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Abstract

Resin-based composite has overtaken dental amalgam as the most popular material for the repair 

of lost or damaged tooth structure. In spite of the popularity, the average composite lifetime is 

about half that of amalgam restorations. The leading cause of composite-restoration failure is 

decay at the margin where the adhesive is applied. The adhesive is intended to seal the composite/

tooth interface, but the adhesive seal to dentin is fragile and readily degraded by acids, enzymes 

and other oral fluids. The inherent weakness of this material system is attributable to several 

factors including the lack of antimicrobial properties, remineralization capabilities and durable 

mechanical performance ― elements that are central to the integrity of the adhesive/dentin (a/d) 

interfacial seal. Our approach to this problem offers a transition from a hybrid to a biohybrid 

structure. Discrete peptides are tethered to polymers to provide multi-bio-functional adhesive 

formulations that simultaneously achieve antimicrobial and remineralization properties. The bio-

additive materials design combines several functional properties with the goal of providing an 

adhesive that will serve as a durable barrier to recurrent decay at the composite/tooth interface. 
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This article provides an overview of our multi-faceted approach which uses peptides tethered to 

polymers and new polymer chemistries to achieve the next generation adhesive system ― an 

adhesive that provides antimicrobial properties, repair of defective dentin and enhanced 

mechanical performance.
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1. Introduction

According to a global burden disease study, dental caries which affected 3.5 billion people 

globally with untreated caries in 2017 is one of the most prevalent health problem 1–7. 

Resin-based composites are among the most commonly used materials to restore form and 

function to teeth damaged by decay8–9 however, the clinical lifetime of composite-

restorations can be as low as 5 to 7 years10. The problem of repeated composite restoration 

replacement is pervasive—nearly 70% of all composite restorations are replacements for 

failed resin restorations10. Repeated dental-restoration replacement risks pulpal injury, 

increased tooth weakness, and eventually, total tooth loss11.

The leading cause of composite-restoration failure is recurrent marginal decay. In brief, 

restoration of the tooth surface involves removal of decay, acid-etching of enamel and 

dentin, application of dental adhesive, and finally, restoring of form and function using 

composite restorative material. The composite is too viscous to bond directly to the tooth―a 

lower viscosity adhesive is used to bond the composite to the tooth structure. The infiltration 

of the adhesive into the acid-etched dentin, i.e. the demineralized dentin collagen, is termed 

hybridization, and the resulting structure has been named the “hybrid layer”12–14. The ideal 

hybrid layer is described as the demineralized dentin collagen completely encased in 

adhesive, but this ideal structure has not been achieved in vivo4, 8, 15–16. This failure is 

attributed, in part, to a discrepancy between the depth of adhesive infiltration and the depth 

of demineralized dentin collagen3, 8, 15, 17–20. In addition to the hybrid layer, other factors 

that affect the overall quality of the a/d interfacial seal include the clinical substrate 

(variation in composition, heterogeneous structure, caries-affected dentin, sclerotic dentin, 

etc.), adhesive composition, operator technique, moisture contamination, and patient 

characteristics21.

The oral cavity is a caustic environment that challenges the durability and integrity of the 

most dental resins. To improve the compatibility between the dental adhesive and the wet, 

demineralized dentin matrix, hydrophilic and ionic monomers have been incorporated in 

contemporary dental adhesives 22. The increase in hydrophilic components facilitates 

adhesive infiltration, however there are several disadvantages including increased water 

sorption which weakens the polymer. Water plasticizes the polymer and promotes chemical 

hydrolysis of the adhesive 19. Salivary esterases23–30 and esterases from Streptococcus 
mutans30 may accelerate this hydrolysis process leading to long-term release of degradation 
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by-products. The by-products accumulate at the a/d interface and increase the virulence of 

cariogenic bacteria, e.g. S. mutans, provoking a degradative positive-feedback loop.

Adhesion of the cariogenic bacteria, S. mutans, to the tooth/adhesive/composite interface 

creates a microenvironment that promotes the subsequent attachment and growth of bacteria 

and biofilms. Lactic acid produced by S. mutans demineralizes the tooth surface, acid as 

well as enzymes produced by S. mutans erode the dental adhesive, and together these 

activities lead to wider and deeper gaps at the margin between the tooth and composite. The 

gaps provide an ideal environment for bacteria to proliferate which leads ultimately to 

recurrent decay and failure of the composite restoration20, 31–33.

