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Abstract 

Recent insights into the molecular and cellular mechanisms underlying cancer development have revealed the tumor 
microenvironment (TME) immune cells to functionally affect the development and progression of breast cancer. How-
ever, insufficient evidence of TME immune modulators limit the clinical application of immunotherapy for advanced 
and metastatic breast cancers. Intercellular STAT3 activation of immune cells plays a central role in breast cancer 
TME immunosuppression and distant metastasis. Accumulating evidence suggests that targeting STAT3 and/or in 
combination with radiotherapy may enhance anti-cancer immune responses and rescue the systemic immunologic 
microenvironment in breast cancer. Indeed, apart from its oncogenic role in tumor cells, the functions of STAT3 in 
TME of breast cancer involve multiple types of immunosuppression and is associated with tumor cell metastasis. In 
this review, we summarize the available information on the functions of STAT3-related immune cells in TME of breast 
cancer, as well as the specific upstream and downstream targets. Additionally, we provide insights about the potential 
immunosuppression mechanisms of each type of evaluated immune cells.
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Introduction
Breast cancer is one of the most prevalent type of 
gynecological cancer across the globe. As per estimates 
2,088,849 new breast cancer cases and 626,679 breast 
cancer related deaths were reported in 2018 [1]. Owing 
to its complex pathology, breast cancer is generally diag-
nosed at advanced stages when it has already spread to 
different and distant body parts [2]. As a highly malig-
nant tumor, breast cancer exhibits considerable meta-
static potential and often leads to treatment failure and 
death [3]. Breast cancer can be divided into three types: 
hormone receptor-positive (estrogen receptor (ER) or 

progesterone receptor (PR)) constitutes 70% of breast 
cancer cases, ERBB2-positive constitutes 15–20% of 
breast cancer cases and triple negative breast cancer 
(ER−, PR− and ERBB2−) constitutes 15% of breast can-
cer cases [2]. For management of breast cancer, patients 
with local disease usually undergo surgery and/or radia-
tion therapy, while the cytotoxic chemotherapy, biologic 
therapy and endocrine therapy are generally applied to 
systemic metastasis [4]. Although the breast cancer death 
rate has decreased by 39% in the last one decade owing 
to recent advancements in breast cancer diagnostics 
and therapeutics, almost all patients who are diagnosed 
with advanced stage and metastatic disease eventually 
succumb to it [5]. Innovative approaches to reduce fre-
quent relapse of breast cancer and to decrease the death 
rate is need of the hour. There is concrete evidence in 
literature that immune system plays an important role 
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in the response of patient reaction to both standard and 
long-term therapy [6]. The evolving interaction between 
breast tumor and human immunity was characterized 
by immunoediting, such as tumor cells death, dendritic 
cells (DCs) maturation, and effector T cells response [7]. 
Owing to the heterogeneity of the breast cancer [8], the 
effect of complex tumor microenvironment (TME) on 
immunotherapy still lacks sufficient validation.

STAT3 is the family member of signal transduction 
and transcriptional activators (STAT) proteins, which 
regulate the gene expression related to cell survival and 
immune response associated with tumor progression and 
malignancy [9–11]. Generally, STAT3 is localised in the 
cytoplasm of resting cells in an inactive form [12]. Once 
activated, STAT3 undergoes phosphorylation, homodi-
merization, nuclear translocation and DNA binding, 
subsequently driving the tumor proliferation, differen-
tiation, apoptosis, cell transformation, invasion, angio-
genesis, and immune evasion [13] (Fig.  1). Inhibitors of 
STAT3 have been reported to inhibit cell proliferation 
and promote the apoptosis of lung cancer, gastric cancer, 
colorectal cancer, leukemia, melanoma, renal cancer and 
breast cancer, to name a few [14]. Likewise, immunosup-
pression and tumor promotion are magically integrated 
into STAT3 cascade [15–17]. Accumulating evidence 
revealed that STAT3 is an important oncoprotein in an 
overly complex TME [18–21]. Breast cancers risk, metas-
tasis, recurrence, and response to treatment is affected by 

multiple non-malignant cell types in TME, such as mac-
rophages, mast cells, B cells, regulatory T cells (Tregs), 
DCs, and natural killer cells (NKs) [22, 23]. Recently, 
STAT3 signaling has been shown to pay a role in immune 
cells and promotes immunosuppressive function in the 
TME [24]. It is widely accepted that the immunologi-
cal insult in TME and the activated immunosuppressive 
molecules in human cancers are essential in modulating 
the tumor milieu and tumor progression [18, 25]. STAT3 
signaling activation is magically converged in both tumor 
promotion and immunosuppression, such as the cross-
talk between tumor cells and immune cells [18]. Mean-
while, the immune system has a key role in the standard 
treatment response and long-term survival of breast 
cancer patients [6]. Recent insights indicate that breast 
cancer outcomes are determined by the type of elicited 
immune responses [26–28]. Of note, a lot of studies have 
revealed that STAT3 cascade was associated with breast 
cancer immune responses [29, 30], which can potentiate 
signaling in TME immune cells and tumor cells. How-
ever, the effects of STAT3 cascade on immune cells in 
breast cancer tumor immune microenvironment is yet to 
be elucidated.

In this review, we intend to establish the interaction 
between STAT3 and immune cells in TME of breast can-
cer, focusing on the immune cells function and popula-
tion. Describing above appears to imply an ideal target 
for breast cancer immunotherapy. STAT3 is not only 

Fig. 1  A schematic depiction of constitutive STAT3 activation in immune cells. The phosphorylation of STAT3 is triggered by tumor-derived factors 
and genetic stress. The activated STAT3 subsequently translocated to the nuclear, where it binds to the DNA at specific site and leads to increased 
transcription of target genes, thereby contributing to immune cells generation, polarization and immunosuppression properties
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overactive in different cells of breast cancer milieu, but 
also simultaneously determines opposite patterns of 
anti-tumor and pro-tumor immune cells, such as down-
regulated T cells and upregulated Tregs. The specific 
inhibition of STAT3 has emerged as a promising strategy 
to improve the TME, immune surveillance, tumor pro-
gression and metastasis of breast cancer. The treatment 
arms of STAT3 inhibition in combination with radiother-
apy exhibits the potential to ameliorate the immunosup-
pression and favors the systemic immune response.

STAT3‑related immune cells in breast cancer tumor 
microenvironment
The TME plays a crucial role in tumor progression, treat-
ment response and patient prognosis. Myeloid-derived 
suppressor cells (MDSCs), DCs, Tumor-associated mac-
rophages (TAMs), tumor-associated neutrophils (TANs), 
NKs, B cells and T cells are the main immune cells in 
the TME [31, 32]. As one of many important regulatory 
factors in TME, STAT3 is a key target that connects the 
microenvironment with tumor cells [31]. The following 
is the role of STAT3-related immune cells (MDSCs, mac-
rophages, DCs, and T cells) in the TME of breast cancer 
(Table 1).

