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Abstract

Gene networks for disorders of social behavior provide the mechanisms critical for identifying therapeutic targets and
biomarkers. Large behavioral phenotypic effects of small human deletions make the positive sociality of Williams syndrome
(WS) ideal for determining transcriptional networks for social dysfunction currently based on DNA variations for disorders
such as autistic spectrum disorder (ASD) and schizophrenia (SCHZ). Consensus on WS networks has been elusive due to the
need for larger cohort size, sensitive genome-wide detection and analytic tools. We report a core set of WS network
perturbations in a cohort of 58 individuals (34 with typical, 6 atypical deletions and 18 controls). Genome-wide exon-level
expression arrays robustly detected changes in differentially expressed gene (DEG) transcripts from WS deleted genes that
ranked in the top 11 of 12 122 transcripts, validated by quantitative reverse transcription PCR, RNASeq and western blots. WS
DEG’s were strictly dosed in the full but not the atypical deletions that revealed a breakpoint position effect on non-deleted
CLIP2, a caveat for current phenotypic mapping based on copy number variants. Network analyses tested the top WS DEG’s
role in the dendritic spine, employing GeneMANIA to harmonize WS DEGs with comparable query gene-sets. The results
indicate perturbed actin cytoskeletal signaling analogous to the excitatory dendritic spines. Independent protein–protein
interaction analyses of top WS DEGs generated a 100-node graph annotated topologically revealing three interacting
pathways, MAPK, IGF1-PI3K-AKT-mTOR/insulin and actin signaling at the synapse. The results indicate striking similarity of
WS transcriptional networks to genome-wide association study-based ASD and SCHZ risk suggesting common network
dysfunction for these disorders of divergent sociality.

Introduction
Human complex diseases involving cognition and behavior,
such as autistic spectrum disorder (ASD) and schizophrenia
(SCHZ), remain a major challenge for translational neuroscience.
Regardless of effect size, the risk or causative gene is rarely the
adult therapeutic target, and core gene networks are required to
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identify and link intermediate gene expression traits to active
deficits. However, for the vast majority of gene-based risks
whether defined by the genome-wide association study (GWAS)
or genome copy number variants (CNVs), there are no examples
of genes whose expression is correlated with the cognitive and
behavioral outcomes of individuals carrying the gene variants.

https://academic.oup.com/
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As a result, despite ample research in animal and cellular models
(1,2), there are few scalable gene-based outcomes and as yet,
no effective treatments. Understanding how CNVs influence
human phenotypes associated with ASD and SCHZ may help to
define the developmental and adult mechanisms that translate
gene dosage into perturbations of genetic pathways that then
affect complex traits. In this report, the focus is on scalable
downstream transcriptional consequences rather than the non-
scalable upstream chromatin regulation (3) to which they may
be related. Williams syndrome (WS, OMIM #194050) provides
a unique opportunity to understand common, devastating
behavioral conditions such as ASD (4), in that its hemizygous
deletion of a small number (∼28) of genes causes consistent
cognitive social–emotional conditions, typically gregarious
behavior (5) but also, paradoxically, ASD (6–10). Although a
number of deleted WS genes (e.g. GTF2I (encoding TFII-I),
GTF2IRD1, LIMK1, FZD9 and BAZ1B) have been implicated by
DNA copy number in deficits associated with visual–spatial
construction, social approach, myelination, brain structure
and electrophysiology (3,11–18), the molecular perturbations
that connect genotype to phenotype in WS remain largely
unspecified (14). Consequently, the causal mechanisms are
unknown and there is no evidence relating gene expression
of deleted or non-deleted genes to individual cognitive or
behavioral phenotypes.

The initiating event for a network perturbation caused by
genomic CNVs is a cis-acting dosage effect at the transcript level.
Although specialized mechanisms exist in sex chromosomes,
that compensate and alter a gene’s transcript level from a strict
relationship to DNA copy number, such dosage compensation is
not known in human autosomal aneuploidies. The consequence
is that the subtle changes in DNA copy number alter transcript
levels of the CNV as well as genome-wide transcripts and result
in cognitive and behavioral disorders (19–21). At a genome-
wide level, the impact of CNVs on heritable gene expression
traits explains only ∼20% of the cis-acting transcript variation
in human lymphoblastoid cell lines (LCLs) (22), emphasizing the
role of trans effects on regulating transcript levels. Similar con-
clusions derive from genome-wide analyses of multiple tissues
from inbred mice suggesting that CNVs contribute both to cis-
acting and trans-acting perturbations of regional gene expres-
sion (23). However, identifying how thousands of perturbations
represent a coherent set of networks has been difficult for at
least three reasons, the lack of a target set of loci required by high
precision techniques such as quantitative reverse transcription
PCR (qRT-PCR), the need for unbiased genome-wide analyses
capable of showing the precision necessary to measure the
subtle (<2-fold) transcript perturbations associated with CNV’s,
and the need for an adequate number of independent samples
that share a given CNV. Consequently, in order to understand the
biology of WS, alternative approaches that are both robust and
quantitative are necessary to determine the core set of genome-
wide network disturbances induced by human pathologic CNVs,
the goal of this report.

Multiple studies of WS genetic and metabolic network distur-
bances have revealed a spectrum of differently expressed genes
(DEGs) that reflect valid differences between small comparison
groups or the effects of single genes in cell culture systems (24–
28). Although WS and downstream genes are involved in chro-
matin dysregulation, they have not converged on a common core
of network perturbations, nor have they established the rela-
tionship of cellular gene expression to cognitive or behavioral
outcomes in single individuals. Therefore, to fill the need for a
core set of networks for human social behavior, we increased

sensitivity, specificity and reproducibility by increasing cohort
size ∼3-fold, and utilized exon microarrays followed by qRT-
PCR as a sensitive approach for determining dosage effects at
genome-wide levels. RNA-seq has become a method of choice
for expression analysis but for the goal of the current study in
the service of network perturbations, quantitation derived from
the well-worked out and highly internally controlled exon arrays
used for quantitative gene expression (29), validated by single
sample and pooled qRT-PCR, can obviate the technical biases
of Log2 comparisons in RNA-seq data for length, GC content
and normalization strategies. Finally, to parse the contribution of
specific WS genes through core network perturbations to asso-
ciated phenotypes, networks were determined employing rare
humans with partial deletions and phenotypic outcomes. The
results indicate a shared perturbation of the networks involving
the IGF1-PI3K-AKT-mTOR (insulin) signaling and proteostasis
stress pathways, as well as MAPK and actin cytoskeleton sig-
naling in WS, reminiscent of those for ASD. Moreover, genetic
analyses reveal a position effect on non-deleted CLIP2 expres-
sion, specify genes ABHD11 through CLIP2 as sufficient for actin
network dysregulation, and establish critical cohort criteria for
rigorous network inferences in neurodevelopmental disorders.

Results
Exon arrays define differentially expressed exons and
DEGs in WS

To maximize the ability to identify a common core set of WS
networks, we tripled the sample size of previous reports (19,24–
27) to 34 WS patients and 18 controls, and utilized a sensi-
tive, quantitative, validated genome-wide approach for tran-
scriptional profiling employing the Affymetrix HuEx-1_0-st-v2
exon arrays (∼1.4 million probe sets), and analyzed these at
the exon and whole gene levels. The raw data were normalized
and background filtered, yielding summary values for 313 717
exons that were included in the initial analysis. When assessed
used a moderated t-statistic, genome-wide differential expres-
sion at the exon-level yielded a prominent cluster of differen-
tially (under-) differentially expressed exons (DEEs) mapping to
the WS region on chromosome 7 (Fig. 1A). Moreover, 95 of the top
100 genome-wide DEEs and 157 of the top 250 DEEs mapped to
the WS deletion and flanking regions shown in Figure 1B and C
and Table 1 reflecting the sensitivity and consistency of the
dataset. Figure 1D shows the heat map of exon-level expression
data in each individual WS subject for the 13 DEG’s of typical
deletions, confirming previous work (19,30).

