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Abstract

Background: Mucopolysaccharidosis IVA (Morquio A syndrome) is a lysosomal storage disease caused by the
deficiency of enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS), which results in the accumulation of the
glycosaminoglycans (GAGs), keratan sulfate, and chondroitin-6-sulfate in the lysosomes of all tissues causing
systemic dysfunction. Current treatments include enzyme replacement therapy (ERT) which can treat only certain
aspects of the disease such as endurance-related biological endpoints. A key challenge in ERT is ineffective enzyme
uptake in avascular tissues, which makes the treatment of the corneal, cartilage, and heart valvular tissue difficult.
The aim of this study was to culture human umbilical mesenchymal stem cells (UMSC), demonstrate presence of
GALNS enzyme activity within the extracellular vesicles (EVs) derived from these UMSC, and study how these
secreted EVs are taken up by GALNS-deficient cells and used by the deficient cell’s lysosomes.

Methods: We obtained and cultured UMSC from the umbilical cord tissue from anonymous donors from the Saint
Louis Cord Blood Bank. We characterized UMSC cell surface markers to confirm phenotype by cell sorting analyses.
In addition, we confirmed that UMSC secrete GALNS enzyme creating conditioned media for co-culture
experiments with GALNS deficient cells. Lastly, we isolated EVs derived from UMSC by ultracentrifugation to confirm
source of GALNS enzyme.

Results: Co-culture and confocal microscopy experiments indicated that the lysosomal content from UMSC
migrated to deficient cells as evidenced by the peak signal intensity occurring at 15 min. EVs released by UMSC
were characterized indicating that the EVs contained the active GALNS enzyme. Uptake of GALNS within EVs by
deficient fibroblasts was not affected by mannose-6-phosphate (M6P) inhibition, suggesting that EV uptake by these
fibroblasts is gradual and might be mediated by a different means than the M6P receptor.

Conclusions: UMSC can deliver EVs containing functional GALNS enzyme to deficient cells. This enzyme delivery
method, which was unaffected by M6P inhibition, can function as a novel technique for reducing GAG
accumulation in cells in avascular tissues, thereby providing a potential treatment option for Morquio A syndrome.
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Background

Mucopolysaccharidosis IVA (MPS IVA, Morquio A
syndrome) is an autosomal recessive disorder charac-
terized by the deficiency of the lysosomal enzyme N-
acetylgalactosamine-6-sulfate ~ sulfatase =~ (GALNS).
Deficiency of this enzyme results in accumulation of
the glycosaminoglycans (GAGs), keratan sulfate (KS),
and chondroitin-6-sulfate (C6S) in lysosomes of tis-
sues [1]. The presentation of symptoms in Morquio A
varies based on the severity of the disorder. The ac-
cumulation of GAGs results in skeletal dysplasia in-
volving short stature, odontoid hypoplasia, scoliosis,
kyphosis, genu valgum, joint laxity, chest deformity
including pectus carinatum, and rib cage flaring.
Other manifestations include clouding of the corneas,
valvular disease of the heart [2], and increased carotid
intra-media thickness [3], which is a potential indica-
tor of atherosclerosis [4]. Those with a milder pheno-
type present with fewer clinical manifestations and a
longer life span [5-9]. Often Morquio A patients
undergo corrective orthopedic surgeries for the neck,
hip, and leg region, including cervical spine fusion,
corrective knee surgery for the knock-knee deformity,
and femoral or tibial osteotomies for straightening the
legs. These complications and surgeries often result in
those patients with severe phenotype not surviving
beyond the second or third decade of life [1, 5].

Traditionally, treatment of Morquio A syndrome has
been limited to management of symptoms and palliative
care; however, enzyme replacement therapy (ERT) using
recombinant human GALNS enzyme (rhGALNS) has
shown great advancements and promise. ERT involves
treating the patient by replacing the missing or deficient
enzyme with an intravenous infusion of the recombinant
enzyme [10]. Currently, Elosulfase alfa (Vimizim®) is the
ERT available for Morquio A syndrome, which received
EDA approval in 2014 [11]. Clinical trials have shown
that in some Morquio A patients the use of Elosulfase
alfa has maintained or improved the levels of certain
biological endpoints, such as the 6-min walk test [12,
13], which is in contrast to the decline observed in the
natural history of Morquio A [1, 14].