1. Bio-additive hybrid dental adhesives

Dental adhesives possess broad and versatile properties, but they lack the bioactivity that is 

associated with native structures including biomolecules. Incorporating peptides with 

specific biological functionalities, e.g. antimicrobial and remineralization properties, as part 

of the material system could enhance the durability and integrity of the adhesive and the seal 

formed at the a/d interface. Polymer-peptide conjugates are generally hybrid soft materials, 

which are designed to achieve synergistic behavior of both components while overcoming 

the disadvantages inherent to the individual components34–35. Over the past two decades, 

studies of the polymer-peptide conjugates have ranged from fundamental science to 

biomedical and nonbiological applications35–43. To date, the majority of these polymer-

peptide conjugates have been soft, rapidly eroding hydrogel-based materials that degrade or 

clear after a few weeks in vivo.44 The relatively low mechanical properties and rapid erosion 

of these conjugates inhibit their application as dental restorative materials. Designing the 

conjugates to achieve their full potential is still a major challenge for biomedical 

applications.

Our recent investigations have led to a synergistic approach to the design and development 

of a bio-additively designed hybrid dental adhesive. As Fig. 1 illustrates, this biohybrid 

design is promising for achieving superior performance while regaining the integrity of the 

tooth structure within the a/d interface. The antimicrobial and remineralization activities are 

enabled by the peptides conjugated to the polymer while new polymer chemistries lead to 

enhanced mechanical properties via an autonomous strengthening reaction. The polymer-

peptide conjugation provides relatively high antimicrobial activity and promising 

remineralization of dentin at the a/d surface. The polymer alone does not inherently possess 

antimicrobial properties or remineralization capabilities. The novel polymer chemistries 

enhance the mechanical behavior through a mechanism that provides intrinsic reinforcement 

of the polymer network in both neutral and acidic conditions45.

2. Adhesive/dentin interface as the weak link

In spite of improvements in dental adhesive technology, the integrity of the a/d interface is 

vulnerable to degradation under the caustic conditions present in the mouth. The integrity of 

the a/d interface and the durability of the bonds formed at this interface have been linked 

directly to the quality of the hybrid layer. The characteristics of the etched dentin surface, 
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structural and compositional heterogeneity of the hybrid layer and the physicochemical 

properties of adhesives have been summarized to clarify their effects on the integrity of the 

a/d interface 46–47.

The demineralized dentin collagen matrix acts as the scaffold for the resin infiltration. Due 

to the varied amphiphilicity of the components in the dental adhesives and the fluid filled 

demineralized dentin matrix, adhesive infiltration into the collagen matrix results in an 

imperfect hybrid layer15, 48–49 as shown in Fig. 2. The imperfect hybrid layer leads to 

exposed collagen fibrils. The inferior properties of the exposed collagen as compared to 

resin-infiltrated or mineralized collagen50 lead to collagen that is not protected against 

challenges that can provoke denaturation and early failure51. The limited durability of the 

imperfect hybrid layer shortens the lifetime of tooth-colored resin-based restorations.

3. Tuning the antimicrobial property of dental adhesive with peptide 

conjugation

Antimicrobial peptides (AMPs) have been widely recognized as existing in all life forms as 

part of the immune systems to fight infections. Large databases, such as the Antimicrobial 

Peptide Database52 and LAMP database,53 identify thousands of naturally occurring AMPs. 

All known taxa produce AMPs54–58 which often serve as part of the innate immune 

response. In addition to naturally occurring peptides, synthetically-designed peptides are 

needed to address drug resistance in pathogens without leading to reduction of the efficacy 

of naturally produced AMPs. Recently, AMPs have been engineered to have superior 

bactericidal characteristics and broad-spectrum activity59–61.