MDSCs
As a heterogeneous population of myeloid progenitor 
cells in TME, myeloid-derived suppressor cells (MDSCs) 
are associated with inflammation, tumor progression and 
metastasis [33, 34]. By suppressing CD4+ T cells, CD8+ 
T cells and NK cells, recruited MDSCs can inhibit innate 
and adaptive immune response, leading to the elimina-
tive dysfunction of immune system and suppression of 
immune surveillance [33, 35]. While markers for the het-
erogeneous MDSCs have not been defined well because 
different tumor types have different markers for MDSCs 
[36]. In breast cancer, phosphorylated-STAT3 directly 
induced indoleamine 2,3-dioxygenase (IDO) expression 
in MDSCs by binding to the promotor of IDO which is 
involved in immunosuppressive effects between breast 
cancer-derived MDSCs on T cells [37] (Fig.  2a). IDO, a 
rate-limiting enzyme in tryptophan catabolism, is highly 
expressed in MDSCs isolated from fresh breast cancer 
tissues and is associated with tumor-induced immu-
nosuppression by suppressing T cell function [38, 39]. 
Moreover, MDSCs have been reported to activate the 
STAT3 mediated inhibition of T cell expansion and Th1 
polarization via the IDO manner in breast cancer [39]. 
Meanwhile, STAT3 cascade blocking has been shown 

Table 1  The role of STAT3 in regulating signaling proteins in immnue cells

Immune cells Proteins Relathionship with STAT3 References

MDSCs IDO MDSCs-activated STAT3 suppressed the T cell expansion and Th1 polarization via the IDO manner [37]

IRF-8 STAT3 downregulted the IRF-8 expression and promoted the MDSCs formation [44]

G-CSF G-CSF mediated the STAT3/IRF-8 axis functions in MDSCs [45]

IL-6 IL-6 stimulated STAT3 phosphorylation in MDSCs [48]

S100A8/A9 STAT3 stimulated the S100A8/A9-mediated ROS, then suppressed CD4+ T cells accumulation [59]

Macrophages CD206/Arg-1/PTGS2 STAT3 inhibition suppressed these markers expression [64, 73]

HA HA actived the STAT3 cascade [72]

A-FABP A-FABP stimulated the STAT3 activation by promoting IL-6 production [67]

HIF-1α/TGF-β1 STAT3 upregulated HIF-1α/TGF-β1 expression, and influenced angiogenesis, tumor cells prolifera-
tion and metastasis

[82]

PD-L1 STAT3 promoted the PD-L1 secretion on macrophages of tumor milieu [87]

Dendritic Cells PKCβII/PRKCB2 STAT3 reduce the PKCβII protein and PRKCB2 expression and suppressed DCs generation [98]

HER-2/neu STAT3 inhibition downregulated the tumor surface HER-2/neu expression [103]

IL-10 IL-10-related signaling plays an important role in STAT3-elicited cDCs immunosuppressive 
response

[105]

FLT3L FLT3L promoted DCs proliferation via STAT3-dependent manners [111]

Tcf4 STAT3 interacted with Tcf4 promoters and increased the pDCs population [110]

CD4 + T cells IL-10 STAT3 increased the IL-10 expression and counteracted CD4 + T cells tumoricidal function [34]

Tregs Foxp3 STAT3 directly regulated the expression of Foxp3, and promoted the Tregs generation and immu-
nosuppressive abilities

[138]

IDO1 STAT3-mediated IDO1 expression increased the Foxp3+ Tregs in tumor milieu [150]

CD8 + T cells INF-α/β STAT3-blocking induced INF-α/β production and triggered CD8+ T cells responses [165, 167]

GAPDH/HK2 STAT3 activation repressed GAPDH/HK2, which were critical glycolic indicators for T cells [172, 174]

FGFR4 Genetic instability of FGFR4 enhanced the STAT3 activation and possibly suppressed CD8+ T cells 
infiltration

[137]
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to significantly decrease the IDO expression in MDSCs, 
tumor development, and metastasis [40]. Noteworthy, 
intranuclear p52 and RelB (p52/RelB complex) has also 
been found to be dramatically decreased after STAT3 
blocking, which is a dimer involved in NF-κB pathway 
activation and specific immunological processes [41], 
implicating that noncanonical NF-κB pathway partici-
pated in the STAT3-induced IDO expression and TME 
immunosuppression [37, 42]. Through the negative 
association between IDO and T cells CD3ζ-chain/IFN-γ 
expression, activated IDO from the MDSCs directly abol-
ished the T cells immunity in TME [43]. Furthermore, 
STAT3 has also been shown to be negatively associated 
with the downstream interferon regulatory factor–8 
(IRF-8) expression via the promoter engagement. This 

eventually promotes the MDSCs phenotype, which is 
directly mediated by G-CSF in breast cancer [44, 45]. 
Downregulation of IRF-8 has been found to facilitate 
the development and accumulation of MDSCs [44, 
46] (Fig.  2d). Therefore, STAT3-related MDSCs gen-
eration is considered as a major obstacle to anti-tumor 
immunotherapy.

For the upstream, reactive oxygen species (ROS) 
and IL-6 triggered STAT3 activation regulates MDSCs 
expansion in the breast cancer, which are both typical 
characteristics of MDSCs [40, 43, 47]. The IL-6 level in 
TME has been shown to be positively correlated with 
infiltration of MDSCs in  situ and contributed to worse 
clinical outcomes [48, 49]. Among which, ADAM pro-
teases (ADAM10)-induced soluble IL-6 was particularly 

Fig. 2  The mechanism of STAT3-related immune cells at in breast cancer TME. Three primer immune cells can be targeted when STAT3 influences 
the TME of breast cancer. The immune cells population, phenotypes and related gene expression were shaped in tumor milieu. a Node A: MDSCs 
conditioned by STAT3 cascade in TME induced paralysis of T lymphocytes, activity of CSCs, and carcinogenic factors generation. Meanwhile, the 
release of ROS might enhance the immunosuppression in various routes. b Node B: Intracellular STAT3 cascade in the macrophages affects the PGE2 
and PD-L1 secretion, and induces the Sox2-positive CSCs in TME. Moreover, the HA and A-FABPs induced STAT3 activation is directly associated with 
TAMs formation and enables the interaction between tumor cells and macrophages, such as promoting TGF-β1 and HIF-1α generation. c Node C: 
STAT3 cascade suppressed DCs differentiation and deprived the DCs ability to stimulate T cells. Through inhibiting CD86 expression, STAT3 indirectly 
inhibited the CTLA-4 and promoted IFN-γ expression in TME. Moreover, FLT3L-induced DCs accumulated in immunization site and significantly 
increased the anti-tumor T cells response and remarkably delayed the tumor growth. The FL3TL/STAT3/Pu.1 cascade promote the differentiation 
and maturation of DCs, while FL3TL/STAT3 interacts with E2-2/Tcf4 pathway to enhance pDCs-related immune response. d Node D: STAT3 cascade 
in tumor cells inhibits the MDSCs in TME, which was directly mediated by intercellular G-CSF/IRF-8 function. The co-culture between tumor cells 
and DCs stimulated STAT3-related HER-2/neu, TGF-β1 and HIF-1α generation. Moreover, the macrophages related PEG2 in TME might stimulate 
PI3K/Akt pathway via the tumor surface EP4 receptor recognition, which was closely connected to breast cancer cells metastasis
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involved in IL-6 trans-signaling and accompanied 
with the enhanced STAT3 phosphorylation in MDSCs 
(Fig.  2a). Additionally, infiltrated MDSCs might facili-
tate the shedding of IL-6 receptor, eventually promoting 
invasion and metastasis of breast cancer cells via IL-6 
trans-signaling [50]. With the IL6-dependent STAT3 
stimulation, MDSCs-derived nitric oxide (NO)NO/
NOTCH signaling can promote and maintain the persis-
tent phosphorylation of STAT3 [51]. Furthermore, cancer 
stem cells (CSCs) are associated with tumor progres-
sion and treatment resistance [52]. Through STAT3 and 
NOTCH signaling, MDSCs induced human breast CSCs 
in TME and exhibited poor survival rate [51]. Among 
which, IL-6 and MDSCs-derived NO collaboratively 
stimulated STAT3 and NOTCH signaling. In addition to 
IL-6, IL-17 appeared to positively regulate the differentia-
tion of MDSCs into macrophages and mDCs, as well as 
activation of STAT3 [53]. Data also indicated that the lev-
els of IL-17 were considerably downregulated in patients 
with breast cancer as compared to the healthy blood 
donors [53].

