (DCIS). Ki-67 proliferation index was high 

(90%). Three sentinel nodes were negative for metastasis.

B, 65-year-old woman with scattered fibroglandular breast tissue density. Screening DM 

image shows spiculated mass (arrow) that proved to be 1.1-cm grade 2 IDC with extensive 

DCIS that was ER positive, PR positive, and HER2 negative. Ki-67 proliferation index was 

high (30%), and metastatic sentinel node showed focal extracapsular extension.

C, 40-year-old woman with heterogeneously dense parenchyma, which may obscure small 

masses. Baseline screening DM image shows irregular mass (arrow) with distortion in 

central left breast. Core biopsy specimen showed 1.2-cm IDC that was ER positive, PR 

positive, and HER2 negative. Ki-67 proliferation index was moderate (15%). Patient went 

elsewhere for treatment.

D, 43-year-old woman with extremely dense parenchyma, which lowers sensitivity of 

mammography. Baseline screening DM image shows spiculated mass (arrow) with 

associated distortion in upper posterior left breast. This proved to be T2 (> 2 cm) grade 2 

IDC with associated DCIS that was ER positive, PR positive, and HER2 negative. Ki-67 

proliferation index was low (10%), and sentinel node biopsy was negative for metastasis.
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Fig. 2—. 
46-year-old woman with cancer seen on annual screening tomosynthesis examination only.

A and B, Two-dimensional craniocaudal (A) and mediolateral oblique (B) digital 

mammograms show heterogeneously dense breast tissue.

C and D, Craniocaudal digital breast tomosynthesis image (C) shows spiculated mass 

(within circle), which has much more subtle appearance on mediolateral oblique image 

(arrow, D).

E, Close-up of mediolateral oblique digital breast tomosynthesis image in D shows mass 

(arrow) in detail. Core biopsy and excision revealed 0.7-cm grade 2 invasive ductal 

carcinoma that was estrogen receptor positive, progesterone receptor positive, and human 
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epidermal growth factor receptor 2 (HER2 [also known as ERBB2]) negative. Sentinel node 

was negative for metastasis.
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Fig. 3—. 
51-year-old woman with right breast pain who had cancer that was masked by extremely 

dense breast tissue on tomosynthesis.

A and B, Two-dimensional craniocaudal (A) and mediolateral oblique (B) digital 

mammograms show extremely dense parenchyma with ribbon clip from prior benign biopsy 

and no abnormality at site of pain (triangles).

C and D, Craniocaudal (C) and mediolateral oblique (D) digital breast tomosynthesis images 

show no abnormality.

E, Directed ultrasound image of area of focal pain shows 1.6-cm irregular, hypoechoic mass 

(arrow). Ultrasound-guided core needle biopsy revealed grade 3 invasive ductal carcinoma 
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that was triple receptor negative. Excision after neoadjuvant chemotherapy showed no 

residual tumor. Sentinel node was negative for metastasis.
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Fig. 4—. 
58-year-old woman with extremely dense breasts who had cancer seen on screening 

ultrasound (US) only.

A and B, Craniocaudal (A) and mediolateral oblique (B) synthetic 2D mammograms show 

normal extremely dense parenchyma, which was also interpreted as negative on digital 

breast tomosynthesis. In retrospect, portion of dense node is seen in left axilla (arrow, B). 

Handheld screening US performed by technologist was conducted bilaterally with standard 

documentation.

C, Radial US image of left breast shows irregular, hypoechoic 1.9-cm mass (arrow) located 

in 12-o’clock position 6 cm from nipple. US-guided core biopsy revealed grade 2 invasive 

ductal carcinoma that was estrogen receptor positive, progesterone receptor negative, and 
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human epidermal growth factor receptor 2 (HER2 [also known as ERBB2]) amplified by 

fluorescence in situ hybridization. Ki-67 proliferation index was high (40%). US-guided 

core biopsy of left axillary node confirmed metastatic disease. Patient received primary 

chemotherapy and had no residual invasive carcinoma and few foci of ductal carcinoma in 

situ at lumpectomy. Targeted axillary dissection (with seed-localized excision of known 

metastatic node) showed one metastatic node with treatment effect and three normal nodes.
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Fig. 5—. 
47-year-old woman with heterogeneously dense breasts who had cancer detected on 

screening molecular breast imaging (MBI) only. (Courtesy of Hunt KN, Mayo Clinic, 

Rochester, MN)

A–D, Craniocaudal views from upper (A) and lower (B) detector heads and mediolateral 

oblique views from medial (C) and lateral (D) detector heads obtained during MBI 

performed after IV injection of 7.5-mCi (277.5 MBq) 99mTc-sestamibi show 9-mm focal 

area of moderate-intensity uptake (arrows) in upper inner right breast at middle depth.

E and F, Synthetic 2D craniocaudal (E) and mediolateral oblique (F) mammograms from 

digital breast tomosynthesis acquisition show heterogeneously dense parenchyma and no 

abnormality. Spot compression mediolateral oblique view (not shown) was also normal.
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G and H, Targeted transverse (G) and longitudinal (H) ultrasound images show oval, 

circumscribed 0.7-cm isoechoic mass (arrows) thought to correspond to MBI finding. 

Ultrasound-guided core biopsy and surgical excision revealed 0.4-cm grade 1 invasive ductal 

carcinoma that was estrogen receptor positive, progesterone receptor positive, and human 

epidermal growth factor receptor 2 (HER2 [also known as ERBB2]) negative. Ki-67 

proliferation index was low at 8% and low-grade ductal carcinoma in situ was present. 

Sentinel node biopsy was negative for metastasis.