AMPs have been studied in various dental applications such as coating agents for 

implants62–63 and additives for adhesive materials64–65 to combat pathogenic 

microorganisms66. Despite these advances, successful commercial applications that realize 

the vast potential of AMPs are quite limited in dentistry. Using high concentrations of AMPs 

through systemic delivery raises toxicity concerns, showing the need for an alternative 

delivery strategy. Another issue is non-specific interactions between AMPs and 

polymers―these non-specific interactions may limit the peptides’ availability, causing 

reduced antibacterial efficacy. 65, 67–68

Strategies to conjugate peptides to polymers, which are referred as the hybrid constructs, 

involve different coupling chemistries combining defined monomer and amino acids 

sequences. Our approach involves tethering peptides with distinctive bioactivities site 

specifically to monomers using an oligomeric spacer group to form peptide-monomer pairs. 

Next, these peptide-monomer pairs were copolymerized and the resulting polymers 

exhibited antimicrobial and remineralization properties simultaneously. Different strategies 

that have been pursued by other groups include an exploration of the interdependence of 

linked components. The interdependence has been studied by tuning the component’s 

physical properties to optimize the biologic functionalities 43, 69–70.

In tissue engineering71–72 and in surgical wound dressings,73–75 AMPs have been 

successfully incorporated into hydrogels via conjugation. Robust antimicrobial activity has 
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been demonstrated with AMP-hydrogels developed from either natural or synthetic 

materials39, 71, 76–77. Despite successful antimicrobial efficacy, currently developed natural 

or synthetic hydrogels with antibiotic functionality showed limited application in dentistry 

due to poor mechanical strength. The typical compression moduli of studied AMP-hydrogel 

conjugates varies from about 0.1 to ~40 kPa71, 76, 78–83, which are not suitable for use in 

dental restorations. The reported Young’s modulus of hydrated commercial dental adhesives 

ranges from 0.5 to 4 GPa at 37°C84–85. Until recently, no polymer material has been 

developed to combine the mechanical strength necessary to serve as a dental adhesive and 

provide antimicrobial activity from AMPs80.

Peptide diffusion in the resin could be a challenging as peptide may have restricted 

conformation limiting its activity due to non-specific adsorptions55, 67. To prevent this, we 

incorporated an AMP sequence specifically conjugated to a commonly used monomer for 

dental adhesive formulation (Fig. 3). The antimicrobial peptides GH12 and AMP2 were 

selected with their well-known activities against and reduction of cariogenic virulence 

factors of S. mutans 62, 86–8889. We designed engineered derivatives from GH12 and AMP2 

with an addition of a spacer sequence. The α-NH2 of lysine (K) in both GH12 and AMP2 

peptide derivatives was used to react with –COOH of methacrylic acid (MA) or mono-2-

(methacryloyloxy) ethyl succinate (MMES) for the synthesis of peptide-monomers (Table 

1). Both MA and MMES have one carboxylic acid group for peptide conjugation and one 

C=C bond for copolymerization with the polymer matrix. The difference between MMES 

and MA is the chain length and the flexibility. ε-NH2 of lysine (K) was blocked before 

cleavage and ε-NH2 of lysine (K) can be used for conjugation of other functional groups. To 

provide the conformational flexibility between the peptide and the polymer matrix, a spacer 

domain is introduced. Several tailored AMP-monomers have been synthesized using GH12 

and AMP2 derivative sequences to enable subsequent methacrylate conjugation. The spacer-

integrated antimicrobial peptides were linked to MA or MMES and the resulting MA-AMP 

or MMES-AMP monomers were then copolymerized into dental adhesives. Among the two 

different spacer sequences investigated for the AMP-adhesive polymer sets, the ones with 

GGG spacer demonstrated significantly more activity compared to the ones with SSSGGG 

spacer (Table 1 and Fig. 4(a))62, 90–91,92–93.

Computationally generated secondary-structure ensembles were used to estimate the 

changes in secondary structure of the active antimicrobial peptide domain with the selected 

spacer sequences. As a description of the patterns of hydrogen bonds in the peptide 

backbone, the secondary-structure ensembles have been shown to model conformations of 

the peptide that are associated with increasing concentrations of the kosmotropic agent 

tetrafluoroethanol (TFE). These structures may be more informative of folding behavior 

when the peptide acts in more ordered environments, such as in the bacterial membrane. 