Recently, Yin et  al. reported that the inhibitor of 
Aurora-A kinase (Alisertib) plays a remarkable role in 
regulating the immunosuppressive functions of STAT3 
and MDSCs in the TME of breast cancer [54]. Aurora-A 
is a conserved serine/threonine kinase and is associated 
with poor prognosis and drug resistance [55, 56]. Of note, 
Alisertib has been used in many preclinical studies and 
clinical trials, including a recent five-arm phase II study 
against advanced breast cancer and small cell lung can-
cer [57]. Alisertib can significantly decrease the MDSCs 
and enrich T lymphocytes in the TME of breast tumor 
and peripheral organs, which were essential for the breast 
cancer regression. Indeed, the administration of alisertib 
ameliorated immunosuppressive function of MDSCs by 
inhibiting STAT3-mediated ROS generation in breast 
cancer (Fig. 2a) [54]. Activated-STAT3 (Tyr705) and ROS 
levels have been shown to significantly downregulated 
in MDSCs from alisertib-treated mice. T-cell suppres-
sive activity of MDSCs has been found to be positively 
associated with ROS generation in a STAT3-dependent 
manner [58]. Moreover, S100A8/A9 (two modulators of 
the ROS generation in MDSCs) expression was consid-
erably decreased after alisertib treatment [59, 60], which 
both have been demonstrated to be regulated by STAT3 
[61]. Therefore, constitutive activation of STAT3 regu-
lates MDSCs and anti-cancer T lymphocytes population 
in breast cancer TME.

Macrophages
Macrophages are essential for host defense and can 
be divided into two distinct forms, M1-macrophages 
and M2-macrophages. While the M1-macrophages 

produce IL-12 to promote Th1 response, and the 
M2-macrophages sustain Th2-associated effector func-
tions and secrete tumor supportive factors [62, 63]. 
TAMs are closely similar to M2-polarized macrophages 
and promote immune evasion of breast tumor cells [64, 
65]. Clinical and experimental data demonstrated that a 
high density of TAMs is associated with both poor prog-
nosis and metastasis in breast cancer patients [66–68]. In 
TME of breast cancer, ERK/STAT3 cascade has emerged 
as a pivotal regulator to stimulate macrophage M2-like 
polarization and promote tumor progression and metas-
tasis [64]. Accordingly, STAT3 inhibitor in combination 
with ERK inhibitor has been found to significantly sup-
press the M2 macrophage polarization and expression 
of markers including CD206 and Arg-1. Likewise, the 
expression of hyaluronan (HA) in TME of breast cancer 
patients is positively correlated with the amount of M2 
macrophages [69] (Fig.  2b). HA is the most important 
component of extracellular matrix (ECM) and is associ-
ated with poor prognosis of breast cancer [70]. With the 
recognition by HA major receptor CD44 on macrophages 
[71], TME-derived HA activated the STAT3 cascade and 
formation of TAMs [72]. In addition, STAT3-inhibitor 
S3I-201 [72], simultaneously suppressed the STAT3 
phosphorylation and macrophages transformation in 
breast cancer TME as compared to control. Meanwhile, 
STAT3 blocking in macrophages is positively associated 
with PTGS2 expression, which triggers the cyclooxyge-
nase-2 (COX-2) to drive PGE2 generation [73]. Intrigu-
ingly, increased pro-tumorigenic factor COX-2 in TME 
might contribute to the attenuated therapeutic responses 
of breast cancer to ruxolitinib and promote tumor pro-
gresses [73, 74]. The PGE2 has been reported to active 
AKT via PI3K signaling pathway, which is associated with 
tumor cells proliferation and survival [75, 76]. Consist-
ently, COX-2-mediated PEG2 expression has been shown 
to be intricately connected to lymph angiogenesis and 
lymphatic metastasis via PI3K/Akt-dependent receptor 
EP4 recognition in breast cancer cells [77, 78] (Fig. 2d). 
Thus, the pros or cons of STAT3 cascade target therapy 
need to be further illustrated.

Recently, Hao et  al. reported the intracellular adipo-
cyte/macrophage fatty acid binding protein (A-FABP) 
expression to be negatively associated with breast cancer 
survival via facilitation of the STAT3 cascade in TAM 
[67] (Fig. 2b). FABP does not only regulate the inflamma-
tory and cellular metabolic pathways, but also affects the 
macrophages function and phenotype [79–81]. A-FABP 
has been shown to exhibit the ability to promote IL-6 
production through NFκB/miR29b pathway in mac-
rophages, which eventually boosted the phosphorylation 
of STAT3 [67]. In contrary, A-FABP knockdown or anti-
IL-6 significantly decreased the STAT3 phosphorylation 
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level in macrophages, subsequently inhibiting the tumor 
colony formation and metastasis. Moreover, IL-6 acti-
vated the STAT3 was specifically enriched in co-culture 
system between macrophages and breast cancer MCF-7 
cells as compared to control, which also showed signifi-
cant upregulation of transforming growth factor β (TGF-
β1) and hypoxia-inducible factor-1α (HIF-1α) mRNA 
levels [82] (Fig.  2d). Noteworthy, HIF-1α, as a STAT3 
downstream target, has been proved to be associated 
with angiogenesis [83, 84]. STAT3 positively has been 
shown to positively regulate the expression of TGF-β1 in 
breast cancer [85], thereby promoting cancer cell prolif-
eration and metastasis [86]. Another co-culture system 
between macrophages and 4T1 cells revealed that STAT3 
was not only activated in macrophages, but also pro-
moted the PD-L1 secretion on macrophages during inter-
action with breast cancer cells (Fig. 2b) [87]. High PD-L1 
expression macrophages have been reported to directly 
promote apoptosis and inhibit the proliferation via sup-
pressing of activation of autologous T cells [88]. Of note, 
the interaction between PD-L1 and macrophages surface 
PD-1 induced an alternative M2-like polarization, result-
ing in crippling effects on tumor immunity [89]. Further-
more, the crosstalk between TAMs and breast cancer 
cells showed an ability to induce CSCs phenotype forma-
tion with upregulated Sox-2 expression via activation of 
STAT3 cascade [90]. Accordingly, Sox-2 expression was 
directly inhibited by STAT3 inhibitor 2-cyano-3,12 diox-
ooleana-1,9 dien-28-imidazolide (CDDO-Im) treatment. 
Increased CSCs have been shown to boost the metasta-
sis, chemotherapy resistance, and tumorigenicity in vivo 
[90, 91]. Although targeting TAMs is a promising clinical 
tumor immunotherapy strategy, it is difficult to achieve 
in practice due to the heterogeneous and dynamic nature 
of macrophages in TME [63, 92, 93]. Against this back-
drop, modulating the intercellular STAT3 cascade of 
macrophages may provide an opportunity to improve 
therapeutic efficacy of the breast cancer immunotherapy.