The use of ERT as a treatment for MPS disorders is
not without its shortcomings and challenges. While Elo-
sulfase alfa does show some improvement in patients’
endurance markers, challenges, and limitations still exist
with ERT for Morquio A syndrome. During clinical tri-
als, a small number of patients experienced adverse reac-
tions to ERT. Sixty percent of patients experienced at
least one hypersensitivity reaction, such as angioedema
or an anaphylactic reaction, and the most frequent reac-
tions were pyrexia or headaches. In addition, all patients
that underwent ERT developed antibodies to Elosulfase
alfa [12]. This presents a strong challenge for ERT over

Page 2 of 15

time, as Morquio A patients need immunosuppressors
to prolong its efficacy. One such regimen incorpo-
rated a pre-treatment with antihistamines and
antipyretics prior to infusion [15]. Recently, we dem-
onstrated induced immunosuppression in vivo by or-
ally administering rhGALNS or immunodominant
GALNS peptides prior to ERT. The study demon-
strated that oral tolerance induced a reduction in
both the humoral and cellular response to the GALN
S enzyme, increasing ERT efficacy [16].

A key challenge of ERT is the limited enzyme uptake
in avascular tissues, which makes it very difficult to treat
disease manifestations in the cornea, cartilage, and heart
valvular tissues [17, 18]. Earlier experiments found that
using intravenous rhGALNS ERT to treat Morquio A
mice not only showed little improvement in cartilagin-
ous tissues but also rapid clearance of enzyme from the
blood [19].

Stem cell therapy has been used to treat a wide num-
ber of conditions, including MPS disorders [20].
Hematopoietic stem cells therapy has previously been
used for Morquio A in Japanese patients [2, 21, 22]. The
first of these studies followed a patient who received
bone marrow transplant (BMT) to supplement the nor-
mal regimen of ERT. The study showed that, over the
course of 9 years, the patient’s white blood cells main-
tained a GALNS activity level of approximately 50% of
normal non-Morquio A individuals [21]. However, these
treatments present a set of limitations, such as increased
risk of mortality, which is mainly due to complications
from the procedure or from graft vs host disease. Previ-
ous attempts at BMT were unsuccessful, in part due to
being performed on terminal Morquio A patients [22].
In a more recent study, BMT was performed at a youn-
ger age and showed improvements in several phenotyp-
ical conditions, such as improved walking and reduced
skeletal dysplasia [22].

In addition to bone marrow [23], mesenchymal stem
cells (MSC) can be harvested from a variety of different
tissues. These tissues include endothelial tissue [24], adi-
pose tissue [25, 26], umbilical tissue [27], or even smaller
reservoirs such as the follicle or pulp of unerupted teeth
[28, 29]. MSC isolated from the umbilical cord, hereby
termed umbilical mesenchymal stem cells (UMSC), are
of unique interest to this study. UMSC present an at-
tractive treatment option for many reasons, such as ease
of acquisition, availability, and pluripotency. Unlike
MSCs derived from the bone marrow or adipose tissue,
the umbilical tissue is easily obtained through non-
invasive means and would otherwise be discarded as
medical waste [30].

As with other MSCs, UMSC have the ability to release
extracellular vesicles (EVs) [31], which contain thera-
peutic payloads that can facilitate the repair of local
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tissues [31, 32]. These EVs are heterogeneous in size
and composition, but can be generally classified into
two groups: exosomes and microvesicles. Exosomes
are small vesicles, usually 150nm in diameter or less,
that form within the multi-vesicular endosomes and
are released by exocytosis when the multi-vesicular
endosome fuses with the outer plasma membrane
[33-35]. By contrast, microvesicles are formed from
the plasma membrane itself, which buds off and de-
taches. As such, they are considerably larger than
exosomes, with most having a diameter of 200nm or
greater [35]. The use of EVs has been reported in a
variety of treatments, including Parkinson’s disease
[36], kidney repair [32], fibrosis of the liver [37], and
myocardial infarction [38]. EVs are immunomodula-
tory, and studies have shown that large amounts of
EVs are present in the tumor microenvironment [39].
More interestingly, EVs themselves do not induce an
immune response [40], and there is mounting evi-
dence that treatment with MSC-derived EVs can per-
form the therapeutic functions of MSC without
directly transplanting cells into the target tissues [41].
MSC-derived EVs have recently been used to treat
lysosomal storage diseases [42, 43], and improvements
in the corneas in MPS VII models have been demon-
strated [44, 45]. Given the avascular nature of the
cornea, the use of MSC-derived EVs could present a
potentially novel treatment option in Morquio A
patients.

