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Current attempts at methodological reform in sciences come
in response to an overall lack of rigor in methodological and
scientific practices in experimental sciences. However, most
methodological reform attempts suffer from similar mistakes
and over-generalizations to the ones they aim to address. We
argue that this can be attributed in part to lack of formalism
and first principles. Considering the costs of allowing false
claims to become canonized, we argue for formal statistical
rigor and scientific nuance in methodological reform.
To attain this rigor and nuance, we propose a five-step
formal approach for solving methodological problems.
To illustrate the use and benefits of such formalism, we
present a formal statistical analysis of three popular claims in
the metascientific literature: (i) that reproducibility is the
cornerstone of science; (ii) that data must not be used twice
in any analysis; and (iii) that exploratory projects imply poor
statistical practice. We show how our formal approach can
inform and shape debates about such methodological claims.
1. Introduction
Widespread concerns about unsound research practices, lack of
transparency in science and low reproducibility of empirical
claims have led to calls for methodological reform across scientific
disciplines [1–4]. The literature on this topic has been termed
‘meta-research’ [5] or ‘metascience’ [6] and has had policy impact
on science agencies, institutions, and practitioners [7]. Perhaps
surprisingly, proper evaluation of methodological claims in meta-
research—understood as statements about scientific methodology
that are either based on statistical arguments or affect statistical
practice—has received little formal scrutiny itself. Policies are
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proposedwith little evidentiary backing and based onmethodswhich are suggestedwith no framework for

assessing their validity or evaluating their efficacy (e.g. see policy and methods proposals in [8–13]).
For example, reform methodologists have criticized empirical scientists for: (i) prematurely presenting

unverified research results as facts [14]; (ii) overgeneralizing results to populations beyond the studied
population [15]; (iii) misusing or abusing statistics [16,17]; and (iv) lacking rigor in the research
endeavour that is exacerbated by incentives to publish fast, early, and often [11,12]. However, the
methodological reform literature seems to us to be afflicted with similar issues: we see premature
claims that untested methodological innovations will solve replicability/reproducibility problems;
conditionally true statements about methodological tools presented as unconditional, bold claims
about scientific practice; vague or misleading statistical statements touted as evidence for the validity
of reforms; and we are concerned about an overall lack of rigor in method development that is
exacerbated by incentives to find immediate solutions to the replication crisis (see also [7], for an
overall critique of the dominant epistemology of metascience). This is a reason for concern. We expect
methodological reforms to be held to standards that are at least as rigorous as those we expect of
empirical scientists. Should we fail to do so, we run the risk of repeating the mistakes of the past and
creating new scientific processes that are no better than those they replace. There is an uncomfortable
symmetry to this, but also an opportunity: reformers are in an opportune position to take criticism
and self-correct before allowing false claims to be canonized as methodological facts [18].

In this paper, we advocate for the necessity of statistically rigorous and nuanced arguments to make
proper methodological claims in the reform literature. Because methodological claims are either based on
statistical arguments or affect statistical practice, they need to be statistically correct. Statistics is a formal
science whose methods follow from probability calculus to be valid, and this validity is established either
by mathematical proofs or by simulation proofs before being advanced for the use of scientists.
Formalization allows us to subject our verbal intuitions to scrutiny, revealing holes, inconsistencies,
and undeclared assumptions and to make precise, transparent claims that hold under well-specified
assumptions [19]. As such, by statistical rigor, we mean doing and showing the necessary formal
work to establish how we know a methodological claim is valid, in a way that does not leave room for
idle speculation. Scientific and statistical nuance, on the other hand, is about clearly specifying when
(i.e. under what assumptions and conditions) a claim should apply, which should result in measured
and contextual statements while preventing over-generalizations.

The emphasis and novelty of our current work is in demonstrating by example how formal rigor can
be achieved when proposing methods in metascience: by motivating them from first principles, and
using fundamental mathematical statistics machinery to provide their proofs. Herfeld & Ivanova
[20, p. 1] talk about first principles in science as fundamental building blocks and define them as
follows: ‘Depending on the case, they can be formal axioms, theoretical postulations, basic
propositions, or general principles that have a special status and role to play in the theory in which
they are embedded.’ Methodological reform and metascience currently lack a theoretical foundation
[7], are ambiguous about their first principles, and may benefit from formalism in establishing these
building blocks. A formal approach to solving methodological problems can be summarized as follows.