Dendritic cells
As primary antigen-presenting cells (APCs), conven-
tional dendritic cells (cDCs) play a main role in adap-
tive immune response initiation and regulation [94, 95]. 
The cDCs consist of type 1 (cDC1) and type 2 (cDC2) 
subsets [96]. In immune system, DCs suppress cancer 
growth and spread, even when the disease has advanced 
[97]. The presence of DCs in TME is positively corre-
lated with patient survival. It is now thought that tumor-
derived factors (TDFs) IL-6, VEGF, and G-CSF secreted 
by tumor itself in TME of breast cancer have the ability to 
stimulate STAT3 cascade in myeloid cells differentiation 
[34, 98]. As a result, STAT3 activation impaired the gen-
eration of DCs as well as DCs function. Mechanically, in 

both advanced breast cancer patients and breast tumor-
bearing mice, STAT3 directly decreased the PKCβII 
protein and PRKCB2 expression by binding to negative 
regulatory elements of the PRKCB promoter [98], even-
tually leading to the suppression of DCs formation and 
this subtle change can delay the T cells activity, namely 
CD8+ CTLs (Fig. 2c) [99, 100]. PKCβII has been deemed 
as splice variant of the PRKCB gene [101], which drives 
the differentiation of myeloid progenitor cells to DCs 
[99, 102]. As a negative feedback loop, PKCβII activity 
inhibited the ability of TDFs to activate STAT3 cascade, 
via reduction of abundance of the cell surface recep-
tors recognition to TDFs [98]. Knock down of STAT3 in 
TME of breast tumor results in the downregulation of the 
surface expression of on tumor cell via the DCs activa-
tion [103], and HER-2/neu is a proto-oncogene linked 
to breast cancer progression and metastasis [103, 104]. 
Recently, STAT3-deficient cDCs (STAT3− cDCs) was 
reported to inhibit the breast cancer growth and poor 
survival as a cell-based vaccine. STAT3− cDCs injec-
tion was positively associated with antigen-specific T 
cells accumulation in breast TME and tumor-related 
lymph nodes compared to blank control [105]. In addi-
tion, upregulated surface CD86 expression was observed 
rather than CD80 or MHC II due to STAT3 abolish-
ment. DCs-generated co-stimulatory activation (CD86) 
inhibited the CTLA-4 secretion in breast cancer lymph 
nodes, promoted intercellular IFN-γ expression, and rec-
ognized the CD28 receptor in T cells, therefore promot-
ing T cell accumulation and activity [106–108] (Fig. 2c). 
Furthermore, with the specific receptor IL10RB interac-
tion, IL-10-related signaling plays an important role in 
STAT3-elicited cDCs immunosuppressive responses of 
breast TME [105]. Ablating the IL-10/STAT3 cascade 
dramatically improved the effector T cells amounts. Con-
sistently, increased amount of T cells in TME was linked 
to efficacy of immunotherapy in breast cancer [109]. The 
inhibition of STAT3 in migratory cDCs might be a novel 
immunotherapy strategy for management of metastatic 
and advanced breast cancer [105].

Intriguingly, another important DCs growth regulator, 
FMS-related tyrosine kinase 3 ligand (FLT3L) showed 
the ability to promote DCs proliferation via STAT3-
dependent manner [110, 111]. STAT3 activation acts 
as a checkpoint of FLT3L-regulated DC diversification 
(Fig.  2c). Moreover, in TME of breast cancer, FLT3L-
induced DCs accumulated in immunization site and sig-
nificantly increased the anti-tumor T cells response and 
remarkably delayed the tumor growth [112, 113]. While 
the expression of FLT3L is prevalent in lymphoid (60%–
70%) and myeloid (50%–65%) progenitors, absence of 
STAT3 restricted myeloid differentiated into DCs prog-
eny than T and B lymphocytes [111]. Therefore, STAT3 
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is a non-redundant regulator of FLT3L-mediated DCs 
differentiation. One hypothesis is that STAT3-actived 
Pu.1 expression in lymphocyte and myeloid cells differen-
tiation [114, 115], and high level of FLT3L initiated DCs 
differentiation via the STAT3/Pu.1 cascade [116]. None-
theless, the high expression of IL-32 in breast cancer 
might suppress the STAT3 binding to the Pu.1 promoter, 
thereby leading to the abrogated maturation of DCs and 
tumor progression [114, 117].

Furthermore, in plasmacytoid DCs (pDCs), FLT3L 
used STAT3 to selectively induce the E protein E2-2/Tcf4 
interaction, which is essential for the pDC population 
(Fig. 2c), but not for the other DC lineages in TME [110, 
118]. Among which, STAT3 physical interacted with Tcf4 
promoters suggesting a direct mechanism of gene induc-
tion [110]. Although it is generally assumed that binding 
of β-catenin to members of the TCF family is cancer-pro-
moting, recent studies have shown that Tcf4 functions 
instead as a repressor that restricts the breast cancer cell 
growth [119]. In addition, activation of pDCs contributed 
to higher killing efficacy of effector lymphocyte in TME 
of breast cancer model, including FLT3L-induced pDCs 
[120, 121]. In yet another study, simultaneous inhibition 

of STAT3 and Tcf4 signaling pathways was reported to 
suppress the breast cancer cells metastasis both in vitro 
and in  vivo [122]. Despite insufficient evidence, FLT3L/
STAT3 cascade directly conducted pDC and anti-tumor 
immunity via Tcf4 in breast cancer. As such Tcf4 might 
be used act as a new prognostic biomarker and valuable 
molecular target for breast cancer immunotherapy.

STAT3‑relevant T cells immunosuppression
STAT3 is constitutively activated in all subtypes of 
breast cancers and particularly plays an essential role in 
their immunosuppression [123]. Activated-STAT3 in 
tumor cells not only dampens the generation of immu-
nostimulatory mediator, but also boosts the release of the 
immunosuppressive factors leading to the stimulation of 
crosstalk between tumor cells and T cells in TME [124] 
(Fig.  3). Herein, we discuss the STAT3 related T cells 
immunosuppression in breast cancer as follows.