In this study, we hypothesize that UMSC can restore
enzyme function in GALNS-deficient cells through the
release of EVs. To this end, we cultured UMSC and
demonstrated their ability to secrete active GALNS en-
zyme, as well as EVs containing GALNS. We have also
demonstrated that these secretions are taken up by
GALNS-deficient cells in an active form and used within
the cell’s own lysosomes.

Methods

Human samples

Anonymous umbilical mesenchymal stem cells were
donated by the St. Louis Cord Blood Bank, where
they were isolated and described previously [46, 47].
All UMSC in this study were isolated by collagenase
digestion and displayed the capability to differentiate
into osteogenic, osteogenic, and adipogenic lineages
[46], which are known features of UMSC [48, 49].
Morquio A fibroblasts were obtained from a de-
identified repository located at Saint Louis University.
The Institutional Review Board (IRB) at Saint Louis
University determined that our human subjects re-
search was exempt from a formal IRB submission due
to a lack of patient identifiers or protected health in-
formation (PHI).
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Cell culture

Unless otherwise specified, cells were seeded to an initial
density of 2000 cells/cm® Cells were grown in either
MEM-a supplemented with 15% fetal bovine serum or
in MesenPRO RS Mesenchymal Stem Cell media (Gibco,
New York, USA). Media was changed by replacing half
the volume every other day. At 80% confluence, cells
were harvested via trypsinization and re-seeded at the
above density to fresh plates for further expansion [46,
49]. Only stem cells between passages 2 and 10 were
used for experimentation.

UMSC surface marker phenotyping

We measured cell surface markers using the MACS
MSC Phenotyping Kit (Miltenyi Biotec, Bergisch
Gladbach, Germany) that measure expression of CD
90, CD73, and CD105, which are the accepted stand-
ard markers of MSC [50]. Briefly, two aliquots of 1.0
x 10° UMSC were suspended in 100pL culture media.
10 uL of MSC phenotyping cocktail was added to one
suspension; 10 pL of isotype control was added to the
second. Cells were labeled in the dark at 4°C for 10
min before rinsing with PBS and measured by FACS
sorting. FACS sorting was performed on a FACS
Canto II, using BD FACSDiva Software v6 (BD Bio-
sciences, New Jersey, USA). Visualization of these re-
sults was formed using FlowJo v10 (FlowJo LLC,
Oregon, USA).

Measurement of cellular GALNS activity

Cells were lysed using 50—100pL of 1% sodium deoxy-
cholate solution (Sigma, Missouri, USA). The primary
substrate used for GALNS enzyme activity assay was a
22-mM solution of 4-methylumbelliferyl B-D-galactopyr-
anoside-6-sulfate (4-MU Gal-6-S) [51]. GALNS activity
was measured as reported elsewhere [1]. Briefly, samples
were incubated with 4-MU Gal-6-S at 37°C, for 15 min.
Next, a secondary incubation with 10-mM f-
galactosidase at 37°C for 30 min was performed prior to
fluorometric analysis [51, 52]. All cellular enzyme activ-
ity was normalized to protein concentration of the
lysate.

Conditioned media

UMSC were grown using cell culture methods described
previously. Once 70% confluence was reached, the cells
were grown in media which was conditioned until the
cells reached 100% confluence. Media was collected and
concentrated by centrifugation in a centricon device
(Millipore, Massachusetts, USA) at a size of 30,000
NMWL at 3000rpm at 4°C for 15-20 min and immedi-
ately used for treatment [1].
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Mannose-6-phosphate-mediated uptake

To test the mediation of GALNS uptake in UMSC, cells
were seeded to a 12-well plate at a density of 5.0x10*
cells/well. For all cells, media was supplemented with
2000 units GALNS/mL. Experimental groups were sup-
plemented with 2-mM mannose-6-phosphate. Cells were
incubated for 5h or 24h before lysis and measurement of
enzyme activity [1].

Co-culture of UMSC with deficient fibroblasts

For co-culture, 2.0 x 10° fibroblasts/well were each
seeded to 12-well plates. UMSC were seeded to the in-
terior of 1.0-um PET transwell inserts (Millipore, Massa-
chusetts, USA) at a density of 3.4x10* cells/insert. When
co-culture was performed for confocal microscopy, cells
were grown in cover glass 12-well plates or seeded to
co-culture slides (Ibidi, Bavaria, Germany). For concen-
tric co-culture slides, the outer 8 surrounding minor
wells were seeded with feeder cells (UMSC), with the re-
cipient cells (Morquio A deficient fibroblast) seeded to
the central minor well. All cells were seeded at a density
of 7.0x10% cells/minor well [53].