Formal approach to solving methodological problems.
0. Conception. An informal problem statement and a proposed solution to that problem, often expressed

non-technically.
1.Definitions. Identification of variables, population parameters, and constants involved in the problem,

and statistical model building using these quantities, with explicitly stated model assumptions.
2. Formal problem statement. Mathematical propositions or algorithms positing methodological claims.
3. Formal result. Mathematical or simulation-based proofs that interrogate the validity of the statements

in step 2.
4a. Demonstrations. If the statements are valid, examples showing their relevance in application.
4b. Extensions and limitations. Assessing methodological claims’ computational feasibility, robustness,

and theoretical boundaries in domain-specific applications.
5. Policy making. Recommendations on how methods newly established through steps 2-4 can be useful

in practice.

Regardless of which claims they support or oppose to, most popular methodological proposals in the
reform literature start with step 0, and jump to step 5 without formal results or much evidence of
work on intermediate steps. This is in stark contrast with proper formal approach in statistical method
development. Practical value of a method established by steps 4b and 5 may require domain-specific
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knowledge and might not be tackled well until after a method is introduced. However, in proper method

development, these steps are undertaken only if steps 1-4a can actually provide justifications for or
against a methodological proposal at the onset.

To show why formalism is essential in establishing the validity of methodological proposals and how
informal approaches making the jump from step 0 to 5 might misinform scientific practice, we evaluate
three specific examples of methodological claims from the reform literature:

— reproducibility is the cornerstone of, or a demarcation criterion for, science;
— using data more than once invalidates statistical inference; and
— exploratory research uses ‘wonky’ statistics.

We focus on these claims as case studies to illustrate our approach because all three are methodological
claims with statistical implications that have been impactful1 in the metascience literature as well as on
post-replication crisis practices of empirical scientists while also receiving considerable but informal
criticism. In an attempt to demonstrate how to formally resolve such disagreements, we evaluate each
of these claims using statistical theory, against a broad philosophical and scientific background.

The results from our call for formal statistical rigor and nuance can reach further: a formal statistical
approach establishes a framework for broader understanding of a methodological problem by a careful
mathematical statement and consideration of model assumptions under which it is valid. Most valid
methodological advances are incremental, because they can only be shown formally to be valid under
a strong set of assumptions. These advances rarely ever provide simple prescriptions to complex
inference problems. Norms issued on the basis of bold claims about new methods might be quickly
adopted by empirical scientists as heuristics and might alter scientific practices. However, advancing
such reforms in the absence of formal proofs is sacrificing rigor for boldness and can lead to
unforeseeable scientific consequences. We believe that hasty revolution may hold science back more
than it helps move it forward. We hope that our approach may facilitate scientific progress that stands
on firm ground—supported by theory or evidence.
2. Claim 1: reproducibility is the cornerstone of, or a demarcation criterion
for, science

A common assertion in the methodological reform literature is that reproducibility2 is a core scientific
virtue and should be used as a standard to evaluate the value of research findings [1,4,23,25,27–30].
This assertion is typically presented without explicit justification, but implicitly relies on two
assumptions: first, that science aims to discover regularities about nature and, second, that
reproducible empirical findings are indicators of true regularities. This view implies that if we cannot
reproduce findings, we are failing to discover these regularities and hence, we are not practising science.