Hydrogen bond patterns can be used as an indication on the effect of the spacer sequence if 

the twisting motion of the spacer is significantly different than the motion occurring in the 

free peptide. This twisting motion propensity is estimated by computationally folding the 

peptide with the spacer and comparing the hydrogen bonding patterns seen in the models 

with varying spacers and without a spacer. Based on these analyses, the GGG spacer has 

produced less secondary structural feature shifts than the SSSGGG spacer. Minimizing 

conformational shift may be one way to display improved functionality of the active domain. 
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Our current models incorporate the secondary structure predicted in solution as an indirect 

method for estimated antimicrobial activity in solution as well as an integral part of the 

adhesive system.

In solution activity of a modified peptide can be different than its conjugated activity within 

a polymer network. Interestingly, the MIC values of MA-AMPM7 and MMES-AMPM7 in 

the monomeric state were the same (Table 1). When the antimicrobial activity of AMP-

polymer conjugates against S. mutans was investigated, MA-AMPM7 did not display 

significant inhibition against S. mutans (Fig. 4). However, MMES-AMPM7 significantly 

improved antimicrobial activity as compared to MA-AMPM7 in the same crosslinked 

conjugates (Fig. 4b). The improved antimicrobial activity following polymerization 

associated with the monomer MMES may be attributed to the conformational differences of 

the secondary structure of the active antimicrobial peptide domain based upon the length of 

monomer MA and MMES.

We tested the mechanical properties of engineered AMP-polymer conjugates using 

compression testing. With the same crosslinker (TEGDMA) concentration, the Young’s 

moduli of the control and experimental (w/o peptide) specimens are found to be comparable 

at the level of 0.05 (Fig. 5). As the TEGDMA increased from 5, 10, 15, to 20 wt%, the 

Young’s moduli of the control samples were recorded as 1.81±0.13, 5.23±0.38, 9.36±0.20, 

and 16.17±0.35 MPa, respectively. Meanwhile, the corresponding AMP-polymer conjugates 

resulted in Young’s moduli of 2.43±0.26, 5.10±0.18, 9.12±0.49, and 16.63±0.45 MPa, 

respectively, which are comparable to the modulus of the formulations along the water-

adhesive phase boundary94–95. The addition of AMP monomers in the formulation does not 

indicate a loss of stiffness of the tested adhesive materials. AMP-hydrogels have been 

reported to achieve superior antimicrobial efficacy, however their mechanical strength was 

reported to be compromised limiting their potential application in dental restorative 

materials70–71, 76, 78–79, 81–83. Engineered AMP-polymer conjugates offers promising path to 

further explore as alternative restorative constructs maintaining the mechanical strength 

while providing antimicrobial properties.

4. Hybrid to biohybrid design: the strategy to achieve superior mechanical 

performance

During acid etching, the mineral phase of dentin is removed to expose the collagen and with 

the wet bonding technique, the collagen matrix remains moist to avoid collapse. Adhesive 

infiltrates the wet collagen matrix, the adhesive undergoes in situ polymerization and the 

collagen-polymerized adhesive construct, i.e. the hybrid layer, is formed. As noted above 

(sections 1 and 2), the mechanical properties of the hybrid layer deteriorate under aging 

conditions relevant to in vivo function.

Demineralization of dentin is one of the major reason for the deterioration of mechanical 

properties. There have been different top-down and bottom-up approaches proposed to 

address this problem15, 96–97. The lack of seed crystallites in the hybrid layer will 

significantly limit the remineralization, epitaxial growth over the seed crystallites as a 

classical top down approach was used to address this problem. Whereas bottom up approach 
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involves protein, peptides, or biomimetic analogs to mediate or template the nucleation and 

growth within the collagen matrix 97. Peptide mediated remineralization of the dentin can be 

one approach to mitigate the negative impact of the deteriorating mechanical properties. 

Nevertheless, controlling the orientation of crystallites and achieving complete 

remineralization still present a challenge15, 98. Indeed, atomic computations suggest 

complex binding interactions between peptides and mineral surfaces that prefer specific 

conformations and compatible crystallite habit99.

Along with the remineralization approach, our polymer chemistry investigations have led us 

to new strategies for addressing deteriorating mechanical properties that are generally noted 

in dental adhesives under in vivo conditions. We reported the self-strengthening strategy to 

reinforce the polymethacrylate-based dental adhesive by introducing photoacid-induced sol-

gel reaction45, 100–102 for the first time. The results indicated that in both neutral and acidic 

conditions, the self-strengthening significantly improve the mechanical properties. By tuning 

the alkoxysilane monomer’s structure and functionalities, we have engineered dental 

adhesives that provide the requisite hydrophilic-hydrophobic balance, a more homogenous 

structure and self-strengthening properties 100, 102.