Isolation of extracellular vesicles from UMSC

Extracellular vesicles (EVs) were isolated by differential
ultracentrifugation at 4°C, as described by Li et al. [54].
Briefly, UMSC were grown to 70% confluence. Cells
were grown in serum-free media, which was conditioned
as cells grew from 70 to 100% confluence. Conditioned
media was centrifuged at 300rcf to pellet any loose cells
from the media. Next, the supernatant was collected and
spun down at 10,000rcf to pellet any remaining cell deb-
ris. The supernatant was again collected and sterile fil-
tered through a 0.22-uym membrane. The filtrate was
then spun down via ultracentrifugation at 100,000rcf for
90 min, and the supernatant was removed. Pellet was re-
suspended in PBS at 1:1000 volume of the original
filtrate.

Cellular organelle labeling

Cells were seeded 1 day prior to co-culture. Immediately
before co-culture, UMSC were stained with Lysotracker
Red DND-99 (Invitrogen, California, USA). Briefly, the
culture media was removed from the cells and replaced
with MesenPRO RS containing 50-nM lysotracker dye.
All non-stained cells received fresh media. Cells were in-
cubated at 37°C for 1h. Next, cells were washed three
times with fresh culture media prior to co-culture.
Hoechst 33342 nuclear stain was done using NucBlue
Live Cell Stain (Thermofisher, Massachusetts, USA) im-
mediately before imaging, as recommended by the
vendor [44].
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Confocal microscopy

Co-cultured cells were imaged on a Leica SP8 TCS
STED 3X. Cells were imaged at x50 magnification every
5 min over a period of 150 min. Lysotracker red fluores-
cence and nuclear staining were measured. Images were
collected using the Leica LAS X analysis software (Leica
Microsystems, Wetzlar, Germany). Images were
exported and recompiled in Image] software [55].

Enzyme collection and purification

Enzyme was collected from CHO cells modified to con-
stitutively express active thGALNS and then purified as
described previously [1, 52]. Briefly, CHO cells were
grown to confluence before culturing in Ex-Cell Serum
Free Media (Sigma, Missouri, USA). Cell media was col-
lected, dialyzed, concentrated, and purified by ion ex-
change (CM sepharose) and size exclusion (S-300 and S-
100 columns) chromatography. Purity was confirmed by
SDS-PAGE and measuring specific activity. Pure enzyme
fractions were concentrated, and the final product was
aliquoted and stored at —-80°C.

Western blot analysis

Extracellular vesicles were isolated as described above.
EVs were lysed in 1% sodium deoxycholate solution.
125ug of sample lysate was loaded onto a 12.5% SDS-
polyacrylamide gel. Next, samples were blotted to a
PVDF membrane at 100V for 90 min at 4°C. The mem-
brane was blocked in TBST solution containing 5% dry
milk for 1 h at RT before probing with antibodies over-
night at 4°C [56]. Primary antibodies used were a mouse
a-actin (Cell Signaling Technology, Massachusetts, USA)
at a 1:1000 dilution and a mouse a-GALNS at 1:1,000,
000 in 5% dry milk solution [57]. Both primary anti-
bodies were probed with the same secondary antibody,
an HRP-conjugated goat a-mouse IgG (Cell Signaling
Technology, Massachusetts, USA) for 1 h at RT.

Statistical analysis

Statistical analysis was performed in SPSS 23 (IBM SPSS
Inc., Chicago, USA). Unless otherwise noted, treatments
were conducted in triplicate. Measurement of each treat-
ment was also measured in triplicate. All enzyme activity
data collected from cellular lysates were normalized by
protein concentration. Means were compared by inde-
pendent 2-tailed unpaired ¢ test with Welch’s correction.
Significance was defined as a p value less than 0.05.

Results

UMSC surface markers exhibit MSC phenotype

Given the nonselective nature of MSC isolation and the
heterogeneity of isolated populations [58], we confirmed
that the UMSC possessed the mesenchymal phenotype.
We first labeled the cells with markers specific to
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different stem cell types. The cells displayed the stem
cell markers CD90, CD73, and CD105 (Fig. la—c). In
contrast, the cells did not display the hematopoietic stem
cell markers CD14, CD20, CD34, or CD45 (Fig. 1d).
These results suggest that the cells in culture are adult,
somatic stem cells and that they do not have a
hematopoietic stem cell phenotype. This evidence indi-
cates that the cells in culture are mesenchymal stem
cells.