Berg et al. Page 27

AJR Am J Roentgenol. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6—. 
69-year-old woman with dense breasts and history of lobular carcinoma in situ that had been 

excised 2 years previously who had cancer seen on screening abbreviated MRI only.

A–D, Craniocaudal (A and B) and mediolateral oblique (C and D) synthetic 2D views from 

screening digital breast tomosynthesis show heterogeneously dense breasts with no 

abnormalities.

E–G, Images from baseline abbreviated MRI screening examination, which consisted of 

unenhanced 3D fat-suppressed T1-weighted acquisition (E) and single contrast-enhanced 3D 

T1-weighted acquisition (F) from which maximum-intensity-projection subtracted image 

(G) was created, show enhancing, round 0.6-cm mass (arrows, F and G) with indistinct 

margins and heterogeneous internal enhancement in upper outer right breast. MRI-guided 
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biopsy and excision confirmed 0.6-cm grade 1 invasive ductal carcinoma that was estrogen 

receptor positive, progesterone receptor positive, and human epidermal growth factor 

receptor 2 (HER2 [also known as ERBB2]) negative. Sentinel node biopsy was negative for 

metastasis.
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Fig. 7—. 
57-year-old woman with dense breasts who had invasive ductal cancer shown on contrast-

enhanced mammography.

A and B, Screening craniocaudal (A) and mediolateral oblique (B) 2D synthetic 

mammography images show heterogeneously dense parenchyma and few calcifications.

C and D, Enlarged views of craniocaudal tomosynthesis image of inner right breast (C) and 

angled spot compression craniocaudal tomosynthesis image (D) show subtle distortion 

(arrows).

E and F, Targeted radial (E) and antiradial (F) ultrasound images of right breast show 

irregular, hypoechoic 0.9-cm mass (arrows) in 1-o’clock position located 6 cm from nipple, 

although findings of screening handheld ultrasound examination were negative. Before 
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biopsy, patient underwent research contrast-enhanced mammography performed 2.5 minutes 

after IV injection of 125 mL of iopamidol (370 mg I/mL; Isovue 370, Bracco).

G and H, Craniocaudal (G) and mediolateral oblique (H) subtracted contrast-enhanced 

mammography images show strongly enhancing 1.2-cm irregular mass (arrows) and mild 

background parenchymal enhancement. Ultrasound-guided core biopsy revealed grade 2 

invasive ductal carcinoma with ductal carcinoma in situ that was estrogen receptor positive, 

progesterone receptor positive, and human epidermal growth factor receptor 2 (HER2 [also 

known as ERBB2]) negative. Ki-67 proliferation index was low (10%). Invasive carcinoma 

measured 1.3 cm at lumpectomy, and four sentinel nodes were negative for metastasis.
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Fig. 8—. 
51-year-old woman with extremely dense breasts who had invasive ductal carcinoma 

visualized using multiple modalities.

A and B, Screening craniocaudal (A) and mediolateral oblique (B) mammography images of 

left breast show regional amorphous and pleomorphic calcifications (arrows) that are well 

seen despite extremely dense parenchyma.

C and D, Subtracted craniocaudal (C) and mediolateral oblique (D) images from research 

contrast-enhanced mammography performed after IV injection of 125 mL of 300 mg I/mL 

iohexol (Omnipaque 300, GE Healthcare) show strong enhancement of irregular 2.7-cm 

mass (arrows) at site of calcifications.

E, Targeted ultrasound image shows partially circumscribed, partially indistinctly 

marginated, slightly hypoechoic 3.1-cm mass (arrowhead) with echogenic calcifications 

(arrows). Stereotactic biopsy was performed to ensure optimal sampling of calcifications and 

showed grade 2 invasive ductal carcinoma with ductal carcinoma in situ that was estrogen 

receptor negative, progesterone receptor negative, and human epidermal growth factor 

Berg et al. Page 33

AJR Am J Roentgenol. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



receptor 2 (HER2 [also known as ERBB2]) negative. Ki-67 proliferation index was low 

(10%).

F and G, Craniocaudal (F) and mediolateral oblique (G) views from research molecular 

breast imaging (10-minute acquisitions obtained after IV injection of 7.3 mCi [270.1 MBq] 

of 99mTc-sestamibi) performed after diagnosis shows intense uptake in irregular 3.4-cm 

mass (arrows). Note slight reduction in inclusion of extreme posterior tissues relative to 

mammography.

H, Axial fat-suppressed T1-weighted MR image shows intense enhancement of irregular 

3.0-cm mass (arrow) at site of known malignancy. Patient had partial response to primary 

chemotherapy with two sentinel nodes negative for metastases (or therapy-related changes).
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Fig. 9—. 
Flowchart illustrates current approaches to supplemental screening in context of risk factors, 

including breast density. If not performed by age 30 years, genetic testing can be performed 

at time of diagnosis of breast or ovarian cancer, when appropriate family history is 

identified, or when family member is found to have pathogenic mutation. Women with high 

risk for breast cancer who are pregnant or lactating may consider screening ultrasound (US) 

during that time. Similar performance has been observed for abbreviated MRI and full-

protocol diagnostic MRI. For women who cannot tolerate MRI, US is most widely available 

alternative but produces less gain in cancer detection than MRI. Molecular breast imaging 

(MBI) or contrast-enhanced mammography (CEM) appear to produce cancer detection 

similar to that of MRI but are not yet widely available alternatives when MRI is not possible; 

further validation is needed. If screening MRI is performed, additional supplemental 

screening with US, MBI, or CEM is not needed. Supplemental screening MRI should stop 
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by age 75 even among high-risk women. PHBC = personal history of breast cancer, LCIS = 

lobular carcinoma in situ, ADH = atypical ductal hyperplasia, DBT = digital breast 

tomosynthesis.
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