We next asked whether differences in genome-wide exon
expression were reflected at the gene level. Comparing WS with
controls, the results revealed a genome wide distribution of DEGs
whose levels were subtly perturbed to the same or a lesser
degree as the deleted genes (Fig. 1A and Supplementary Material,
Table S3). Of the top 673 non-WS DEGs (the false discovery
rate [FDR] < 0.2), 41% were decreased, and 59% were increased
in expression. Table 1 shows gene-level differences for 13 of
the 27-known WS protein-coding genes are the most consis-
tently decreased DEG’s among the 16 509 detected (gene-level
FDR < 0.01). Further, the first 11 DEGs are from the WS region
(ranked by moderated t-statistic), despite their modest (<2) fold
change. Two further WS region genes, DNAJC30 and ABHD11,
ranked in the upper 22 DEGs, while the other 11 (except NCF1)
WS genes including STX1A, were among the lowest expressed of
the WS genes and showed no evidence for differential expres-
sion. As previously shown (19,30), neither GTF2IRD1 nor NCF1,

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab041#supplementary-data
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Figure 1. Manhattan plot of genome-wide differential expression in lymphoblastoid cells. (A) −log10 q-value (the adjusted P-value using the Benjamini–Hochberg

method) by chromosomal location for 304 572 detected exons from 34 WS subjects with typical deletions versus 18 controls. (B) RefSeq track at chr.7: 68 500 000–

78 500 000 (Hg18) with differentially expressed transcripts (see Table 1) shown in green. (C) Exon-level differential expression in this chromosome 7 region for 34 WS

subjects with typical deletions. The dashed line is at a FDR value of 0.05 (−log10 q-value = 1.3), such that the expected proportion of false discoveries in exons above

this threshold is controlled to be less than 5%. (D) Individual exon-level relative intensities for 13 differentially expressed genes plus three genes (STX1A, GTF2IRD1

and NCF1) without gene-level evidence of differential expression (see Table 1). Exons are binned in chromosomal order by gene (columns) and by individual (rows) for

18 controls and 34 typical WS deletions.

were decreased. Finally, we examined whether array perfor-
mance could be calibrated for detection by measuring transcript
abundance with mRNA sequencing (RNA-Seq) (Supplementary
Material, Table S4). We applied a threshold of 10 RNA-Seq reads
per transcript as a digital detection filter gene-level summary to
derive a conservative list of 12 122 detected transcripts, and used
these for differential expression correlated with the WS phe-
notype (Supplementary Material, Table S3). In summary, anal-
yses at genome wide levels identified the WS deleted genes,
their transcripts and exons as the top differentially expressed

elements (DEEs 55 out of 313 717; Supplementary Material, Table
S2) and DEGs (11 out of 12 122, Supplementary Material, Table S3)
validating the sensitivity and specificity of the dataset.

qRT-PCR and western blots validate exon microarray
results

To validate the average fold change found in array gene-level
summaries, we used qRT-PCR from both unpooled and pooled
RNA of the study cohort, followed by western blots to validate

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab041#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab041#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab041#supplementary-data
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Table 1. Differential expression of genes and exons in the WS chromosome region

Gene symbol Gene ranka Fold change (log2) Gene-level FDR Top exon rank # of Exons at FDR < 0.05b

LAT2 1 −0.83 7.58E-14 3 16 (18)
BCL7B 2 −0.88 5.88E-12 8 8 (10)
LIMK1 3 −0.89 9.93E-12 14 16 (20)
CLIP2 4 −0.97 2.10E-10 19 16 (19)
GTF2I 5 −0.78 4.62E-10 23 38 (65)
NSUN5 6 −0.70 9.33E-10 33 9 (34)
TBL2 7 −0.82 1.47E-09 29 7 (13)
RFC2 8 −0.77 3.08E-09 38 10 (13)
BAZ1B 9 −0.78 3.83E-08 24 29 (36)
WSCR22 10 −0.62 1.19E-07 55 10 (12)
EIF4H 11 −0.77 1.21E-07 1 9 (13)
DNAJC30 15 −0.56 4.84E-04 274 1 (3)
ABHD11 24 −0.50 4.11E-03 317 1 (6)
MLXIPL 1263 −0.25 0.26 25 641 0 (8)
VPS37D 2834 0.16 0.36 n.d. 0 (0)
GTF2IRD2 3430 −0.15 0.40 41 258 0 (20)
WSCR28 4853 −0.12 0.49 n.d. 0 (0)
ELN 4868 −0.09 0.50 38 429 0 (20)
CLDN3 8798 0.06 0.70 209 408 0 (1)
WSCR27 10 019 −0.06 0.75 n.d. 0 (0)
GTF2IRD1 11 855 −0.06 0.84 51 801 0 (13)
FZD9 12 921 −0.03 0.88 247 475 0 (1)
STX1A 13 880 0.03 0.91 27 391 0 (4)
TRIM50 n.d. n.d. n.d. 153 041 0 (3)
FKBP6 n.d. n.d. n.d. n.d. 0 (0)
NCF1 n.d. n.d. n.d. 8017 0 (37)
CLDN4 n.d. n.d. n.d. 17 189 0 (1)

a‘Gene Rank’ = gene-level summaries ranked by the log odds of differential expression from 34 WS subjects versus 18 controls; 16 509 core transcripts were included
in this ranked list after background filtering.
b‘# of Exons at FDR < 0.05’ = Exon count from RefSeq transcript of detected exons with a Benjamini–Hochberg FDR value < 0.05 with total detected exons for that
transcript in parentheses. There were 304 572 total exons detected in this experiment.

altered protein. The results of testing unpooled RNA levels of 34
WS and 18 controls using qRT-PCR are shown (Supplementary
Material, Table S3) for 4 WS genes (STX1A, LIMK1, CLIP2 and
GTF2I) and 4 of the top non-WS genes (DAPK1, CTTN, FHL3
and DBN1; rank 98, 12, 13 and 20 (Supplementary Material,
Table S3)). The results of qRT-PCR showed that all 8 genes dif-
fered significantly and were highly correlated with the array
results from WS and controls except STX1A (Fig. 2A and B). The
limit of arrays as detectors of fold change for genes at low
levels of expression determined by both qRT-PCR and RNA-seq
is reflected by the ability of the qRT-PCR but not the array,
to detect significant decrease of STX1A in WS versus controls
(Figs 1D, 2A and B and 3B; Supplementary Material, Fig. S1). Con-
sequently, despite the superior transcript exon coverage of the
arrays versus qRT-PCR, the underlying RNA abundance is a main
determinant of fold-change detection. The results of qRT-PCR
on pooled RNA consisting of aliquots of 34 WS or 18 controls
confirmed the array results for DEG’s for 7 WS genes and 25 non-
WS genes (13 decreased and 12 increased expressions; Fig. 2C).
The high correlation between individual qRT-PCR measurements
and array gene-level summaries strongly support the observed
individual variation in array data as an accurate reflection of
individual transcript levels within the RNA samples, the few
subtle exceptions possibly representing exon specific expression
unrelated to the qRT-PCR probe. Finally, to address whether the
decreased copy number and transcript levels of WS deleted
genes were reflected at the protein level, western blots of WS
versus controls were performed. The results revealed decreased

(30–60%) protein levels of WS encoded genes (EIF4H, LIMK1,
GTF2I/TFII-I, LAT2) in WS (Supplementary Material, Fig. S2). The
decreased protein levels suggest a lack of dosage compensa-
tion at the protein level in WS. In summary, both qRT-PCR and
western blots confirmed the DEG results of the exon microarray
as sensitive, accurate reflections of transcript specific network
perturbations.