Inhibition of GALNS uptake by mannose-6-phosphate

We tested the ability for UMSC to uptake rhGALNS
when compared to GALNS-deficient fibroblasts. We cul-
tured both UMSC and GALNS-deficient fibroblasts
using rhGALNS-supplemented media. To evaluate
whether rhGALNS uptake was facilitated via the
mannose-6-phosphate (M6P) receptor [1, 59], we also
cultured both UMSC and deficient fibroblasts in the
presence or absence of M6P. After 5 or 24 h of culture,
we observed a fourfold increase in GALNS uptake in
UMSC, compared to the twofold increase in fibroblast
uptake. In addition, we found that M6P inhibited the up-
take by UMSC by 95% (Fig. 2a). Next, we co-cultured
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fibroblasts could uptake the GALNS released from the
UMSC into the culture media, as shown in (Fig. 2b).
The specific activity of treated fibroblasts was normal-
ized to untreated ones. Initially, co-cultured cells showed
reduced activity. However, co-cultured cells had 25%
more activity than in untreated fibroblasts by days 3 and
5. This increased activity returned to baseline by 7 days.
Based on these observations, we conclude that co-
culturing deficient cells with UMSC displays improved
GALNS activity.

Transfer of lysosomes from UMSC to deficient cells

in vitro

To confirm the movement of lysosomal content from
UMSC to fibroblasts, we labeled UMSC with lysotracker
red, which targets low pH organelles such as lysosomes.
After labeling UMSC, we co-cultured them with defi-
cient fibroblasts and monitored transfer of lysotracker-
positive organelles from UMSC to deficient fibroblasts.
We observed that the positive-labeled UMSC—here la-
beled as “feeder cells”"—showed a strong lysotracker
presence prior to co-culture. Within 10 min of co-
culture, UMSC-derived lysosomes had migrated and
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lysosomes rapidly accumulated within the deficient cells,
peaking in intensity at 15 min, before the signal began to
decrease after 20 min of co-culture (Fig. 3).

UMSC-derived extracellular vesicles contain active GALNS
enzyme

To identify the mechanism through which the GALNS
enzyme is delivered from UMSC to deficient fibroblasts,

as well as to prove the transmission of cellular material,
we isolated and characterized the UMSC-derived extra-
cellular vesicles (EVs), whose release had been previously
observed in treating other disease models [44]. After the
isolation of EVs, we measured the enzyme activity of
two lysosomal enzymes GALNS and pB-glucuronidase
(GUSB). We detected GALNS activity in the EV isolate,
and we observed high levels of GALNS activity after the
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Fig. 3 Co-culture of UMSC reveals transfer of material to deficient cells. Lysosomes (red) originating from Hoechst labeled UMSC feeder cells
(green) were fluorescently labeled with Lysotracker Red prior to co-culture with Hoechst labeled fibroblasts (blue). This signal gradually increases
within the fibroblasts during co-culture with the stained feeder cells, reaching a maximum at 15 min, before gradually declining at 20 min
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EVs were lysed in a detergent based solution (i.e., deoxy-
cholate) when compared to cells lysed via mechanical
disruption (i.e., sonication) (Fig. 4a). This suggested that
the latent GALNS was contained primarily within the
EVs. We noted a similar pattern when assaying GUSB
from the partially or completely lysed EVs (Fig. 4b).

UMSC-EVs contain a heterogeneous mixture of
microvesicles and exosomes

EVs are heterogeneous in size and surface markers. They
can be separated into two main categories: exosomes
and microvesicles. Analysis of EVs by FACS sorting re-
vealed two distinct populations when accounting for
side-scatter. The high side-scatter population consisting
of 48.6 + 7.1% of all instances, while the lower side-
scatter accounted for 24.5 + 4.4% of all instances (Fig.
5). We labeled the EVs with fluorescent antibodies spe-
cific to exosomes (CD53, CD151), microvesicles (PECA
M1, CD14, CD11a), or both (CD9). We then identified
populations of each vesicle type by FACS scanning. The
population of EVs that were isolated showed a slight
rightward shift in the exosome markers CD53 and
CD151 (Fig. 5a,b). There was also a marked shift in the
presence of PECAM1 signaling, a microvesicle marker,
with a smaller shift in CD14 (Fig. 5c,d). When we la-
beled the EVs with antibodies targeting antigens present
in both exosomes and microvesicles, we found a similar
pattern. There was no apparent shift indicating the pres-
ence of CD11a (Fig. 5e); however, we observed a signifi-
cant increase in CD9+ vesicles (Fig. 5f). These results
suggest that the EV isolation contains a heterogeneous
mixture of both microvesicles and exosomes.