CD4+ T cells
As previous study has reported that blocking of STAT3 
in breast cancer cells induced an antitumor immune 
response involving CD4+ T cells (Fig.  3a), which may 

Fig. 3  The roles of STAT3 in different immune cells immunosuppression. a: For immune activation cells (Left panel), STAT3 directly regulate 
MDSCs to product IL-10 and ROS in TME, both of which indirectly cause CD4+ T cells to lose their ability to inhibit tumors. The STAT3-induced 
ROS impaired the CD8+ T cells, while STAT3 also indirectly suppress the CD8+ T cells through inhibiting the INF-α/β generation in breast cancer 
TME. As a nonredundant regulator of CD8+ T cells, activated-STAT3 was also involved in intercellular glycolysis via promoting the FAO expression. 
b For immunosuppressive cells, however (Right panel), STAT3 not merely promote the Tregs through triggering IDO (RelB-p52 binding) and 
IL-10 generation from MDSCs, but also was directly involved in Tregs specific marker Foxp3 expression and immunosuppressive effect. The 
activated-STAT3 promoted the naive peripheral CD4 + T cells conversion into Tregs, simultaneously inhibiting the IL-2 and IFN-γ production from 
converted lymphocytes
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ameliorate TME via secretion of cytokines, such as TNF-
α, IFN-γ, IL-6, and IL-5, as well as chemokines CCL5 and 
CXCL10 [125]. Importantly, TNF-α and IFN-γ synergis-
tically induced signaling in CD4+ T cells that prevents 
immune evasion, tumor cell proliferation, and multistage 
carcinogenesis [126, 127]. Moreover, tumor-infiltrating 
NKs and MDSCs underwent transcriptional reprogram-
ming and enhanced the IL-10 production via STAT3 in 
breast cancer [58, 128]. As a result, increased IL-10 in 
TME directly suppressed the generation of CD4+ T cells, 
thereby impairing tumor immunity. Moreover, IL-10 has 
pro-tumor activity in TME, and IL-10 facilitated Tregs 
and M2-like macrophages development [129], as well as 
counteracting CD4+ T cells, cytotoxic CD8+ T cells and 
NKs tumoricidal function [34]. Therefore, IL-10 in TME 
of breast cancer induces immunosuppression and assists 
the evasion from tumor immune surveillance, promoting 
tumor cell development and metastasis [130]. Further-
more, much of the suppressive activity of T cells is due to 
the ROS production, including CD4+ T cells [131–133]. 
The S100A8/A9-mediated ROS suppression was reported 
to improve the CD4+ T cell accumulation in TME of 
breast cancer, which has been known to be regulated in 
STAT3-dependent mechanism in MDSCs [54, 58, 59, 61].

Tregs
Tregs is a subset of CD4+ T cells which sustain the 
immunosuppressive environment in human cancers. 
Generally, Tregs trigger immunosuppression by initiat-
ing competition for microenvironment factors, thereby 
leading to cytokine deprivation-induced apoptosis in the 
target effector T cells [134]. Olkhanud et al. showed that 
Tregs to be necessary for breast cancer cell metastasis to 
lungs, which was accompanied with chemokine receptor-
mediated chemotaxis and killing function of NKs [135]. 
In breast cancer animal model with tumor metastasis, 
activated STAT3 and higher tumor-specific Tregs popu-
lation showed co-existence and contributed to immu-
nosuppression [136] (Fig.  3b). Moreover, increased 
intercellular STAT3 in Tregs resulted in enhanced prolif-
eration and suppressive functions of Tregs, further sup-
porting the STAT3-associated Tregs immunosuppression 
in TME of breast cancer [137].

Furthermore, the expression of Forkhead box P3 
(Foxp3), a fundamental mediator of Tregs, is directly 
regulated by intercellular STAT3 cascade [138]. Acti-
vated Foxp3 can bind to a proximal site of the il2 pro-
moter in  vivo, leading to the upregulation of several 
Treg-associated markers expression [135]. The molec-
ular events driving Foxp3 expression required T-cell 
receptor (TCR)/CD28 to stimulate STAT3 transcrip-
tion, which in turn promoted the naive peripheral 
CD4+ T cells conversion into Tregs and acquisition of 

Tregs suppressive function. Moreover, it also caused, 
inhibition of IL-2 and IFN-γ production from con-
verted lymphocytes [139, 140]. The positive function of 
STAT3 is that it can bind to the Foxp3 locus (Exon 2 
β sheet region) and promote gene expression, thereby 
providing an important mechanism by which STAT3 
can promote Tregs [141–143]. Meanwhile, Tregs lack-
ing STAT3 are devoid of expansion, differentiation and 
immunosuppressive abilities. Moreover, Treg number 
has been found to be decreased in the TME of STAT3-
deficient mice [139]. Specifically, elevated Foxp3 gene 
expression and accumulated Foxp3+ Tregs amount 
were detected in close proximity to lung metastases of 
breast cancer, as well as higher STAT3 activities [144]. 
STAT3 cascade may elicit immunosuppressive TME by 
recruiting Foxp3+ Tregs to the metastatic milieu. Con-
cordantly, some studies have revealed that blocking of 
STAT3 in breast cancer animals significantly decreased 
the Tregs proportion in the TME especially the Foxp3+ 
Tregs [30, 125, 145]. Additionally, STAT3-blocking sup-
pressed the pro-inflammatory and the anti-inflamma-
tory Tregs, thereby adding to T cell cytotoxicity which 
is conducive for the anti-tumor effects [30].