DNA CNV breakpoints are reflected by decreased
expression without position effects in typical WS

The next question was whether quantitative transcript levels
in WS genes were determined largely by CNV or were also
affected by cis or trans regulatory effects. To address this, DNA
breakpoints were determined in 61 subjects with WS (28 from
this report) by using Illumina DUO SNP and CNV microarrays
(Fig. 3A, Supplementary Material, Fig. S3) and compared with
the transcript levels. The results revealed that 54% of the DNA
centromeric breakpoints in WS were within NSUN5, and the
remainder were located within the cluster of pseudogenes
centromeric to NSUN5. As expected, group comparisons of
transcript levels showed significantly decreased expression of
NSUN5 in WS (FDR = 9.3E-10), and 76% of WS subjects show
>40% decrease in its expression. In the region of the telomeric
breakpoint, 86% occurred within GTF2I, as expected (11) and
the remaining 14% were within or telomeric to GTF2IRD2. As
expected, expression of GTF2I was significantly decreased in

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab041#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab041#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab041#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab041#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab041#supplementary-data
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Figure 2. Validation the microarray expression results using qRT-PCR. (A) Relative intensity range for gene-level summaries of qRT-PCR results indicated by boxplots

for each gene in control subjects (black) and WS subjects (blue). Genes include 4 WS genes and 4 non-WS genes all show significant difference in WS compared with

controls. (B) qRT-PCR of 8 genes (STX1A, LIMK1, CLIP2, GTF2I, DAPK1, CTTN, FHL3, DBN1) in un-pooled 52 subjects (34 WS, blue dots; 18 TC, black dots) except STX1A show

highly significant correlations with microarray results. (C) Average fold change from pooled qRT-PCR versus array gene-level summaries of 7 WS genes (green highlight)

and 21 genes outside the WS chromosome region (yellow highlight). The rank order of each gene from the gene-level test for differential expression (Supplementary

Material, Table S3) is shown in parentheses.

WS (FDR = 4.6E-10), and 82% of WS subjects show >40% under-
expression of GTF2I due either to nonsense mediated decay
or full deletion. In contrast, a bimodal decrease in expression
was found for NCF1 or GTF2IRD2 due to the ∼97% homology
and variable number of their pseudogenes, although long-read
sequencing may resolve this. Moreover, using quantitative exon
arrays, no position effect was observed in HIP1 or AUTS2 in
contrast to previous publications (31,32). In conclusion, compar-
ison of DNA breakpoints and RNA expression in full deletion
WS, indicates that gene expression is determined largely by the
CNV.

Atypical WS deletion: position effect decreases
expression of non-deleted gene transcript for CLIP2,
10 kb telomeric to the breakpoint

The objective of understanding human genetic aneuploidies
such as WS (33), is to cut through the largely unknown genet-
ics of human brain development and substrates for behavior,
to discover gene-brain-behavior anchors, the vast majority of
which currently depend on the association of a DNA gene CNV
with a behavior. Studies based on rare partial chromosomal
rearrangements neglect the possible effects of unspecified but
rearranged regulatory elements on the transcription of non-
deleted genes that could erroneously implicate a deleted gene,

whereas the phenotype may have been due to a transcriptional
perturbation of its non-deleted neighbor. Therefore, to evaluate
the possible role of position effects on altered transcription in
atypical deletions, exon-level gene expression was evaluated in
a family of 6 WS subjects and a small deletion without the
typical WS exaggerated approach to strangers. The breakpoints
determined with custom high density NimbleGen microarrays
of chromosome 7, revealed a 545 Kb deletion that excluded a
majority of WS genes (33), shown in Figure 4A. As expected, exon
transcription was decreased for deleted genes (ABHD11, LIMK1,
EIF4H, LAT2 and RFC2), emphasizing the accurate detection of
subtle (<2-fold) expression differences by genome wide arrays.
However, decreased expression was also found for CLIP2, the
non-deleted gene whose 5’UTR was located ∼10 kb distal to the
telomeric breakpoint (73 331 254–73 331 770 bp; NCBI36/hg18).
The decreased expression suggested that enhancer cis regula-
tory components (Fig. 4B) for CLIP2 may have been disrupted or
deleted. The position effect on CLIP2 in atypical WS emphasizes
the importance of determining gene expression in addition to
DNA CNV for accurate determination of genetic contributions to
phenotype in WS and human neurodevelopmental disorders.

Pathway analysis

Three intersecting analyses were used to extract a common set
of biological and cellular networks perturbed by the WS deletion:

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab041#supplementary-data
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Figure 3. Gene expression level in typical WS is determined largely by the deletion. (A) Precise breakpoints of typical WS are determined by using Illumina DUO SNP

and CNV microarray. (B) Individual DEGs of deleted genes in WS versus controls.

Gene set enrichment analysis (GSEA), Gene ontology (GO) and
protein–protein interaction (PPI).

GSEA. To identify specific biological networks informed by the
larger difference set, we used the ranked list of 12 122 genes as
input for both an absolute GSEA enrichment test (34) and for a
standardized GSEA χ2-test that is more appropriate for detecting
scale change in gene sets with both up- and down regulated
genes (35). As query gene sets with biologic relevance, we used
the MSigDB (version 3.0) C2 curated gene sets for canonical
pathway and chemical and gene perturbations. As a positive
control targeting the deleted genes, we supplemented the target
sets with the chromosome 7q11.23 cytogenetic band gene set
from the C1 positional database. To capture recent advances
related to actin assembly, we used the GeneMANIA tool (36) to
integrate comparable genes in the MSigDB gene sets with an
unbiased, literature-derived a posteriori gene set describing actin
signaling at the glutamatergic synapse (37) along with the top
ranked actin-related genes CTTN and DBN1 (Rank 12 and 20). The
resulting gene set (37) was seeded and included genes similar to
transcripts and proteins involved in actin regulation during brain
development, in glutamatergic dendritic spine morphogenesis
and in adult postsynaptic dendritic spine function. Because the
brain tissue directly related to the behaviors is inaccessible

and unknown, the identification of analogous genes with
similar roles in comparable networks by GeneMANIA, facilitates
harmonizing networks across tissues and there by facilitates
identifying possibly cognate pathways shared by brain and adult
cell lines. The results of using GSEA to query the 2166 gene sets
(MSigDB) (including a posteriori), revealed 30 top enriched gene
sets (Supplementary Material, Table S5). A list of the overlapping
genes shared by the 30 gene sets is shown in Figure 5A, and
reduced the number of clusters to 11 gene sets with a high
degree of functional redundancy. This included a posteriori gene
set, named ‘actin cytoskeleton form and function at the synapse’
and the ‘Biocarta IGF1 Pathway’ (Fig. 5B; Supplementary Mate-
rial, Table S6). Unexpectedly, although the transcriptome analy-
ses were performed in immune cells, the most enriched of the
actin gene sets harmonized with mechanisms of actin regulation
in the dendritic spine, specifically the postsynaptic cytoskeleton
of excitatory synapses (Fig. 5C). The hypothesis-based post-
synaptic spine mechanism (37) included two WS genes, LIMK1
and CLIP2 in key regulatory positions, an unanticipated clue to a
core perturbation of WS. revealed by quantitative differences in
transcription.

GO. We then used GO term enrichment analysis (38) to inde-
pendently classify the list of perturbed genes broadening the

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab041#supplementary-data
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Figure 4. Gene expression level in atypical WS reveals a position effect on a non-deleted gene, CLIP2. (A) The deletion of atypical WS includes genes from ABHD11 to

RFC2, which is determined by using custom high density NimbleGen microarrays of chromosome 7. The telomeric breakpoint (73 331 kb) is located ∼10 kb upstream

of the 5’ UTR of CLIP2. (B) Individual exon-level relative intensities for five differentially expressed genes (ABHD11 to RFC2) plus CLIP2, which is not deleted by under-

expressed (see Table 1). Exons are binned in chromosomal order by gene (columns) and by individual (rows) for 6 atypical WS and 18 controls. (C) qRT-PCR of 8 genes

(STX1A, LIMK1, CLIP2, GTF2I, DAPK1, CTTN, FHL3, DBN1) in un-pooled 58 subjects (34 WS, blue dots; 18 TC, black dots 6 atypical WS, orange dots) except STX1A show

highly significant correlations with microarray results.

focus beyond the top DEGs related to actin signaling as described
above. A conditional hypergeometric test for over-representation
of GO terms used the list of 673 genes (FDR < 0.2, excluding the
WS region genes) and substantiated the enrichment of genes
related to insulin signaling pathways (top three), cell communi-
cation and signal transduction (Supplementary Material, Table
S7).