UMSC-EVs facilitate GALNS uptake by Morquio A deficient
cells

We next tested the ability for Morquio A deficient fibro-
blasts to uptake the latent GALNS found within EVs.
While we had shown that GALNS contained within iso-
lated EVs included active GALNS enzyme, we still
needed to determine if it could be delivered to deficient
cells. In addition, we checked whether M6P receptor
plays a role in the EV uptake or not. We observed a sig-
nificant uptake of purified rhGALNS when supple-
mented into culture medium at high concentrations
reaching a peak at 24h. This uptake was reduced by
M6P competitively inhibiting the binding of GALNS to
the M6P receptor at 5h, 24h, and 48h (Fig. 6).

After 5h, 24h, and 48h of treatment with UMSC-EVs,
we found a subtle increase of GALNS uptake by defi-
cient cells, which was comparable to the values from
cells treated with low concentrations of rhGALNS en-
zyme. After administration of M6P, there was no notice-
able change in the levels of the uptaken enzyme
indicating that there was no inhibition by M6P. This can
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be explained by the fact that there is no saturation of the
M6PR due to the low and gradual amounts of GALNS
enzyme that was uptaken or that the EVs containing
GALNS are uptaken by a different means than the M6P
receptor (Fig. 6).

UMSC release of GALNS-carrying EVs across multiple
passages in vitro

We suspected that UMSC of later passages might release
EVs at a different density or that EVs would have a dif-
ferent level of GALNS activity. We isolated EVs from
high and low passage UMSC and measured the amount
of active GALNS present. Our original hypothesis would
be that high-passage UMSC would produce fewer EVs,
or less overall GALNS enzyme, when compared to
lower-passage UMSC. However, after isolation and
complete lysis of the EVs from their respective cell pas-
sages, we did not observe any significant detrimental
changes in GALNS activity up to passage 10. To confirm
this finding, we performed western blot of the UMSC
and fibroblasts lysates, using a monoclonal antibody
against GALNS. We confirmed the presence of GALNS
enzyme in both cells. Next, we blotted the lysate from
purified EVs and tagged for GALNS. We found that,
while a large amount of EV lysate was needed to detect
the GALNS protein, it was still present in EV lysates
from early and late passage UMSC (Fig. 7a—c).

Stable transfection of UMSC overexpress GALNS enzyme
Finally, we performed stable transfection to explore the
ability of UMSC to overexpress high amounts of GALNS
enzyme. After three rounds of clone selection, we found
two clones [1-8 and 2-6] that had over 200% higher ac-
tivity than non-transfected cells (Fig. 8a,b). This finding
provides a new tool that can be used in conjunction with
the EVs for potential treatment.

Discussion

Mesenchymal stem cells have been the subject of many
therapeutic treatments. Of interest are UMSC, due to
the ease of accessibility and differentiation potential. For
this study, we worked with the St. Louis Cord Blood
Bank, who had previously isolated UMSC from donor
umbilical cords [46]. Given the heterogeneity of isolated
MSC cultures, we looked at the cell surface composition
to confirm the presence of MSC within our isolates. We
found that the isolated UMSC showed the markers
CD90, CD73, and CD105 which are the accepted
markers of mesenchymal stem cells derived from various
tissues, including umbilical tissue [50, 60]. However,
mesenchymal stem cells are also described as lacking a
number of other markers, such as CD11b, CD14, CD34,
or CD45 [50]. We have demonstrated that our UMSC
lack the markers CD14, CD34, or CD45. In addition,
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Fig. 6 Uptake of GALNS within EVs is more gradual and unaffected
by M6P inhibition. Deficient fibroblasts were cultured in 2000 U
GALNS (+GALNS) in the presence or absence of M6P (blue bars).
This showed a strong increase in GALNS enzyme activity through
the initial 24 h before declining, and this GALNS activity was
inhibited by M6P. Deficient fibroblasts cultured in GALNS with an
activity equal to those found in EVs (+LowGALNS) (purple bars) as
well as UMSC-derived EVs (+EVs) (red bars) had a GALNS activity
increase, though not significant at 24 h. Treatment of Morquio A
deficient fibroblasts with UMSC-derived EVs or small amounts of
GALNS showed steady slight increase up to 48 h, and this increase
was not inhibited by M6P, suggesting a more gradual uptake.
Deficient Morquio A fibroblasts without addition of exogenous
GALNS (black bars). Error bars: mean + SD. (*P < 0.05, ***P < 0.001,
two-tailed unpaired t test with Welch's correction)

they lacked the marker CD20, a marker of mature B cells
[61], which would indicate a hematopoietic lineage. An-
other requirement of MSC is the ability to show triline-
age mesodermal differentiation potential (adipogenic,
chondrogenic, and osteogenic) [50], which was demon-
strated previously in the UMSCs used in this study [46].
Therefore, we concluded that our UMSC culture is a
population of stem cell of non-hematopoietic origin.