The focus on reproducibility of empirical findings has been traced back to the influence of
falsificationism and the hypothetico-deductive model of science [31]. Philosophical critiques highlight
limitations of this model [32,33]. For example, there can be true results that are by definition not
reproducible. Some fields aim to obtain contextually situated results that are subject to multiple
interpretations. Examples include clinical case reports and participant observation studies in
hermeneutical social sciences and humanities [33]. Other fields perform inference on random
populations resulting from path-dependent stochastic processes, where it is often not possible to
obtain two statistically independent samples from the population of interest. Examples are inference
on parameters in evolutionary systems or event studies in economics. There are also cases where
observing or measuring a variable’s value changes its probability distribution—a phenomenon akin to
the observer effect. True replication may not be possible in these cases. In short, science does—rather
often, in fact—make claims about non-reproducible phenomena and deems such claims to be true in
1As an indication of impact on scientific literature, we looked up Google Scholar citation counts for some of the key articles from which
these claims originate, the oldest of which was published 8 years ago. By the time, the current manuscript was last revised, [1] had 686;
[12] had 1045; [21] had 473; [22] had 574; [23] had 529; [4] had 4807; [24] had 1182; [13] had 704; and [25] had 244 citations.
2Here, we use reproducibility as in: ‘the extent to which consistent results are observed when scientific studies are repeated’ ([23],
p. 657). In appendix A, we provide a technical definition of reproducibility which we use in obtaining our results. We limit our
discussion to statistical reproducibility of results only (similar to results reproducibility in [26]), and exclude other types such as
computational or methods reproducibility—whether the materials, methods, procedures, algorithms, analyses used in an original
study are reported in a sufficiently detailed and transparent way that enables others to carry it out again.
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spite of the non-reproducibility. In these instances what scientists do is to define and implement

appropriate criteria for assessing the rigor and the validity of the results [32], without making a
reference to replication or reproduction of an experimental result. Indeed, many scientific fields have
developed their own qualitative and quantitative methods such as ethnography or event study
methodology to study non-reproducible phenomena.

We argue that even in scientific fields that possess the ability to reproduce their findings in principle,
reproducibility cannot be reliably used as a demarcation criterion for science because it is not necessarily
a good proxy for the discovery of true regularities. This counterpoint has informally been brought up in
metascience literature before [26,34–39]. Our goal is to further advance this argument by providing a
formal, quantitative evaluation of statistical reproducibility of results as a demarcation criterion for
science. We consider the following two unconditional propositions: (i) reproducible results are true
results, and (ii) non-reproducible results are false results. If reproducibility serves as a demarcation
criterion for science, we expect these propositions to be true: we should be able to reproduce all true
results and fail to reproduce all false results with reasonable regularity. In this section, we provide
statistical arguments to probe the unconditional veracity of these propositions and we challenge the role
of reproducibility as a key epistemic value in science. We also list some necessary statistical conditions for
true results to be reproducible and false results to be non-reproducible. We conclude that methodological
reform first needs a mature theory of reproducibility to be able to identify whether sufficient conditions
exist that may justify labelling reproducibility as a measure of true regularities.

2.1. Reproducibility rate is a parameter of the population of studies
To examine the suitability of reproducibility as a demarcation criterion, a precise definition of
reproducibility of results is necessary. While many definitions have been offered for replication and
results reproducibility (see [44], for a partial list), most are informal and not sufficiently precise or
general for our purposes3. In this paper, we use our own definitions based on first principles to
facilitate the derivation of our theoretical results. In assessing the reproducibility of research results,
literature refers to ‘independent replications’ of a given study. Therefore, it is necessary to define the
notion of a study mathematically, before referring to replications of that study. We provide a precise
mathematical definition of an idealized study in appendix A. Briefly, its components involve an
assumed probability model generating the data involving the random variable and parameters of
interest, a dataset of fixed sample size, the statistical method employed in analysing the data, the
background knowledge about the variable of interest, and a decision rule to deliver the result of the
analysis. We note that it is not sufficient to lay out the higher-level assumptions to provide formal
results. Lower-level assumptions such as mathematical regularity conditions about variables must also
be specified as outlined in step 1 of our formal approach. We also note that the definition given in
appendix A is sufficiently broad to investigate reproducibility of results for any mode of statistical
inference including estimation, model selection, and prediction, and not just hypothesis testing.

Strictly, we cannot speak of statistical independence between an original study and its replications. If
study B is a replication of study A, then many aspects of study B depend on study A. Rather, sequential
replication studies should be assumed statistically exchangeable, conditional on the results and the
assumptions of the original study, in the sense that the group of results obtained from a sequence of
replication studies are probabilistically equivalent to each other irrespective of the order in which
these studies are performed. Assuming that exchangeability holds, probability theory shows that the
results from replication studies become independent of each other, but only conditional on the
background information about the system under investigation, model assumed, methods employed,
and the decision process used in obtaining the result. The commonly used phrase ‘independent
replications’ thus has little value in developing a theory of reproducibility unless one takes sufficient
care to consider all these conditionals.