PPI. Using the cellular PPI backbone and graphical analysis to
filter networks: To further converge on a set of core biological

pathways perturbed in WS, we then asked if the functional
meaning of the DEG pattern might be captured by querying
the cellular networks established by the most direct biochem-
ical property, PPI. Using the Human Protein Reference Database
(HPRD), the initial query of the top 114 DEGs (FDR < 0.05), resulted
in a direct PPI network containing 12 genes that included three
WS region genes (GTF2I, LIMK1 and CLIP2), linked to proteins
involved in actin cytoskeleton dynamics and the MAPK path-
way (Supplementary Material, Fig. S4). We then expanded the
query of HPRD using the top 673 DEGs (FDR < 0.2) plus the
WS deleted region genes and retrieved a network of direct PPI

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab041#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab041#supplementary-data
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Figure 5. GSEA reveals dysregulation of actin signaling networks. (A) A gene set enrichment list of genes shared by the top 30 gene sets, ranked by their level of

differential expression is shown to the left of the network. In the map of the gene sets to the right, nodes represent gene set clusters that result from the χ2-test

for gene set enrichment (Supplementary Material, Table S5) and edges represent the gene overlap between sets. Nodes are colored by χ2 values, node size indicates

the number of genes in the set and edge thickness indicates number of genes shared between sets. (B) WS DEG (FDR < 0.2) pathway showing physical and predicted

interaction network for the top-scoring GSEA gene set, ‘Actin cytoskeleton form and function at the synapse,’ GO term association (2 × 10−13, ‘actin cytoskeleton

organization’). (C) WS DEG GSEA gene set (from B) shows unexpected match to the excitatory dendritic spine, capturing systems that regulate cytoskeleton in response

to receptor excitation. Diagram is modified from Dillon and Goda (37), updated to include recent evidence for microtubule co-regulation involving WS genes. Node

labels identify WS DEGs. Node colors and density indicate WS DEG intensity by rank (FDR < 0.2) (blue = decreased, red = increased), or non-detected as a WS DEG (gray).

WS region genes (LIMK1 and CLIP2) are shown with white text in blue shade. Note the growth ends of actin (barbed) and microtubules (plus) form a coregulatory

bridge to the NMDAR, which includes WS DEG’s Drebrin 1 (DBN1, rank 20/12122) and cortactin (CTTN, rank 12), major cytoskeletal regulators in adult spines and

axonal growth cones (47,48). The bridge complex represents experimentally established components that connect CLIP2 to the NMDAR through PAFAH1B1 (99) and

independently through direct MT plus end binding of CLIP2 to EB3 (49), through DIP2A (100), DNB1 and CTTN, to SHANK-PSD95. ACTR3 is a major constituent of the

actin branching complex ARP2/3 that is regulated by both CTTN (101), and MAP1B (102) (binds both MT and actin), both of which were significantly over-expressed in

WS (Supplementary Material, Table S3). The relationship of WS DEG’s to ASD risk genes (Supplementary Material, Table S11) taken from the literature is noted (pink

star), shows a striking synergism, complementarity and overlap, suggesting that WS, caused by a small gene set, may define the excitatory dendritic spine and its gene

networks as a common brain substrate for the disturbed behavioral systems involved in approach or avoidant social behaviors seen in WS and ASD, where the large

number of genes and networks has precluded identifying these. (D) Duplicate of (C) showing WS genes in pink and ASD in gray or both (half pink and half gray).

defined by the perturbations of this query subset. Two seed
genes (SRF and GRB2), known to have PPI with two WS genes
(GTF2I and LAT2) (39,40) were included in this HPRD query. The
expanded HPRD query yielded a prominent PPI network (Fig. 6)
consisting of 100 perturbed genes (nodes) integrated by 137
direct PPI connections (edges) that link WS region genes GTF2I,
LAT2 and LIMK1 into a PPI network spanning multiple signal
transduction pathways. Functional pathways were assigned to
the central PPI network graph by comparisons with graphs of
known pathways using a subgraph-matching tool, substruc-
ture index-based approximate graph alignment (SAGA) (41) that
employs the Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways database. The use of graphic annotation (rather than
linear gene set overlap) maintains the added information in the
topographic relationship of WS genes to constrain more precise
pathway identification inherent in the established MSigDB gene
sets. The three KEGG pathways with the highest degrees of
graphic overlap with the WS PPI nodes were: ‘regulation of actin
cytoskeleton,’ ‘insulin signaling pathway’ and ‘MAPK signal-
ing pathways,’ here determined solely by PPI and recapitulated
the results from transcriptional analyses. We note that the use
of the SAGA tool to graphically annotate the functions of the
PPI graph preserves the relationship of the entire set of WS
PPI genes, thereby significantly increasing the sensitivity and

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab041#supplementary-data
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certainty of the three resulting pathways. This derives from two
features; the use of only the PPI subset of DEG’s to generate
the graph, as these are determined by the most solid, stringent
criterion for inclusion, PPI, and the preservation of information
on the interactions of the entire set of gene–protein components.
This is in contrast to the standard GSEA or PPI analysis that
would compare only the unordered gene sets for overlap and
not be able to assign functions to regions of the PPI graph.
An illustration of this is seen in comparing the top 114 DEG’s
(FDR < 0.05) with the GSEA set that result in the same three
pathways but with low probabilities as less information is used.
The use of SAGA captured the higher order gene–protein topol-
ogy and resulted in a stringent, highly significant definition of
networks. Taken together, the triad of GSEA, GO and PPI analyses
each identified disrupted functions of actin cytoskeletal signal-
ing, of the MAPK and the IGF1-PI3K-AKT-mTOR signaling and
proteostasis stress pathways as core consequences of the WS
deletion.

Power simulation analysis

A major challenge contributing to inconsistent gene network
determinations across genomic developmental disorders such
as WS, has been the difficulty of identifying a sample size suffi-
cient to define genetic variations common to the disorder, versus
differences that may exist between small groups of individuals.
We therefore performed a simulation to evaluate the conse-
quences that smaller sub-cohort datasets could show on the
reliability of DEG’s inferred here (Fig. 7A). The results indicated
that while ∼9 subjects provided 80% power to detect the top 13
WS genes and 13 were required for 90% power (FDR = 0.2). In
contrast, ∼20 subjects were needed to detect the top 13 non-
WS genes with 60% power (FDR = 0.2). To maintain this power
at FDR = 0.01, 5 more subjects are needed for both WS and non-
WS genes. A similar analysis described in the methods, of each
network below, revealed that capturing 50% of genes in each of
the pathways that was identified by the KEGG 2016 pathway
analysis through Enrichr (42), converged on 20–25 subjects for
95% power (FDR = 0.2) for each of the three pathways respectively
(Fig. 7B). The certainty with which the WS genes progress to
top ranks with increasing subject number indicates the need
for increased cohort sizes to increase the accuracy and gen-
eralizability of WS and non-WS DEG’s reflecting the common
CNV in WS. Moreover, the minimal number is related to the
inherent variation of the dataset due to technique, mechanism
(CNV versus downstream gene) and biological variation. These
are also minimal estimates because a simulation analysis using
fewer subjects is unlikely to have generated a DEG set support-
ing the observed PPI network. Consequently, whereas previous
network inconsistencies among studies using smaller cohorts
found significant group differences, these would have a lower
probability of representing the generalizable perturbations of
WS and likely explain previous differences. Moreover, in genomic
disorders, the power to detect a given network depends on
the molecular methods used, the tissue, its internal variation,
metabolic state and preparation, and the difference between
and inherent variation of genes in WS and controls, making it
unrealistic to compare results or to predict size of phenotypic
effect or cohort size as commonly required. In contrast, simu-
lation analyses of the sensitivity, consistency and power of a
dataset a posteriori as illustrated here, are essential to evalu-
ating rigor and to the ability to generalize results as defining
downstream transcriptional networks in WS and other genomic
disorders.