Previously, Kyung et  al. has reported that target 
TME Tregs regulator indoleamine-2,3-dioxegenase 1 
(IDO1) achieved great success in various tumor types 
(11% achieved partial response or complete response), 
including breast cancer [146]. IDO was firstly found 
in 1950s and inhibits the T cell immunity by inducing 
differentiation and maturation of Treg cells, which is 
a poor prognosis factor for breast cancer [147–149]. 
Notably, MDSCs-produced IDO1 favors Foxp3 + Tregs 
and tumor-induced immunosuppression, which in turn 
leads to advanced breast cancer clinical stage [150, 
151]. Furthermore, STAT3-mediated IDO1 expres-
sion was found to be upregulated in breast cancer cell-
induced MDSCs, which suppressed effector T cells and 
hyperactivated the infiltration of the Foxp3+ Tregs in 
TME [37, 151, 152]. In contrary, STAT3 blocking down-
regulated the IDO1 proteins in MDSCs and stimulated 
T cell proliferation [37, 152]. Yu et  al. showed that 
STAT3 activation induced IDO through NF-κB acti-
vation rather than by its directly binding function, in 
which, NF-κB subunits (RelB-p52 dimers) directly bind 
to the IDO promoter thereby triggering IDO expression 
[40]. Although STAT3 has been reported to be strongly 
associated with MDSCs and IDO1 in interacting with 
Foxp3+ Tregs, the STAT3-dependent regulation of 
IDO1 expression still remains unclear. Therefore, eluci-
dating concrete molecular mechanisms modulating the 
STAT3/Tregs in breast cancer derived TME may prove 
essential in the development of novel immunotherapy 
strategies.
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CD8+ T cells
T cells play a central role in human adaptive immune 
response to cancer, especially the function of CD8+ T-cell 
to kill malignant cells [25]. Tumor-infiltrating CD8+ T 
cells in TME are related to distinct clinical outcomes and 
survival in breast cancer [153]. STAT3 has been demon-
strated to be an important checkpoint that blocks anti-
tumor immune responses in a variety of immune cells, 
especially CD8+ T cells [154–157] (Fig. 3a). Recently, Li 
et al. reported that inhibition of STAT3 activity in breast 
cancer metastasis model simultaneously impaired matrix 
metalloproteinase (MMP)-2/9 and ROS generation and 
increased the CD8+ T cells in the TME [158]. Note-
worthy, MMP-2 and -9 expression has been reported 
to enhance CD8+ T cells response in liver [159], and 
MMP-9 is known as a mediator of T cells migration 
[160, 161]. While, decreased ROS ameliorates the TME-
mediated CD8+ T cells suppression [54, 162]. Therefore, 
STAT3-mediated ROS accretion might play a pivotal role 
in CD8+ T cell responses of breast cancer than MMPs. 
Apart from this, STAT3 inhibition can regulate the pro-
duction of various immunomodulator factors in TME of 
breast cancer, such as upregulation of INFs, GM-CSF and 
IL-2, downregulation of TGF-b, IL-6, and IL-10 proteins 
[163]. These factors regulate inflammatory and antitumor 
functions of immune cells, including CD8+ T cells [164]. 
Similarly, it has been reported that blocking of STAT-3 
in mice caused significantly higher activation of CD8+ T 
cells in TME as compared to the control [163]. Consist-
ently, STAT3 blocking in 4T1 syngeneic mouse markedly 
suppressed the tumor by triggering CD8+ T cells priming 
to eliminate tumor cells [165], which may be manipulated 
by STAT3-blocking triggered INF-α/β production [166, 
167]. The CD8+ T cells in 4T1 mouse model were also 
found to decrease the tumor volume, inhibit lung metas-
tasis and prolong the overall survival (OS) [168]. Reports 
have also revealed that INF-α/β can stimulate the CD8+ 
T cells [169]. Hence, it is possible that high levels of 
STAT3-mediated IFN-α/β in the TME favors the func-
tion of CD8+ T cells.

Of note, it has been reported that increased 705-tyros-
ine phosphorylated STAT3 (STAT3-pY705) level was 
detected in CD8+ T cells of breast tumor tissues [170]. 
The stimulation of the human breast cancer CD8+ T 
cells also requires intercellular STAT3 regulation. For 
example, in the TME of breast cancer, STAT3 activation 
promotes the expression of fatty acid oxidation (FAO) 
in CD8+ T cells, which subsequently inhibits the cellu-
lar glycolysis and other functions [170]. Wang et al. also 
showed that FAO pathway in breast cancer stem cells is 
regulated by JAK/STAT3 signaling pathway [171]. More-
over, inhibition of CD8+ TEFF cells via STAT3 decreased 
breast tumor burdens and lung metastasis incidence in 

the Mouse Mammary Tumor Virus-Polyoma Virus Mid-
dle T antigen (MMTV-PyMT) transgenic mice. Mean-
while, it has been found that obesity-triggered breast 
tumor reduced the tumor-infiltrating CD8+ TEFF cells 
and promoted its progression [170]. In addition, STAT3 
activation repressed the glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH) and hexokinase II (HK2), both 
of which are essential glycolic indicators for T cells [172–
174]. Conversely, blocking the FAO has been shown to 
cause significant promotion of CD8+ T cells accumula-
tion and breast cancer regression. On the other hand, 
genetic instability of SNP allele rs351855-A in fibroblast 
growth factor receptor 4 (FGFR4) enhances STAT3 cas-
cade and shapes TME in multiple cancer types, attrib-
uted to STAT3-pY705 elevation [137]. The suppressed 
levels of infiltrated CD8+ T cells in TME were observed 
in rs351855-A transgenic breast cancer mouse model, 
as a systemic trait, which determined the immune eva-
sion in the TME and accelerated the tumor progression 
[137]. Thus, host-specific genetic variants might dictate 
immunosuppressive crosstalk between tumor cells and 
CD8+ T cells through STAT3 pleiotropic functions in T 
cells. Similarly, targeting of the STAT3 upstream, down-
regulating the intercellular pSTAT3-Y705 activity and 
upregulating glycolysis by leptin or PD-1 intervention 
markedly ameliorated the CD8+ T effector cells function 
in TME and prevented the development of breast cancer 
[170]. Metabolic reprogramming to regulate the function 
of T cells and upregulate the glycolysis in CD8+ T effec-
tor cells can promote their anti-tumor activity and IFN-γ 
production [175, 176]. Collectively, these findings suggest 
that targeting STAT3 may lead to a potent anti-tumor T 
cells immune response in breast cancer with pleiotropic 
functions.

Targeting STAT3 for breast cancer immunotherapy
The gene-therapy strategies were designed to inhibit the 
STAT3 signaling and improve the TME in the breast 
cancer model have proved the potential of STAT3 as a 
valid target for immunotherapy [177–179]. Inhibition of 
STAT3 activity by ruxolitinib can remarkably inhibit the 
breast cancer invasion in vivo [180]. Blocking of STAT3 
in breast cancer not only suppressed the tumor progres-
sion, but also conferred sensitivity to chemotherapeu-
tic drugs [181]. Apart from these advantages, STAT3 
inhibition was recently proposed to improve innate and 
adaptive anti-tumor immunity and immune surveil-
lance [182]. STAT3 inhibition in tumor cells increases 
the expression of cytokines and chemokines that ame-
liorate the TME, including DCs and tumor-specific 
T cells response [182]. Moreover, targeting STAT3 in 
human breast cancer cells was reported to suppress the 
tumor progression by regulating the expression of crucial 
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proteins in tumor milieu, such as survivin, chemokines 
(CCL5 and CXCL10) and proinflammatory cytokines 
(IL-6, IL-5, TNF-a, and IFN-γ) [183–185]. In breast can-
cer, the STAT3 inhibitors presented a positive feedback 
in tumor intervention. The direct antitumor effect of 
STAT3 inhibitors alone has been established in several 
pre- clinical breast cancer studies (Table  2). As previ-
ously reported, preclinical studies of small-molecule 
STAT3 inhibitor S3I-201 and C188 significantly retarded 
the breast cancer cell growth in xenografts [186, 187]. 
Stattic, a nonpeptidic small molecule has been shown 
to selectively inhibit the phosphorylation, dimerization, 
and nuclear translocation of STAT3, which consequently 
promotes the STAT3-dependent breast cancer cell death 
[188]. Moreover, another low-molecular compound 
STA-21 has also been identified as a selective STAT3 
inhibitor that influences the STAT3 dimerization and 