This conditional independence of sequence of results immediately implies that irrespective of
whether a result is true or false, there is a true reproducibility rate of any given result, conditional on
3Some exceptions are as follows: Patil et al. [38] use the overlap in prediction intervals from original and replication studies to define a
statistical measure of reproducibility. Gorroochurn et al. [45] investigates the relationship between reproducibility and p-values and in
the context of association between variables. Pauli [46] develops a Bayesian model to evaluate the results of replication studies and
estimate a reproducibility rate. Hedges & Schauer [47] offer a principled way of evaluating replication studies within a meta-
analytic framework. Different from purely statistical approaches, Fanelli [48] takes a meta-analytic approach to study
reproducibility and uses an information theoretical framework to quantify it. We acknowledge and endorse the formal approach
undertaken by these articles to address practical problems of evaluating and quantifying the results of replication experiments.



Box 1. Some necessary conditions to obtain true results that are reproducible and false results that are non-reproducible.

— True values of the unknown and unobservable quantities for which inference is desired must be
in the decision space (appendix B).

Examples: (i) in model selection, selecting the true model depends on having an
M-closed model space, which means the true model must be in the candidate set [40]; and
(ii) in Bayesian inference, converging on the true parameter value depends on the true
parameter value being included in the prior distribution, as stated by Cromwell’s rule
([41], p. 90).

— If inference is performed under one assumed model, that model should correctly specify the true
mechanism generating the data.

Example: a simple linear regression model with measurement error misspecified as a simple
linear regression model yields biased estimates of regression coefficients, which will affect
reproducibility of true and false results (figures 1 and 2).

— The quantities that methods use to perform inference on unknown and unobservable
components of the model must contain enough information about those components: if they
are statistics, they cannot be only ancillary. If they are pivots that are a function of nuisance
parameters, then the true value of those nuisance parameters should permit reproducibility of
results (appendix B).

Example: in a one sample z-test where the population mean is not equal to the hypothesized
value under the null hypothesis, the test incorrectly fails to reject with large probability owing to
large population variance.

— If inference is about parameters, observables must carry enough discernible information about
these parameters. That is, model parameters should be identifiable structurally and
informationally. Even weak unidentifiability will reduce the reproducibility of true results.

Example: the requirement that the Fisher information ([42], p. 115) about unknown
parameters should be sufficiently large in likelihoodist frameworks.

— Free parameters of methods should be compatible with our research goals.
Example: a hypothesis test in Neyman–Pearson framework with Type I error rate α≈ 1 is a

valid statistical procedure that rejects the null hypothesis almost always when it is true.
— Methods should be free of unknown bias.

Example: Heisenbug is a special case of observer effect—where mere observation changes the
system we study, potentially leading to false results that are reproducible—found in computer
programming, that refers to a software bug that alters its behaviour or even disappears
during debugging.

— The sample on which inference is performed is representative of the population from which it is
drawn.

Example: statistical methods assume probabilistic sampling and do not make any claims in a
non-probabilistic sampling framework [43].
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the properties of the study. This true reproducibility rate is determined by three components: the true
model generating the data, the assumed model under which the inference is performed, and the
methods with which the inference is performed. In this sense, the true reproducibility rate is a
parameter of the population of studies and we have the following result which satisfies step 2 of our
formal approach.

Proposition 2.1. Let Ro be a result and R(i) be the result in ith attempted replication of the idealized
study from which Ro is obtained. If I{R(i)¼RojRo} ¼ 1 we say that Ro is reproduced by R(i). Else, we say that Ro

failed to reproduce by R(i). Conditional on Ro, the relative frequency of reproduced results ϕN→ ϕ∈ [0, 1], as
N→∞. Further, ϕ = 1 only in highly specific problems. Proof is provided in appendix B, per step 3 of our
formal approach.)