Network analysis in atypical WS: actin signaling
perturbation

Finally, we asked whether individuals with atypical deletions
could be used to parse the deleted WS genes responsible for
particular network perturbations. To examine whether a similar
gene subset was enriched or shared by the atypical and full
deletions, we used GSEA to compare the DEG expression pro-
file from the 6 atypical WS (query set) with the ‘WS signature
gene set’ (target set) derived from the full cohort (114 DEGs,
FDR < 0.05). Because the genes deleted in the small (n = 6) cohort
are a subset of those deleted in the larger (n = 34), the query
is refined to asking whether the leading edge of the atypical
DEG profile is enriched for the WS signature gene set, obviating
the power of six samples to query the KEGG datasets (Enrichr
(42); Supplementary Material, Table S8). Supplementary Material,
Fig. S5A shows the enrichment plot indicating which of the
12 122 genes differently expressed in atypical WS (appearing on
the x-axis with the highest rank order at the left) were shared
with the typical ‘WS signature gene set’ indicated by vertical
black bars distributed throughout. The leading edge (55 genes
defined by the maximum enrichment score in Supplementary
Material, Fig. S5A) for the atypical WS indicates those are shared
with the typical WS. Supplementary Material, Fig. S5B shows
shared deleted genes (LAT2, LIMK1, RFC2, EIF4H and ABHD11)
as well as the non-deleted gene CLIP2 (with a position effect
shown in Fig. 4), are all enriched in the left-side of the leading
subset, shared with full deletion WS, while non-deleted genes
(NSUN5, WBSCR22, BAZ1B, DNAJC30, GTF2I, BCL7B and TBL2) are
in the right-side of the trailing edge, not shared. The pathways
of genes in the leading and trailing edge sets were mapped
using the PANTHER biological pathways and biological process
categories (Supplementary Material, Fig. S5B). Taken together,
the atypical deletions implicated non-deleted CLIP2 in the cause
of phenotype, and narrowed gene candidates for perturbed actin
signaling in WS.

Discussion
Augmented query targets refine networks: synergy in
the elucidation of cellular disease mechanisms

The analyses of networks perturbed in WS incorporated the
results of increased cohort size for full deletion WS, combined
with a rare family of six persons with WS and identical smaller
deletions, and exon level analyses, indicated a core set of genetic
network perturbations associated with WS and implicated
fundamental cellular processes including actin cytoskeletal,
IGF1-PI3K-AKT-mTOR proteostasis and MAPK pathways. These
emerged from a customized use of a sensitive transcriptional
difference set to independently query different aspects of
cellular and organismal features such as PPI and transcriptional
systems represented in established datasets. Analyses were
enriched by the application of analytic tools, GeneMANIA
that integrates literature-based datasets with existing query
targets, and the SAGA graphing tool that utilizes unbiased graph
comparisons of known pathways to annotate the complex,
function-free graphs that emerge from the PPI interactions
predicted by the DEG difference set. It is important to note
that, while each KEGG approach detected the three networks in
the top ranked pathways (114 genes (FDR < 0.05) ranks 1–3; 686
genes (FDR < 0.2) ranks 1, 4, 36; of the PPI network subset from
FDR 0.2 (100 nodes) ranks 9, 4, 8), only the graphical matching
tool identified them with high certainty (adjusted P-value <

2E-12) and their interactions unambiguously (Supplementary
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https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab041#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab041#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab041#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab041#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab041#supplementary-data


420 Human Molecular Genetics, 2021, Vol. 30, No. 6

Figure 6. PPI network of DEGs implicates three core networks disturbed in WS; 100 genes (nodes) and 137 direct PPI (edges) from HPRD (release 9) are among the 673

DEGs in WS (FDR < 0.2) plus WS deleted genes and two seed proteins (SRF and GRB2) known to directly interact with two WS genes (GTF2I and LAT2). We used SAGA

(41) to query this PPI graph against the KEGG Human pathways database. Node color is scaled by differential expression (scale bar in lower right corner from moderated

t statistic between −12.4 and 6.5, from blue to red) and node border is colored by KEGG pathways: purple = MAPK signaling pathway (hsa04010), yellow = regulation of

actin cytoskeleton (hsa04810) and green = insulin signaling pathway (hsa04910). Three WS region genes retrieved in this network (GTF2I, LIMK1 and LAT2) are shown

with white node labels.

Material, Table S9). Each of the independent analytic approaches
(GSEA, GO, PPI) provided overlapping evidence that indicated a
common set of networks for WS, augmented the cellular systems
information and in sequential permutation analyses, converged
on a generalizable set of core networks perturbed in WS. The
results underscore the value of combined copy number and
transcriptional analyses of human genomic disorders with large
genetic effect behavioral phenotypes, for anchoring the large
number of smaller effect DNA risk loci emerging from GWAS
studies to cellular networks. In fact, in-depth grasp of stepwise

mechanisms will benefit from multiple simultaneous datasets
that detect different cellular regulatory features and thereby
converge on interacting networks. In particular, these measures
of quantitative transcription provide a framework implicating
perturbed translational networks, many of which would not be
detected as they are regulated largely by phosphorylation as in
proteostasis, or by translational mechanisms such as ribosomal
efficiency, thereby defining translation as the critical next
direction for deciphering mechanisms and defining therapeutic
targets.

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab041#supplementary-data
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Figure 7. Simulated power curves of sample size. (A) Simulated power curves for detecting differential expression from smaller subsets of the data show that detection

of the 13 WS genes (rank 1–11, 15, 22 out of 12 122 transcripts) approaches 90% power at ∼9 samples, while detection of the top 13 non-WS genes (rank 12–14, 16–21,

23–26 out of 12 122 transcripts) approaches 60% power at ∼20 samples (FDR = 0.2). (B) Simulated power curves for detecting differential expression from smaller subsets

of the data show the sample size of detection of 25, 50 or 75% of the WS DEGs (FDR < 0.2) (Supplementary Material, Table S10) picked up by KEGG 2016 pathways

(regulation of actin cytoskeleton (hsa04810); MAPK signaling pathway (hsa04010); insulin signaling pathway (hsa04910)). The simulations indicate that to identify the

actin signaling pathway, when FDR = 0.2, at least 15 cases of the current dataset would have been needed to have detected at least 25% of the genes with 90% power,

and to have detected 50% of the genes with 90% power, at least 20 cases would have been needed. For the insulin signaling pathway, 18 and 25 cases would have been

needed to attain this power, and for the MAPK signaling pathway, 16 and 25.

Position effect in atypical deletions implications for
phenotypic maps

The work provides a clue to the importance of going beyond DNA
sequence and copy number to intermediate traits necessary
for relating adult cellular processes and mechanisms to adult
behaviors and for accurately using rare subjects with atypical
deletions or duplications. Specifically, the data provide no evi-
dence for position effects on flanking genes in full deletion WS,
in contrast to previous reports, but do indicate a significant posi-
tion effect in the six atypical deletions, that decreased expres-
sion of the non-deleted flanking gene, CLIP2, likely through
altered function of undefined regulatory sequences upstream of
the established promoter. The consequences of undetected posi-
tion effects, regardless of tissue, could misidentify causative ele-
ments, emphasizing the need for functional analyses to evince
meaningful genetic contributions to phenotype using develop-
mental disorders. It is notable that the lack of GTF2I deletion
in the atypical WS coincides with its position at the hub of the
non-disturbed MAPK pathway. The lack of altered expression of
insulin pathway genes IGF1, AKT2, IRS1 and FOXO1, in the atypi-
cal WS suggests that their deletion may contribute but is still not
sufficient to disturb insulin signaling. However, the striking and
shared overexpression of the multi-targeting ubiquitin network
genes CBLB and BCL2A1 in the same pathway, may combine
with genes found only in the full deletions, to drive the insulin
network decreases and differential phenotypic dysfunction.