Treatment of Morquio A deficient cells with GALNS
enzyme involves uptake of free-available GALNS. This
uptake is facilitated by the M6P receptor [1], a common
receptor target for lysosomal proteins [59, 62]. We
tested the hypothesis that UMSC follows this same path-
way by treating UMSC with GALNS in the presence and
absence of M6P. The UMSC lysates showed an increase
in activity from 5 to 24 h of culture with GALNS in so-
lution, which indicated uptake of the enzyme over time.
This uptake was competitively inhibited by 95% in the
presence of M6P, indicating that UMSC uptakes GALNS
exclusively through the M6P receptor. Previous studies
have demonstrated M6P-mediated inhibition of GALN
S ranging from 90 to 99% [1, 63]. There is evidence
of other enzymes being released from stem cells [64,
65], with one study suggesting release from UMSC
[44], so we tested UMSC-conditioned media for any
indication of GALNS release. We found trace
amounts of active GALNS in UMSC-conditioned
media, which was more prominent after concentrat-
ing. This confirmed that active GALNS is among the
releasate of UMSC. These results provide direct evi-
dence of the enzyme presence in the releasate rather
than uncharacterized content release [44].

With evidence that UMSC released active GALNS, we
tested whether deficient cells would benefit from this re-
lease. For this purpose, we grew deficient cells in the
presence of UMSC. Initially, there was no increase, but
over time GALNS activity in the deficient fibroblasts im-
proved in the presence of UMSC. This suggests that the
GALNS-containing releasate from UMSC was the source



Flanagan et al. Stem Cell Research & Therapy (2021) 12:276

of GALNS enzyme that resulted in increased GALNS ac-
tivity within deficient fibroblasts. To understand whether
there was any evidence of active enzyme transported from
UMSCs within organelles, we labeled lysosomes within
UMSC and co-cultured them with deficient Morquio A fi-
broblasts. We observed that over time these UMSC-
derived organelles emerged within the deficient cells. This
signal from the organelles appeared to fade rapidly (after
20 min). We attribute this to photobleaching of the dye,
rather than to the actual loss of the organelles from the
deficient cells, which we observed happened quickly dur-
ing our initial imaging of the feeder cells.

Organelle transport has been studied in the past. How-
ever, the vast majority of this documented transport has
been observed through the use of tunneling nanotubes.
Many of these studies focus on the transport of mito-
chondria from MSC [66—68]. The transfer of lysosomes
though tunneling nanotubes has been demonstrated in
macrophages but not in MSCs [69]. In our study, we did
not investigate the possible formation of tunneling nano-
tubes due to the co-culture methods used since they
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utilize physical barriers between cell populations, which
prevent this form of cell communication.

A significant portion of recent MSC therapy research
has revolved around the ability of MSC to release EVs
[70-72]. Our experiments have thus far shown that
UMSC secretes active GALNS and that deficient cells
can uptake the released enzyme in vitro. After observing
the transfer of organelles from UMSC to deficient cells,
we suspected that their release might be facilitated
through EVs. Using differential ultracentrifugation [54],
we isolated the EVs released from UMSC. Earlier studies
have shown that these MSC-derived EVs contain a var-
iety of molecules including growth factors, nucleic acids,
microRNAs, and enzymes, which are enveloped by the
membrane of these vesicles [73-76]. We found that sus-
pending the EVs in lytic solutions or sonicating them
would result in higher enzyme activity than those sus-
pended in PBS. From there, we concluded that the low
activity of non-lysed vesicles was due to the EVs encap-
sulating the enzyme, restricting its access to substrate
when assaying.
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Fig. 7 Isolation of EVs from higher-passage UMSC does not yield reduced GALNS activity. EVs were isolated from p6 and p10 UMSC, lysed, and

measured for protein-normalized activity. The change in activity from p6 to p10 was not statistically significant (P=0.33) (a). Additionally, western
blotting of lysates showed the GALNS enzyme present in both early and late passages (b). Signal normalized with actin showed equal intensity