DNA binding ability in breast cancer [189]. In addition, 
an antidiarrheal agent (nifuroxazide) was also identified 
as a potent inhibitor of STAT3, which markedly inhib-
ited the phosphorylated-Stat3Tyr705 in breast cancer, 
and induced cancer cell apoptosis in a dose-dependent 
manner [190]. Additionally, the nifuroxazide also been 
found to exhibit the potential to inhibit the breast cancer 
metastasis without detectable toxicity, and the decreased 
MDSCs in lungs as ascertained in mouse model [190]. 
Recently, different types of novel inhibitors have been 
proposed. For instance, Eucannabinolide (Euc) sup-
pressed the STAT3 activation and DNA binding capac-
ity, eventually leading to the inhibition of breast cancer 
cell viability, proliferation and metastasis [191]. Similarly, 
10,11-dehydrocurvularin (DCV), a natural-product mac-
rolide derived from marine fungus, has been shown to 
selectively suppress the STAT3, to consequently inhibit 

Table 2  Application of STAT3 inhibitors in breast cancer treatment

Cell Lines In Vitro or In Vivo Inhibitors Radiation Effects References

BT474R/NCI-N87R In vitro S3I-201 NO Inhibits STAT3 activation and sensitizes resist-
ant cells to trastuzumab treatment

[186]

SUM159/BT549 In vitro/vivo C188 NO Inhibits STAT3 activation (SH2 domain) and 
ameliorates chemoresistant, like in com-
bining with docetaxel

[187]

MDA-MB-231/ 435S In vitro/vivo Stattic NO Inhibits STAT3 activation, dimerization, and 
nuclear translocation

[188]

MDA-MB-468/ 435/MCF7 In vitro STA-21 NO Selectively inhibits STAT3 DNA binding 
capacity and dimerization (did not affect 
the STAT3 upstream regulators)

[189]

4T1/MCF-7/MDA-MB-231 In vitro/vivo Nifuroxazide NO Inhibits STAT3 activation, MMP-2/9 expres-
sion; decreases MDSCs in lung cancer

[190]

MDA-MB-468/231 In vitro/vivo Euc NO Inhibits STAT3 activation and nuclear trans-
location

[191]

MDA-MB-231/ 468 In vitro/vivo DCV NO Selectively inhibits STAT3 activation, but 
does not affect the upstream JAK1/2 and 
silent STAT3

[192]

MCF-10A/7;

MDA-MB-231/468/T47D, In vitro/vivo ODZ10117 NO Inhibits STAT3 activation (SH2 domain), 
regardless of other STAT family proteins 
and upstream regulators

[205]

Breast cancer sentinel lymphocyte In vitro AG490 NO Inhibits the CpG-induced STAT3 activation; 
promotes DCs maturation and Th1 cells 
accumulation

[198]

4T1/MDA-MB-231/MCF-7 In vitro/vivo Pectolinarigenin NO Inhibits STAT3 activation, MMP-2/9 expres-
sion; improves CD8+ T cells recruitation

[158]

4T1 in vitro/vivo Alisertib NO Inhibits STAT3-mediated ROS generation in 
breast cancer; ameliorates MDSCs immu-
nosuppressive function

[54]

TM40D-MB/TUBO In vitro/vivo Pyrimethamine (PYR) NO Blockes STAT3 activity; decreases the fre-
quencies of Foxp3 + Tregs and promotes 
the CD8+ T cell

[30]

MDA-MB-231/468 In vitro/vivo Niclosamide YES inhibits STAT3 and Bcl-2, and increases ROS 
generation in vitro and in vivo; it is identi-
fied as a radiosensitizer

[222]

SKBR3 In vitro/vivo S3I-201 YES Inhibits STAT3 activation (radiation-related) 
and increases radiation-induced cell death

[223]
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the proliferation, migration and invasion of breast cancer 
cells (MDA-MB-231 and MDA-MB-468), via induction 
of apoptosis [192].

Inactivation of STAT3 contributed to breast cancer 
immunogenic phenotype, which involved the partici-
pation of CD4+ T cells and NKs, and decreased Tregs 
in the TME [125]. In addition, along with the TME 
immune response, visible inhibition of the lung metas-
tasis was observed in inhibitor group (STAT3-pY705) as 
compared to the blank control. Consistently, Mara et al. 
indicated that ablating STAT3 in both breast cancer and 
melanoma was associated with the activation of CD4+ 
T cells and NKs [145]. Meanwhile, combination of the 
STAT3 inhibitor and anti-PD-1 antibody synergistically 
improved T cells activation, CCL5 and IFN-γ releasing in 
the TME as compared toanti-PD-1 alone, and decreased 
tumor-infiltrating Tregs, therefore inhibiting the breast 
cancer progression and metastasis [145]. STAT3-block-
ing induced CCL5 is important for T cell proliferation 
and migration, which regulates the immune cell based 
autonomous processes [193–196]. Thus, STAT3 block-
ing has been proposed to be a promising adjuvant for 
the tumor immunotherapy. Pyrimethamine (PYR), an 
FDA approved anti-microbial drug, has safe inhibition 
function for STAT3 [197]. Owing to its immunomodu-
latory effects, PYR treatment significantly inhibited the 
metastasis and proliferation of breast cancer cells and 
remarkably attenuated the density of F4/80+ TAMs in 
breast cancer milieu [30]. Furthermore, PYR-mediated 
STAT3 inhibition significantly decreased the frequencies 
of Foxp3+ Tregs, while enhanced the frequency of CD8+ 
T cell numbers. The inhibitor against the Y239/240-ShcA 
phosphorylation site has emerged as a novel therapeutic 
strategy to inhibit STAT3 activation and increase sensi-
tivity breast cancer cells to immunotherapy. This lead to 
a direct amelioration of immune suppression in breast 
cancer and increased tumoricidal properties of immune 
cells, such as NKs and cytotoxic T cells [15]. In addition, 
CpG-induced STAT3 activation could counteract by the 
inhibitor AG490 (STAT3i), which shown the ability to 
promote the Th1 skewing accumulation by counterbal-
ancing CpG-induced Th2/Tregs and the DC matura-
tion through NF-κB activation [198]. The specific T cell 
reactivity restores the antitumor immunity in patients 
with breast cancer, which is affected by release of local 
cytokine and chemokines like CXC10, CXC9, IFNγ, IL-4 
and IL-5 [198]. Furthermore, a natural flavonoid com-
pound, pectolinarigenin, inhibited breast cancer lung 
metastasis, which simultaneously enhanced the CD8+ 
T cells recruitment and inhibited the STAT3 phospho-
rylation [158]. The re-activated local immune response 
is an essential component to sensitize tumors to immu-
notherapies [199]. Therefore, STAT3 signaling is a most 

potential therapeutic target for breast cancer systematic 
immunotherapy.