Dataset power to establish common networks

Although it is clear that increasing sample size improves iden-
tifying perturbations common to a disorder such as WS, the
current large sample size and results provide an approach to
evaluate the certainty with which a dataset has identified gen-
eralizable networks. For KEGG, this will depend on the size of
the gene set and the number of genes needed to identify it
as well as on the features of the query set including techni-
cal and biological variation. Therefore, increasing sample size
helps to approach but does not guarantee accurate definition of
perturbed networks representing the larger population, until it

exceeds a number after which the DEG set reproducibly includes
the genes defining the network. In the current work, the use of
a PPI graph to filter the 686 DEG’s (FDR < 0.2) resulted in a total
of 100 nodes (DEG’s) of which only 33 were needed to identify
the three networks, each annotated by only 10–14 DEGs. The
remaining DEG’s in the WS PPI graph were connected but the
functional significance of the pattern was not recognized and
therefore not annotated by SAGA as matching any currently
known gene association in the KEGG MSigDB gene sets. There-
fore, although the group of 100 WS PPI DEG’s recognize six further
KEGG functional gene sets, the matching DEG’s are not con-
nected by known functional properties in the WS PPI graph nor
in the KEGG gene sets. Thus, the WS graph provides evidence for
novel PPI of unknown functional significance. Moreover, because
the ranks of many nodes fall close to the FDR limit, it is likely that
smaller sample size would not have detected the complete WS
PPI graph. Therefore, to illustrate the extent to which network
identification is dependent on sample size, we simulated the
proportions of WS DEGs defining KEGG genes, that would have
been detected by smaller sample sizes.

Transcriptional consequences of genomic aneuploidy
and CNV: lack of dosage compensation in WS. Is
decreased network flexibility a shared CNV
consequence?

In WS, the 13 detected deleted genes show decreased transcript
levels largely proportional to copy number, viz., a lack of dosage
compensation, and a variance (standard error/mean) similar to
controls. In contrast, although it would not be unreasonable to
expect the downstream genes and disturbed networks to be
more variable in WS than controls, they are not and in fact,
the opposite is seen for the top 13 non WS DEG’s (Fig. 2A and B;
Supplementary Material, Fig. S6). Moreover, this was a property
of the overall dataset, wherein 92% of non-WS genes revealed
decreased gene variation in WS versus controls, and the extent
of the decrease was greatest in genes with greatest between
group difference for the top versus bottom 100 DEG ranks. The
relationship of DEG rank to observed difference in WS versus

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab041#supplementary-data
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control gene variance is not obvious in that this would have led
to greater between group variance and a consequent decreased
power to detect a DEG. The unexpected decreased gene vari-
ance in WS for the top DEG’s may suggest that in controls,
genes with greatest variance among individuals may constitute
a functional class but regardless, their decreased variation in
WS indicates a general blunting of response that may reflect a
decreased flexibility of transcriptional networks due to invariant
dosed decreases of the deleted genes involved. This blunting
may be imagined to result from a subset of tightly dosed tran-
scriptional regulatory mechanisms that act as on–off switches.
Taken together, the data and speculation require replication
and further study but if consistent across CNV disorders, the
hypothesis may provide a common mechanism by which human
aneuploidies result in phenotypic deficits.

Significance of human cellular network perturbations
for role of excitatory dendritic spines in WS

It is clear that brain gene expression modules are shared
properties across tissues (43) and conversely, that expression
varies enormously across development and adult brain tissues
and functional states. Consequently, the striking network
match (No. 1 of ∼2000 queried gene sets) between the WS DEG
and the MSigDB, actin cytoskeletal signaling at the synapse
not unreasonably, suggests that in WS, the actin cytoskeletal
signaling network is awry, likely related to a module shared
at the synapse, specifically the dendritic spine of excitatory
synapses (37) (Fig. 5C). Further, the DEG’s for this network are
also disturbed in the six atypical deletions (Fig. 4; Supplementary
Material, Fig. S5), suggesting that the WS genes contributing to
the perturbed actin cytoskeletal signaling network, includes
both those deleted (LAT2, LIMK1) and the non-deleted flanking
gene, CLIP2, whose expression is decreased due to the position
effect noted above. The involvement of CLIP2 was not implicated
by the DNA deletion but only by the transcriptional network
analysis. Unexpectedly, previous work has shown a dosage
sensitive role for the above WS and non WS genes, in spine
regulation. In murine and cellular models (44), decreased CLIP2
results in greater numbers of thin spine protrusions that
are also the characteristic features of WS brain, layer V/VI
frontal cortex (45,46). The data reported here are distinct from
previous work on single WS genes, and by integrating these
with their network perturbations, now provide independent
transcriptional evidence from WS cells, for the intermediate
cellular traits of non-WS genes drebrin (DBN1, rank 20) and
cortactin (CTTN, rank 12) that independently indicate perturbed
actin cytoskeleton signaling and place the shared module at the
post synaptic spine.

The results unexpectedly provide evidence and WS as a
human genetic model for the emerging role of integrated
microtubule-actin signaling in dendritic spine dynamics
(Fig. 5C and D). Drebrin and cortactin are major regulators
of microtubules in adult spines and axonal growth cones
(47,48), components of the bridge linking the plus end of
microtubules, the site of CLIP2 and EB3 (49), to F-actin in the
spine. Upon NMDAR excitation, these translocate MT to the
spine and facilitate signaling to the DLG4/PSD-95 (rank 593)
(50) complex mediating membrane response. Moreover, LIMK1
phosphorylates p25/TPPP (tubulin polymerization protein)
on serine residues and thereby promotes destabilization of
microtubules (51). The expression of p25/TPPP predominantly
in myelinating oligodendrocytes (52), implicates both LIMK1 and
GTF2I (53) deletion in the abnormal myelin observed in WS. In

summary (Fig. 8), together with the literature, the current report
suggests dysregulated actin and microtubule signaling mediated
by WS genes and downstream effects on PPI and regulatory
networks, as a mechanism for disturbed brain development and
adult WS brain abnormalities of excitatory dendritic spines and
myelin and as substrates and possible therapeutic targets for
ongoing adult cognitive and behavioral deficits in WS.

Disturbed IGF1-PI3K-AKT-mTOR signaling at the
dendritic spine and synapse in WS and ASD

Our results indicate a role for altered IGF1-PI3K-AKT-mTOR sig-
naling in WS (Fig. 8), although it is unknown how this varies
with tissue or development. Nonetheless, there is mounting
evidence from rodent models for the role of IGF1-PI3K-AKT-
mTOR in synaptic structure or function when hyper- or hypo-
activated (54), for MECP2 in spine density (55), for FMRP in
accumulation of dendritic proteins and impaired autophagy (56),
and for TSC1/TSC2 in impaired dendritic spine pruning and
autophagy associated with ASD-like behavioral abnormalities
(57). In conclusion, it is not unreasonable to suggest that genes(s)
in the WS region may regulate this core network in a dosage-
dependent manner, possibly identifying specific genes associ-
ated with common cognitive and inverse behavioral features
seen in WS compared with ASD. The intriguing similarity of WS
networks inferred from transcription, to ASD networks inferred
largely from Mendelian and ASD associated DNA based risks,
does suggest their involvement in the pathogenesis of social
and associated cognitive deficits, but does not establish which
genes are critical or proportional for adult deficits, nor whether
their downstream functional directions are the same in these
disorders of contrasting social behavior. These are important
questions that have been focused but not answered by the
current results. Therefore, although caution is warranted in
that the flip of unpredicted phosphorylation or methylation
sites in protein or transcriptional regulation respectively, can
reverse functionality (58), elucidating these has been critical
for understanding regulation, and may similarly identify gene
regulatory mechanisms for social behavior in humans. It is not
unreasonable to expect a gene-specific regulatory switch for
approach versus avoidant social behavior in the WS region in
view of the paradoxical increased risk of ASD in WS as well
as the inverse pattern of increased and decreased transcript
levels observed in the duplications and deletions (24). However,
identifying such genes will require quantitative analyses com-
paring expression and phenotypes, studies that are currently
lacking. Moreover, further phenotypic parsing is necessary to
define ASD features such as language production and affect
that are quantitatively inverse in WS versus ASD (59) or versus
WS region duplications (60). In summary, combining the current
results with the literature paints WS as a promising model in
which to Garner critical insights into regulatory genetic switches
for human social behavior. Further study is warranted to define
downstream proteins regulated by mTOR in WS and ASD and
determine those that vary with adult cognition and behavior.