(c). Error bars: mean + SD
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We also wanted to characterize the composition of the
EVs released by UMSC. While many publications de-
scribed the vesicles as exosomes [36, 37], we have re-
ferred to the EVs isolated as a mixture of exosomes and
microvesicles [54]. Not only do microvesicles and exo-
somes vary in size, but they are also formed in different
locations within the cell. Since exosomes are formed
within multivesicular endosomes [34] and microvesicles
are formed by the budding and shedding of the plasma
membrane [35, 77], it stands reason that these vesicles
would display different sets of markers on their surfaces.
The surface of both types of EVs display different tetra-
spanins, with exosomes displaying CD53, CD9, and
CD151 and microvesicles displaying CD9, CD14, LFA1
(CD11a), and PECAM1 [35]. By staining our EV isolate
and performing FACS sorting, we could determine that
our isolate contains a mixture of both exosomes and
microvesicles. The strongest response was CD9 staining,
which is present in both populations. One of the major
challenges of this experiment was the low incident num-
ber. Further experimentation will be to determine the
quantitative ratio of exosomes to microvesicles, as well

as determine which vesicle best serves as the vehicle for
GALNS delivery.

After demonstrating that UMSC were capable of re-
leasing GALNS-containing EVs, we next needed to show
that they could facilitate uptake by deficient cells. While
a complete picture of the mechanisms of EV uptake is
not known, some pathways have been discovered. In
most cases, uptake is shown to occur through endocyto-
sis, but the mechanisms of endocytosis are not universal
[78, 79]. For example, some cases of exosome uptake
have been shown to occur via the Syndecan-syntenin-
ALIX pathway [80]. Thus, we suspected that uptake
might be through a different mechanism when com-
pared to freely available GALNS. To test this, we re-
peated our M6P inhibition experiment using deficient
fibroblasts and varying doses of GALNS or EVs. While
we found that a 2000U dose of GALNS was the most ef-
fective dose, this improvement in fibroblasts was short-
lived and began declining after 48 h. When treating with
isolated EVs or a comparable dose of freely available
GALNS, we noticed an improvement that, while low,
was more consistent over the 48-h period. In addition,
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we did not observe significant changes of enzyme activ-
ity or inhibition after the addition of M6P. The full pic-
ture of EV uptake is far from complete. In addition to
the mechanisms mentioned earlier, other mechanisms of
uptake include clathrin-independent phagocytosis medi-
ated by Flotillin-1 [81], phagocytosis [82], and even fu-
sion with target cell membrane [83]. Our results
eliminate one potential pathway of uptake, but further
research is needed to elucidate the method of EVs up-
take by Morquio A deficient fibroblasts.

The amount of GALNS present in our EV isolates has
been extremely low. Further experiments to test the effi-
cacy of GALNS uptake would require EVs with higher
GALNS content. To accomplish this, we transformed a
line of UMSC to constitutively express the GALNS en-
zyme. Similar techniques had been used previously, such
as overexpressing erythropoietin to treat ischemia. How-
ever, this transfection was not stable [84]. Transfection
of MSC, particularly stable, non-viral transfection, has
not yet been perfected. Additionally, this transfection
loses efficacy in vitro over repeated passages of MSC
culture [85]. Finally, transfection by lipofection can be
very inconsistent, and one group can demonstrate 20%
efficacy [85], while another can only transform 7% under
the same conditions [86]. We found two clones that
have over 200% higher enzyme activity offering a prom-
ising treatment approach. Another strategy to increase
enzyme activity that will be explored in the future is to
isolate EVs from unmodified UMSC and use sonication
or permeabilization to enrich the EVs with GALNS [87].

As non-embryonic stem cells, a major challenge when
working with MSC is the loss of their “stemness” over
time, a trait which is largely dependent on the tissue of
origin [88-90]. While UMSC maintain their qualities
longer than those isolated from other tissues [91], the ef-
fect is not indefinite. When we compared activity of EVs
isolated from early-passage (p6 or earlier) to later pas-
sages (passages after p10) UMSC, we found that late-
passage continued to produce GALNS-containing EVs.
This continued functionality was consistent with previ-
ous findings [46, 92]. Further in vitro experimentation
would need to be conducted to determine when the loss
of this capability occurs.

Conclusions

In conclusion, UMSC can deliver functional GALNS en-
zyme to deficient cells in vitro. This delivery, facilitated
by EVs, presents a novel method for reducing the accu-
mulation of GAGs within these cells. EVs contain many
components, including active GALNS, which can be
uptaken and subsequently used in deficient cells. This
uptake process is not dependent on the presence of the
UMSC, and unlike current treatments is not reliant on
the M6P receptor. Further research is needed to
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determine the optimal methods of EV enrichment for
treatment, as well as expansion of treatments into an
in vivo model.
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