4.1. Peptide Mediated Remineralization

Endogenous enzymes such as matrix metalloproteinases that degrade the exposed 

demineralized dentin; bacteria and saliva enzymes and factors such as chemical and 

enzymatic hydrolysis cause deterioration of the bond between dentin and low viscosity 

adhesive used to connect the composite to the tooth103. In the process following this 

degradation, the bacteria penetrate the interface, the cariogenic plaque accumulates in the 

exposed, demineralized dentin leading ultimately to decay and failure of the composite 

restoration. Failure to maintain the integrity of the a/d bond reduces the clinical lifetime of 

composite restorations 104–105. Remineralization of deficient/damaged dentin matrices at the 

a/d interface, mediated by peptides, 106–107 provides a viable solution to this problem.

To mimic biomolecular interactions at the material-tissue interface, we as well as many other 

groups selected peptides for metals, minerals and semiconductors using combinatorial 

biology protocols, e.g., phage and cell surface displays108–122. We utilized these peptides in 

several bioactive and antimicrobial surface design, inorganic material synthesis and directed 

nanoparticle or biomolecule assembly121, 123–134,135. Our prior art includes a hydroxyapatite 

binding peptide (HABP: CMLPHHGAC) selected using phage display method 

demonstrating a control over the hydroxyapatite mineralization kinetics and resulting in a 

specific morphology136. In a different study this peptide was also shown to bind to the 

mineralized tissues after incorporating into a fluorescent probe 137. We further explored this 

peptide for achieving remineralization at the biohybrid layer (Fig. 6)

Remineralization is one clear component of a multi-faceted strategy to achieve a durable, 

integrated a/d interface that will provide a critical barrier between the repaired tooth and the 

oral environment. The HABP peptide that is genetically inserted into a green fluorescent 

protein was explored to mineralize deficient dentin matrices at the a/d interface. Our 

analyses on the collagen, adhesive and mineral demonstrated the homogenous distribution of 

mineral achieved throughout the dentin interface. 138. We next designed an engineered 
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peptide-based copolymer system using a spacer integrated HABP derivative to conjugate it 

to methacrylate. When resulting methacrylate-HABP monomers were copolymerized into 

dental adhesive formulation, we observed a mineral forming effect using an alizarin red 

staining assay (Fig. 7). Moreover, the spherical particle formed was confirmed by the SEM 

images (Fig. 7). The overall porosity of the dental adhesive structure decreases in peptide-

polymer conjugates and mineralization favors high porosity. Our results demonstrates that 

significant mineralization is achieved in the polymer-peptide conjugate structure as 

compared to the polymer only structure (Fig. 8).

Building on these promising results, we studied the potential of using peptide-protein 

conjugates to achieve peptide-mediated mineralization at the a/d interface. Fig. 9 reveals that 

significant remineralization is achieved at the a/d interface, which was exposed to 

mineralization solution after being demineralized and then infiltrated with adhesive that 

contains peptide. Further investigation is required to optimize the peptide-tethered-adhesive 

to provide peptide-mediated mineralization under conditions relevant to the in vivo settings.

4.2. New polymer chemistries: self-strengthening property

In our previous investigations,45, 100–102 the self-strengthening adhesives showed: 1) 

formulation with lower viscosity and higher C=C bond conversion; 2) significantly improved 

crosslinking density and mechanical performance in wet conditions; 3) dramatically reduced 

leachates, especially HEMA. These results support the use of self-strengthening adhesives as 

one component of a multi-faceted strategy to promote the durability and integrity of the a/d 

interface.