Mendelian metabolic disorders of IGF1-PI3K-AKT-mTOR
signaling are more prevalent in WS and ASD

In WS, the most common metabolic abnormality, impaired glu-
cose tolerance and insulin resistance are seen in ∼75% of adults
(61,62) and may be related to dysregulation of the IGF1-PI3K-AKT-
mTOR pathway reported here as it regulates insulin signaling
and resistance (63,64). Three further syndromes due to single
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Figure 8. WS core perturbed transcriptional networks echo those for ASD and implicate dendritic spine and synapse. Results indicate three interacting networks that

each act at the synapse and include six deleted genes (CLIP2, LIMK1, LAT2, GTF2I, EIF4H, FZD9) that are perturbed in WS: actin signaling at the excitatory dendritic

spine (Fig. 5C and D), IGF1-PI3K-AKT-mTOR/insulin and MAPK. These synaptic networks that are involved in brain development and post-natal plasticity influence

morphogenesis, proliferation, migration and differentiation, suggesting shared pre- and post-natal mechanisms that affect social brain are involved in WS and ASD.

Genes deleted and under-expressed in WS are in dark blue ovals. Downstream DEG’s are light blue or red ovals indicating under- or over-expression, respectively in WS

versus TC. Genes associated with ASD are denoted by fuchsia surrounds.

gene mutations that regulate mTOR, Tuberous sclerosis 1 and
2 (TSC1, TSC2) (65) and Rett syndrome (MECP2) (66), also show
abnormal glucose tolerance, the latter due to upregulation of
PTPN1, also dysregulated in WS. It is unclear but of interest
to consider if the positive response in rodents and humans, to
inhibiting PTPN1 would support upregulating it in WS as a ther-
apeutic (67). Further, although insulin resistance was found in
rodents but not humans with the Fragile X syndrome (mutations
of FMRP) (Fig. 8), the results of a preliminary therapeutic trial
with metformin, a treatment for insulin resistance, suggested
possible response (68). In mice heterozygous for knockout of the
tumor suppressor, PTEN, a regulator both of insulin signaling
and tumor formation, the associated social deficits are in part
rescued by mTOR inhibition (69), implicating deficits of multiple
single genes with different mechanisms as related to this net-
work. Finally, despite the multigenic contributions to idiopathic
ASD, clinical features related to metabolic syndrome including

insulin resistance, obesity, adaptive cellular stress responses and
systemic inflammation, are more prevalent (54). In conclusion,
although further study is warranted, both WS and genetic dis-
orders associated with ASD, point to dysregulation of the IGF-
PI3K-AKT-mTOR pathways as possible metabolic bases not only
for insulin resistance, but also for social and cognitive deficits
due to developmental and ongoing adult brain dysfunction.

WS core transcriptional networks echo those for ASD
and SCHZ: IGF1-PI3K-AKT-mTOR, MAPK and actin
signaling

Converging gene-disease associations from GWAS and genomic
disorders have implicated excitatory dendritic spine compo-
nents and IGF1-PI3K-AKT-mTOR (70–74), MAPK (75,76) and actin
signaling (77–79) related to proteostasis stress pathways (80,81),
in both ASD and SCHZ (82–88). The results reported indicate
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that the transcriptionally perturbed networks of WS, a single
CNV disorder of social dysfunction, are surprisingly similar to
those signaling networks related to the spine and proteostasis-
stress networks inferred from a subset of the DNA risk alleles of
ASD and SCHZ. The association of both WS region deletion and
duplication with ASD risk (81,89,90) combines with the current
report to suggest a possible common genetic and neurobiological
pathogenesis of neuropsychiatric disorders of social interaction
for which WS now provides large effect size gene candidates
for both the developmental and adult brain substrates. The
unexpected coherence of networks for social dysfunctions, one
of which results in approach and enjoyment of social interaction,
WS, and the other that results in social avoidance, ASD, suggests
that a common neural and genetic system may be involved
in both, and that the small number of genes deleted in WS
may provide critical insights for treatments of ASD, for which
hundreds of genes with small effects have obscured clarity of
causation. The role of these networks in the dysregulation of
hypothalamic oxytocin and vasopressin related to emotion in
WS (91), and social behavior in ASD, may provide focus for deter-
mining shared mechanisms and therapeutic targets. In contrast
to ASD, the defined network perturbations due to a single genetic
cause now provide a cohort in which to define the transcripts
that scale with cognitive and behavioral phenotypes.

Material and Methods
Subject population

Our population includes 34 WS patients and 18 controls (a subset
of the parents who transmitted the normal chromosome 7) (Sup-
plementary Material, Table S1). The subjects and their families
are recruited as part of an ongoing research study approved by
the Institutional Review Boards at Cedars-Sinai Medical Center,
The Salk Institute and The University of Utah. In each case, the
diagnosis of WS is determined by medical history, clinical and
laboratory evidence and is then confirmed by multicolor FISH
(92). All WS subjects completed the WAISR-test (Supplementary
Material, Table S1) within 2 years when they donated cells for
LCLs generation (30).

Total RNA and DNA preparation from cell lines

Immortalized LCLs from each of the 34 WS patients and 18 nor-
mal controls are generated and cultivated under standardized
conditions. The cells are grown in RMPI 1640 with 10% FBS, 5%
pen/strep, 5% L-glutamine and 0.5% gentamycin. The total RNA
is isolated by using the QIAGEN RNeasy Kit. The DNA is isolated
by using the QIAGEN DNA kit.

DNA CNV determination

The DNA CNV of subjects of typical WS were determined by
using Illumina Human 1 M-Duo microarray analysis. The precise
CNVs of subjects of atypical WS were determined by using
NimboGen custom designed high density microarray on Chro-
mosome 7.

Exon array expression profiling

Ribosomal RNA was removed from total RNA (1 μg per sample)
using the RiboMinus Human/Mouse Transcriptome Isolation Kit
(Invitrogen). Biotinylated target was then prepared following the
protocol described in Affymetrix GeneChip® Whole Transcript
(WT) Sense Target Labeling and Control Reagents (Affymetrix

P/N 900652). Hybridization was performed at 45◦C for 16 h using
5 μg of biotinylated target with each GeneChip® Human Exon 1.0
ST array (HuEx-1_0-st-v2, Affymetrix). Following hybridization,
non-specifically bound material was removed by washing and
detection of specifically bound target was performed using the
GeneChip Hybridization, Wash and Stain kit, and the GeneChip
Fluidics Station 450 (Affymetrix). The arrays were scanned using
the GeneChip® Scanner 3000 7G (Affymetrix) and raw data were
extracted from the scanned images and analyzed with the
Expression Console software package (Affymetrix). Expression
Console was used to compute separate gene-level and exon-
level signal estimates for the Exon 1.0 ST Array data. Exon-level
estimates were derived using the PLIER (pm-gcbg) method after
quantile sketch normalization. Probes sets (exons) were filtered
for a ‘detected above background’ (DABG) P-value less than
0.05, resulting in 313 707 filtered exons that were considered
in this study. Exon-level probe sets annotations were derived
from the Affymetrix NetAffx file HuEx-1_0-st-v2 Probeset
Annotations, CSV Format, Release 31. Gene-level estimates were
derived using the IterPLIER (pm-gcbg) method after quantile
sketch normalization. Only genes with core annotation (22 012
genes) were considered in this study. Transcript annotations
were derived from the Affymetrix NetAffx file HuEx-1_0-st-v2
Transcript Cluster Annotations, CSV, Release 31.