Previous studies demonstrate that STAT3 activa-
tion not merely act as a predictive biomarker for down-
regulated immune cells response, but also the type of 
immunomodulator that is strongly associated with pro-
grammed death ligand 1 (PD-L1) expression in the TME 
of breast cancer [15, 29, 200]. The STAT3 translocates 
to the nucleus where it induces the PD-L1 expression by 
binding to DNA-response elements in PD-L1 promoter 
[29, 201]. Disrupting STAT3 cascade could prevent 
PD-L1 expression [202] and improve the immune surveil-
lance with effector T cells in immune microenvironment 
[203]. The observation highlighted the therapeutic poten-
tials of targeting STAT3 in TME, especially in breast 
cancer patients with high PD-L1 expression. Of note, 
pharmacologic inhibition of STAT3 showed the ability 
to enhance the efficacy of anti-PD-L1/PD-1 monoclonal 
antibodies, which was proved effective for patients with 
metastatic triple negative breast cancer [204]. Ongoing 
phase I trial (NCT03195699) in advanced-stage breast 
cancer patients applied the STAT3 SH2-domain binder 
inhibitor C188-9. Of note, selective inhibition of the SH2-
domain by 3-(2,4-dichloro-phenoxymethyl)-5-trichloro-
methyl-[1,2,4]oxadiazole (ODZ10117) has been reported 
to significantly inhibit the migration, invasion and dis-
tant metastasis of breast cancer [205]. Moreover, a phase 
II trial combing pSTAT3 inhibitor (napabucasin) with 
the anti-PD-1 antibody nivolumab in modulating TME 
is also processing in colorectal cancer (NCT03647839). 
Therefore, the therapeutic combinations of STAT3 and 
PD-L1 immune check point inhibition may pave way for 
the prospective immunotherapy.

Combing immuno/radio‑therapy and STAT3 
inhibition in breast cancer
Radiotherapy invokes immune-related responses in can-
cer by several mechanisms. A growing number of studies 
have revealed that radiation invokes several systemic bio-
logical responses, such as adaptive and innate immune-
related activities (T cells, macrophages, Tregs, NKs and 
CTLs) that affect tumor development [206–211]. In 
breast cancer, precise radiotherapy favors the local con-
trol of treated lesions and evokes the systematic antitu-
mor immunity of tumor-associated antigens (TAAs). For 
example, stereotactic body radiotherapy (SBRT) further 
enhanced major histocompatibility complexes (MHCs) 
expression and immune cells activity in breast cancer 
[211–214]. While Timaner et al. reported that radiother-
apy’s antitumor immune effects can be blunted by mech-
anisms of immune evasion and immune-suppression, 
such as radiation-mediated PD-L1 upregulation in the 
TME of breast cancer [215]. The irradiated tumor cells 
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also increase the secretion of immuno-suppressive fac-
tors that promote the infiltration of Tregs, MDSCs, and 
macrophages [216–218]. These mechanisms potentially 
limit the anti-tumor effects of radiotherapy. Of note, a 
better therapeutic strategy, radiotherapy in combination 
with immune checkpoint inhibition not merely improves 
the breast cancer therapeutic effect, but also induces 
abscopal immune responses outside the radiation field 
[215, 219]. However, the abscopal responses are rarely 
observed after radiotherapy alone [220]. To data, hetero-
geneity or complete lack of abscopal response reports in 
combing immuno/radio-therapy in breast cancer further 
hindered the ability to define the populations most likely 
to benefit [220]. Developing predictive biomarkers of 
treatment response and efficacy in clinically relevant pre-
clinical models is necessary.

Recently, tumor patients receiving standard radia-
tion therapy were benefited from STAT3 inhibition. The 
STAT3 inhibition in combination with radiation ther-
apy in tumors statistically reduced the radiation-related 
Tregs and MDSCs accumulation in the TME and fur-
ther improved the therapeutic effect [221]. In breast 
cancer, applying the niclosamide to block the STAT3 
overcame the radioresistance and significant increase of 
radiation-induced ROS, which offers an effective alter-
native approach for improving the breast cancer radia-
tion therapy [222]. Similarly, S3I-201 has been reported 
to suppress the radiation-induced STAT3 phospho-
rylation and increase the radiation-induced cell death 
in breast cancer [223]. STAT3 is multipotent regulator 
of both tumor cells and immune cells [30, 137, 224]. In 
addition, there is an evidence that indicates that T cells 
are indispensable for radiotherapy and STAT3 inhibi-
tion synergistic treatment, but the therapeutic efficacy of 
radiotherapy and STAT3 inhibition cannot preclude the 
bridge between T cells and myeloid cells [221]. Generally, 
Tregs depletion alone is not sufficient to orchestrate an 
anti-tumor immune response, because of deficient TAAs 
to attract effector T cells infiltration and killing func-
tions [225, 226]. Radiotherapy is well-suited for improv-
ing immunotherapy effect through distinct mechanisms, 
which exposes TAAs, boosts immune chemokines secre-
tion and enhances the diversity of the TCR repertoire 
of intratumoral T cells [212, 227, 228]. Moreover, it has 
been reported that in glioma, DCs antigen presentation 
and T cell effector functions are also enhanced upon 
combination of STAT3 inhibition and radiotherapy [229]. 
The survival time and immunological memory were both 
improved in the synergistic treatment group. Owing to 
the heterogeneity of breast cancer [230], single immuno-
therapy strategies are unlikely to achieve uniform, con-
sistent therapeutic responses among all patients. Immune 
clearance of a tumor is not determined by a solo immune 

cell population. Therefore, a rational approach to build 
upon the STAT3 target immunotherapy strategy such as 
radiation therapy, which might enhance the systematic 
antitumor immune responses and therapeutic effects in 
breast cancers.

Conclusions and future perspectives
Numerous studies support the role of STAT3 in immune 
cells and dictates the immunomodulatory effects to the 
TME of breast cancer. Activated STAT3 constitutively 
suppresses the CD4+/CD8+ T cells and DCs, and favors 
the MDSCs, Macrophages and Tregs, implying a key 
role in breast cancer progression, metastasis and immu-
nity. Here, we provided an outline of STAT3 function in 
immune cells of breast cancer TME, as well as their cas-
cade gene activation and clinical outcomes. The effects 
are complex and, in some cases, apparently discrepant. 
Most likely this could be explained by the differential role 
of STAT3 in various cell types and its participation in dif-
ferent intracellular pathways. Consistently, immune mod-
ulators generation has been described on the one hand as 
a mechanism of intercellular STAT3 induced TME decay, 
whereas on the other hand the role of immune cells sys-
tematic effect on breast cancer metastasis is influenced 
by STAT3. The resultant outcome reflects the intricate 
TME between tumor cells and immune cells with STAT3 
aberrant functions. Emerging evidence indicates that 
targeting STAT3 not merely improves the anti-tumor 
immunity in TME, but also enhances the immunotherapy 
effect, therefore rendering STAT3 as a promising thera-
peutic target. Of note, the radiotherapy in combination 
with STAT3 target immunotherapy might pave way to 
further improve types of TME immune cell accumula-
tion, systemic immune response and antitumor thera-
peutic effect. These avenues provide new opportunity for 
innovations towards advanced and/or metastasis breast 
cancer efficient immunotherapy.

In general, most of the immune cells intercellular 
STAT3 induce immunosuppressive effects and are thus 
tumor promoted. However, STAT3 has also been partly 
associated with DCs immune activation and IFN-γ secre-
tion and has anti-tumor properties. Nonetheless, which 
role of STAT3 determines the outcome is still unclear. 
Future studies also need to explore pros or cons of STAT3 
intervention in regulating immunological environment 
of breast cancer, especially tumor specific immune cells 
alteration. In this regard, it will be interesting to deter-
mine the diverse abilities of STAT3 in the context of TME 
regulation and systematic eradication of breast cancer.
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