The novel alkoxysilane-containing adhesives capitalize on free-radical polymerization and 

sol-gel reactions to provide self-strengthening polymers. The relatively slow rate of the 

photoacid-induced sol-gel reaction compared to the free-radical polymerization provides a 

novel way to tune the network structure after light irradiation. Fig. 10 shows the proposed 

mechanism for the self-strengthening reactions after light irradiation. When the liquid resin 

is irradiated by visible-light, the polymethacrylate-based matrix is formed by free radical 

polymerization of the co-monomers, e.g., HEMA and BisGMA. Simultaneously, the 

alkoxysilane groups are hydrolyzed in a reaction catalyzed by the photoacid produced during 

the visible-light irradiation. Soaking the resin in water or lactic acid furthers the autonomous 

hydrolysis and condensation of the alkoxysilyl moieties, creating new crosslink points. The 

resulting silanol groups react with the hydroxyl groups of HEMA or BisGMA to form 

covalent bonds. The autonomic sol-gel reaction continues in the wet environment, leading to 

intrinsic reinforcement of the network. As Fig. 11 indicates, the simulation based on Prony 

series-fitting139 showed that the mechanical properties of polymers were significantly 

improved by the self-strengthening reaction in the first few days whereas the formulation 

without self-strengthening property fails after the first testing day (Sarikaya et al., 
unpublished observations). With the increase in soaking time, the effect of self-strengthening 

reaction on the stress relaxation behavior of bulk polymer decreases due to the gradual 

increase in the crosslinking density of the polymer. In comparison, the DMA test results 

indicated that the self-strengthening contributed to the further crosslinking reaction even 

after 8 weeks soaking in water45, 102. Within the polymethacrylate-based matrix, the self-

Sarikaya et al. Page 8

J Mech Behav Biomed Mater. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



strengthening adhesive provided a slow, persistent crosslinking reaction, which can promote 

the formation of Si-O-Si bonds and improve the hydrolytic resistance.

6. Conclusions

The bioinspired materials design approach offers significant promise for promoting the 

integrity of the a/d interface and providing a concomitant increase in the lifetime of 

composite restorations. Here we summarize synergistically working bio-hybrid constructs 

that are designed by engineering peptides combined with new polymer chemistries. Discrete 

peptides are tethered to polymers to provide multi-bio-functional adhesive formulations that 

simultaneously achieve antimicrobial and remineralization properties. Spacer sequences are 

used to provide reactive groups for simultaneously tethering functionally distinctive peptides 

to the monomer as well as providing the length and flexibility required to maintain the 

peptide’s original bioactivities when applied as an adhesive at the tooth surface. Examples 

on peptide-polymer conjugates are provided to remineralize the deficient/mineral-depleted 

dentin matrices as well as to promote antimicrobial activity at the a/d interface without 

compromising the polymer`s mechanical properties. This hybrid approach includes new 

polymer chemistries resulting dental adhesives with self-strengthening properties, enhanced 

hydrolytic stability and decreased degradant release.

The inherent specificity of peptides makes them ideal molecules for conjugation with 

synthetic polymers to create new functional biomaterials. The physical limitations of 

peptides, such as their sensitivity to pH, temperature, and degradation, could be mitigated 

through conjugation with polymers34–35. However, conjugation often leads to a significant 

reduction in the peptide’s bioactivity. Typically, the polymer-peptide conjugates are soft 

materials that are used in solution, hydrogels, or loosely crosslinking gels to maintain the 

peptide’s bioactivity35, 43. Therefore, one important consideration for the peptide-polymer 

conjugate used in a dental adhesive application is the balance between bioactivity, durability 

and mechanical properties. To address this challenge, optimization of the peptide bioactivity 

and control of chemical conditions such as the ratio of peptide-to-polymer, as well as the 

resin components, should be thoroughly investigated. With the fundamental knowledge of 

structural and biological properties of polymer-peptide conjugates, the investigations can 

lead to an ability to tailor the conjugates to meet the needs of specific applications. The 

efforts to develop polymer-peptide conjugates have the potential of providing new roadmaps 

for material design and this work offers promise for advancing the development of materials 

for a variety of biomedical applications 42, 140–141. The resulting biofunctional materials 

may be exploited in a wide variety of applications including, but not limited to, the treatment 

of secondary caries, enhanced durability of dental composite restorations, antimicrobial gels, 

and tissue engineering applications. In tissue engineering, free-radical crosslinked polymers 

are desirable because they can be polymerized in direct contact with tissues, either in 

solution, or in thin layer on the surface141–143. Polymer-peptide conjugates hold great 

promise as a new class of hybrid biomaterials with diverse attributes, such as antimicrobial 

properties,144–145 cell-penetration scaffolds,146 mineralized tissue repair and bioadhesive 

properties147. With the introduction of self-strengthening characteristic, the conjugates can 