RNA-Seq

The standard Illumina mRNA-Seq protocol with random hex-
amer priming (mRNA-Seq Sample Prep Kit RS-100-0801, Illu-
mina, San Diego, CA) was used to build libraries from 1 μg of
total RNA for single-read sequencing on the Illumina Cluster
Station and Genome Analyzer. The adaptor ligated library was
size selected in the ∼200 bp range by separation and extraction
from a 4% agarose. The library was PCR amplified by Phusion
DNA polymerase (Stratagene), and purified by Qiaquick PCR
purification kit (Qiagen). Each library was quantified with an
Agilent Bioanalyzer and was loaded into its own single Illumina
flow cell lane, producing an average of 15 million clusters per
lane. 36-mer sequence reads were generated on the Illumina
Genome Analyzer IIx using the 36-cycle Sequencing Kit (FC-
104-4002). Sequence alignments were generated with ELAND
(Illumina). ELAND result files from matching Illumina 36-mer
sequence data against reference sequences were parsed with a
custom-written Perl script.

qRT-PCR

TaqMan Gene Expression Assays, designed for human gene tran-
scripts (Applied Biosystems, Foster City, CA), were used for quan-
tifying gene expression in this report. The assay mixture consists

of a TaqMan
®

MGB probe (labeled with FAM™ dye) and unla-
beled PCR primers for a specific human gene. All the Taqman
expression primer sets were commercially available from ABI,
and matched the Affymetrix chip at exon level. First, pooled
total RNAs from 34 WS patients or 18 typical controls were
reverse transcribed into single strand cDNAs using the Super-
Script III Frist-Strand Synthesis system for RT-PCR (Life Tech-
nologies, USA) and used as templates for qRT-PCR of 8 WS genes
(LIMK1, CLIP2, EIF4H, GTF2I, BAZ1B, NSUN5, LAT2 and STX1A),
and 22 top under- or over-expressed non-WS genes (under-
expressed: FOXO1, BCL2L11, GIT1, ZMIZ1, KLF12, DAPK1, FLI1,
POU2AF1 and PAK1; over-expressed: CTTN, FHL3, SERPINF1, LIPG,
RPS6KA2, CBLB, TRPS1, DBN1, ITGAM, PIKFYVE, TUBA1A, ENPP4
and RASA1). Then, the un-pooled total RNAs from 34 WS patients

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab041#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab041#supplementary-data
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or 18 typical controls were used to apply qRT-PCR of 8 genes
(STX1A, DAPK1, LIMK1, GTF2I, CTTN, DBN1, CLIP2 and FHL3). Three
genes (ACTB, PPIA and TBP) were used as endogenous controls
throughout all the qRT-PCR batches. The qRT-PCRs were per-
formed on Applied Biosystems 7900HT system (USA) and the
data were analyzed using SDS 2.3.

Western blotting

Cellular protein extracts were prepared by a single-step lysis
method. The harvested cells from 6 WS patient- and five
control-derived LCLs were suspended in SDS-PAGE sample
buffer (Laemmli sample buffer; Bio-Rad, Cat# 161-0737) and then
boiled for 5 min. Equal amounts of the extracts were used for
western blot analyses to determine the levels of proteins using
the antibodies listed below. Extracts were separated using SDS-
PAGE and then transferred to membranes. After the transfer,
membranes were blocked using 4% skim milk in 0.1% Tween-
20/PBS for 2 h. After blocking the membranes were incubated
with primary antibody overnight in 4% skim milk in 0.1%
Tween 20/PBS at 4◦C. After the primary antibody incubation,
several washes were performed using 0.1% Tween 20/PBS and
then the corresponding secondary antibody conjugated with
HRP was added. The secondary antibody was incubated with
the membrane for 2 h in 4% skim milk in 0.1% Tween 20/PBS
at 4◦C. After the secondary antibody incubation and several
more washes with 0.1% Tween 20/PBS signals were detected
using Immobilon Western Chemiluminescent HRP Substrate
(Millipore, Cat# WBKLSO500). To ensure equal loading of each
sample, the membranes were then re-probed with β-actin
conjugated with HRP. The primary antibodies were used at a
concentration of 1:5000. The primary antibodies used were:
EIF4H Rabbit mAb (cell signaling, Cat# 3469), LIMK1 Rabbit
polyclonal (cell signaling, Cat# 3842), NTAL/LAB Rabbit mAb (cell
signaling, Cat# 11986), GTF2I/TFII-I Rabbit polyclonal (cell sig-
naling, Cat# 4562), monoclonal anti-β-Actin−peroxidase (clone
AC-15; 1:50000; Sigma-Aldrich, A3854). Secondary antibody
used was Peroxidase-conjugated AffiniPure goat anti-rabbit
IgG (H + L) (1:5000; Jackson ImmunoResearch Laboratories; Cat#
111-035-144).

Statistical analysis

Signal estimates from Affymetrix expression console processing
were corrected for batch effects using the ComBat algorithm
implemented in the R package (93). Batch-corrected exon-level
and gene-level signal estimates were processed for differential
expression analysis using the functions ‘lmFit,’ ‘eBayes’ and
‘topTable’ implemented in the software package Limma for the
R computing environment. The empirical Bayes approach was
used to calculate the moderated t-statistic, and the FDR was
controlled using Benjamini and Hochberg’s method as imple-
mented within ‘topTable.’ GO term enrichment analysis used
the hypergeometric-based tests on the gene-level summaries
ranked by their moderated t-statistic, performed by the GOstats
package from Bioconductor with a P-value cutoff of 0.01. GSEA
used the C2 collection of canonical pathways and literature
gene sets, version 3.0 from the Molecular Signatures Database
(MSigDB), supplemented with the CHR7Q11 gene set from the C1
collection, and an a posteriori literature gene set ‘Actin cytoskele-
ton form and function at the synapse’ derived from Dillon and
Goda (37) is also included. A list of 12 022 genes (Supplementary
Material, Table S3) was used, and the rank order was by the abso-
lute value of the moderated t-statistic. GSEA using the algorithm

of Subramanian et al. (34), was used with the pre-ranked gene list,
and the algorithm of Irizarry et al. (35), used a standard χ2 test
was also used for detecting changes in scale. Direct PPI networks
were constructed using the Disease Association Protein–Protein
Link Evaluator, DAPPLE version 0.17 within the GenePattern tool
suite (https://genepattern.broadinstitute.org) (94) and by manual
evaluation of direct PPI from the HPRD, release 9 (downloaded
from www.hprd.org) (95).

Power simulation analysis

Simulated power curves of sample size were performed as: This
involved selecting the set of 13 differentially expressed WS genes
(rank 1–11, 15, 22 out of 12 122 transcripts) and 13 differentially
expressed non-WS genes (rank 12–14, 16–21, 23–26 out of 12 122
transcripts) (defined by the 0.006% FDR threshold for differential
expression, that was generated using 34 WS samples versus
18 controls) from the gene-level summaries (12 122 detected
transcripts). Next, for n = 3–34 (WS samples) and for n = 3–18
(controls), n samples were drawn from each group (matched
sample size from 3 to 18, and controls were fixed at 18 for 19–
34 WS samples). Differential expression analysis was performed
using the Limma functions ‘lmFit,’ ‘eBayes’ and ‘topTable’ cohort
subset. Following this, genes at 0.01, 0.05, 0.1 and 0.2 FDR levels
were selected and the above analysis of sub-cohorts was iterated
1000 times. Power was defined as the proportion of iterations for
each sub cohort, that yielded the target gene set within the FDR
level selected. The power was averaged over the 1000 iterations
for the top 13 DEG’s deleted in WS and the top 13 downstream
non-deleted DEG’s and graphed. In addition, by query KEGG 2016
database through Enrichr (42) using the 686 DEGs (FDR < 0.2),
we identified 20, 14 and 11 genes (referred as positive genes
hereafter) in three pathways respectively (Regulation of actin
cytoskeleton (hsa04810); MAPK signaling pathway (hsa04010);
insulin signaling pathway (hsa04910)). We investigated what is
the power to detect 25, 50 or 75% of those genes having different
expression between case and control groups should, we had
smaller sample size than we have used for the analysis, i.e. 34
cases plus 18 controls. Briefly, n (3 ≤ n ≤ 34) subjects are sampled
from the 34 cases and 18 controls respectively with replace-
ment. When n > 18, only 18 subjects were sampled from the
control group. A linear regression was fitted for each gene and
moderated t-statistics, and log-odds of differential expression
were calculated by empirical Bayes moderation of the standard
errors towards a common value (96). P-values were adjusted by
Benjamini and Hochberg method (97) and the top genes with
P-values smaller than 0.2 are identified. If 25, 50 or 75% genes
of the positive genes are identified as the top genes, we call it
a success. The power was defined as the probability of success
in 2000 simulations. R package limma was used for the analysis
(98).

Supplementary Material
Supplementary Material is available at HMG online.
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