To show the value of the formal approach, we now briefly interpret what proposition 2.1 establishes
and contributes to our understanding about reproducibility of results. Just like a statistic (e.g. sample
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mean) has a sampling distribution, and it converges to its population counterpart (i.e. the population

mean) as the sample size increases, the sample reproducibility rate of a sequence of idealized studies
has a sampling distribution, and it will converge to its population counterpart as the number of
studies increases. Therefore, the true reproducibility rate for an idealized study must be a fixed
population quantity and it is independent of our efforts given the idealized study. Furthermore, this
rate of reproducibility can take any value between 0 and 1. The actual value depends on the
properties of the idealized study but it can be high or low, so that we should not expect it to be high
all the time. Finally, we note that this holds for any result, true or false. Stepping back, now we see
the advantage of the formal approach as follows. Given the definitions in appendix A, if the proof in
appendix B is correct, then our result is a mathematical fact and it must be correct. Therefore, a formal
statement like proposition 2.1 has taken us one step further to understand the properties of
reproducibility of results.

2.2. True results are not necessarily reproducible
Much of the reform literature claims non-reproducible results are necessarily false. For example,
Wagenmakers et al. ([13], p. 633) assert that ‘Research findings that do not replicate are worse than
fairy tales; with fairy tales the reader is at least aware that the work is fictional.’ It is implied that true
results must necessarily be reproducible, and therefore non-reproducible results must be ‘fictional.’
More mildly, Zwaan et al. ([25], p. 13) state: ‘A finding is arguably not scientifically meaningful until
it can be replicated with the same procedures that produced it in the first place.’ Others have taken
issue with this claim (e.g. [36,38,45]), pointing to reasons why replication attempts may fail to
reproduce the original result other than its truth value. We now take our formal approach again and
find that an evaluation of the claim provides support for this criticism.

The fact that the true reproducibility rate is a parameter of the population of studies matters: this
parameter is a probability and therefore, it takes values on the interval [0, 1]. This implies that for
finite sample studies involving uncertainty, the true reproducibility rate must necessarily be smaller
than one for any result and in fact, we have the following result (step 2 of our formal approach).

Proposition 2.2. There exists true results Ro =RT, whose true reproducibility rate ϕT is arbitrarily close to
0. (Per step 3 of our formal approach, proof is provided in appendix B.)

Before looking into some examples for proposition 2.2, we discuss it to make an important point
about the formal approach: proposition 2.2 may seem perplexing because intuitively, we might expect
that if a result is true, we should be able to reproduce it. If this is in fact our (wrong) intuition, we
should revisit and re-hone it studying the proof of proposition 2.2. The reason is that, in a formal
approach as long as the proof is correct, the result must be correct, and therefore our intuition must
be wrong. Most importantly, all this evaluation is made possible by motivating the issue of
reproducibility from the first principles and proceeding formally from that point into a next by stating
and proving the results that help us to build knowledge on the subject. We already argued that first
principles on evaluating the reproducibility of results required a definition of idealized study, together
with all its assumptions and mathematical regularity conditions (appendix A). Given these, we were
able to show that reproducibility rate is a parameter of the population of studies (proposition 2.1).
Given this, we showed that the relationship between true results and their reproducibility rate might
be complex (proposition 2.2). Therefore, moving in this formal way builds a solid body of knowledge,
mathematically supported under well-defined and delineated models.

As an example of step 4a of the formal approach to solving methodological problems, we discuss two
statistical scenarios to illustrate the counterintuitive result provided by proposition 2.2. A well-known
example is a data generating model where the sampling error (the uncertainty) is large with respect to
the model expectation (the signal). This is rather an informal statement of the kind we make in step 0
(i.e. no statistical model is specified) of the formal approach to solving methodological problems. If
we want to check whether the statement is true, it should and can be precisely formulated
mathematically starting from our definition of idealized study.