be tailored to achieve target properties required for specific biomedical applications. This 

strategy could be introduced into the biomaterials to tune the mechanical properties, e.g. 
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viscoelasticity, which is desirable for tissue engineering, and numerous other applications, 

such as 3D printing, wound dressing, scaffold materials, as well as bone regeneration.
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Fig. 1. 
Bio-additive hybrid material design strategy leading to high performance a/d interface.
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Fig. 2. 
Non-ideal a/d interface exhibiting heterogeneity in terms of composition of the hybrid layer 

and adhesive throughout the depth of the demineralized dentin collagen.
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Fig. 3. 
Tethering peptides to polymers leading to superior antimicrobial property and mechanical 

performance.

Sarikaya et al. Page 20

J Mech Behav Biomed Mater. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
(a) The viability of S. mutans cultures after overnight incubation with polymerized discs 

containing non-AMP-monomer or AMP-monomers. S. mutans: a positive control without a 

disc. Peptide control: MA-nonAMP with GGG as a spacer. MA-C0 is the methacrylate 

control polymer replacing methacrylate peptide conjugates with methacrylate monomer, and 

(b) the viability of S. mutans cultures after overnight incubation with polymerized discs 

containing MA-AMPM7 or MMES-AMPM7 monomers. S. mutans: a positive control 

without a disc.
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Fig. 5. 
Young’s moduli of the controls and AMP-polymer conjugates cylindrical samples.
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Fig. 6. 
Biohybrid layer achieved through peptide mediated remineralization.
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Fig. 7. 
Light microscopy and SEM images of peptide mediated mineralization on polymer discs. 

Peptide integrated polymer discs were stained with Alizarin Red.
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Fig. 8. 
Micro-CT images of mineralization with and without peptide mediation on polymer disks.
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Fig. 9. 
Light microscopy images showing peptide-mediated mineralization at a/d interface.
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Fig. 10. 
The evolution of network structure in adhesive through self-strengthening reaction.
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Fig. 11. 
Improved mechanical performance of the self-strengthening polymer adhesive over time: (a) 

Stress-relaxation test results and (b) Stress-strain behavior prediction based on Prony-series-

fitted stress-relaxation-test data. Stress relaxation test informs that HEMA/BISGMA/MPS 

formulation (E1) is superior to HEMA/BISGMA/MES formulation (C1) in terms of 

stiffening behavior in wet conditions.
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Table 1.

The sequence information of the AMPs and AMP-monomers with their antimicrobial properties

AMP and AMP-monomer Sequence MIC (μg/mL)

GH12 (COOH) GLLWHLLHHLLH (COOH) 15.6

AMPM1 K_GGGSG_GLLWHLLHHLLH (COOH) 31.3

AMPM3 K_GGG_GLLWHLLHHLLH-NH2 7.8

AMPM5 K_SSSGGG_GLLWHLLHHLLH-NH2 15.6

MA-AMPM1 MA-K_GGGSG_GLLWHLLHHLLH (COOH) 125

MA-AMPM3 MA-K_GGG_GLLWHLLHHLLH-NH2 7.8

MA-AMPM5 MA_K_SSSGGG_GLLWHLLHHLLH-NH2 15.6

AMP2-NH2 KWKRWWWWR-NH2 3.9

AMPM7 K_GGG_KWKRWWWWR-NH2 7.8

AMPM8 K_SSSGGG_KWKRWWWWR-NH2 31.3

MA-AMPM7 MA-K_GGG_KWKRWWWWR-NH2 7.8

MA-AMPM8 MA-K_SSSGGG_KWKRWWWWR-NH2 62.5

MMES-AMPM7 MMES-K_GGG_KWKRWWWWR-NH2 7.8

J Mech Behav Biomed Mater. Author manuscript; available in PMC 2022 January 01.


	Abstract
	Introduction
	Bio-additive hybrid dental adhesives
	Adhesive/dentin interface as the weak link
	Tuning the antimicrobial property of dental adhesive with peptide conjugation
	Hybrid to biohybrid design: the strategy to achieve superior mechanical performance
	Peptide Mediated Remineralization
	New polymer chemistries: self-strengthening property

	Conclusions
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Fig. 9.
	Fig. 10.
	Fig. 11.
	Table 1.