In contrast to statements ubiquitous in metascience literature (e.g. [25,37]), large sampling error is not
the only reason why true results might not be reproducible. Falling back to the definition of an idealized
study given in appendix B, we see that its components are the assumed model and its parameters, data,
method, background knowledge of the system and the decision function to obtain a result. Because the
reproducibility rate is a parameter of population of studies, components of an idealized study other than
large sampling error can affect the reproducibility of a true result. For example, the model might be
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Figure 1. (a) Reproducibility rate of a true result decreases with measurement error in a misspecified simple linear regression
model. Reproducibility rate is estimated by the proportion of times the 95% confidence interval captures the true effect.
Sample sizes are 50 (small) and 500 (large). The true regression coefficient of the predictor variable is 2 (small effect) and 20
(large effect). Model details are given in appendix D. (b) Example data (black points) generated under simple linear regression
model E(Y ) = 2 + 20X. Measurement and sampling error are normally distributed with standard deviations equal 3. Regression
lines are fit under measurement error model (magenta line) and the correct model (blue line) with a sample size of 100. The
95% confidence interval for the regression coefficient obtained under the measurement error model is (7.94, 12.37), which
does not include the true value 20. By contrast, the 95% confidence interval for the regression coefficient obtained under the
correct model, (19.86, 20.21), includes the true value. For the code generating all simulations and figures in the article, please
see the electronic supplementary material.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:200805
7

misspecified, or the model might be correctly specified and sampling error small, but the method might
have large error, or the decision function might not be optimal. Again, having defined an idealized study
formally helps us to investigate and prove any one of these cases if we wish so.

We can also evaluate the opposite of the large sampling error case: small sampling error is not a
guarantee that true results will be highly reproducible. It turns out that there are mathematically
necessary conditions other than the truth value of a result, that need to be met for true results to be
highly reproducible. Some of these conditions which are related to the components of idealized study
are listed in box 1 informally. Thus, the formal approach has also the advantage of motivating and
evaluating other cases such as complements, reverses, or counters, and therefore it enriches our
understanding of reproducibility of results.

Another well-known statistical scenario illustrating proposition 2.2 is when the data are analysed under
amisspecifiedmodel (per step 4a). Here, we take a simple linear regressionmeasurement errormodel inwhich
themeasurement error is unaccounted for (figure 1).We are interested in the effect of measurement error on
the reproducibility rate of a true effect. As the ratio of the measurement error variability in predictor to
sampling error variability increases, the probability that an interval estimator of the regression coefficient
(i.e. the effect size) at a fixed nominal coverage contains the true effect decreases. This is not simply an
artefact of small sample sizes or small effects: the same pattern is obtained for large sample sizes and
large true effects. In fact, for large sample sizes, the reproducibility rate drops to zero at lower
measurement error variability than for small sample sizes (also see [49], for a similarly counter-intuitive
effect of measurement error). Furthermore, the negative effect of measurement error on reproducibility
rate of a true result actually grows with effect size, as figure 1a illustrates. Even in this relatively simple
setting it is by no means a given that a true result will be reproducible. Measurement error is only one
type of model misspecification. Other sources of misspecification and types of human error (e.g.
questionable research practices) might further impair the reproducibility of true results.

When true reproducibility rate of a true result is low, the proportion of studies that fail to reproduce a
true result will be high, even when methods being used have excellent statistical properties and the
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model is correctly specified. However, a true low reproducibility rate does not necessarily indicate a

problem in the scientific process. As Heesen [50] notes, low reproducibility in a given field or
literature may be the result of there being few discoveries to be made in a given scientific system.
When that is the case, a reasonable path to making scientific progress is to learn from non-
reproducible results. Indeed, the history of science is full of examples of fields going through an
arduous sequence of experiments yielding failures such as non-reproducible results to eventually
arrive at scientific regularities [51–53].

In an article that makes practical recommendations to improve the methodology of psychological
science, Lakens & Evers [54, p. 278] argue that ‘One of the goals of psychological science is to
differentiate among all possible truths’ and suggest that one way to achieve this goal is to improve the
statistical tools employed by scientists. Some care is needed when interpreting this claim. Statistical
methods might indeed help us get close to the true data generating mechanism, if their modelling
assumptions are met (thereby removing some of the reasons why true results can be non-
reproducible). However, statistics’ ability to quantify uncertainty and inform decision making does not
guarantee that we will be able to correctly specify our scientific model. Irrespective of reproducibility
rates of results obtained with statistical methods, scientists attempting to model truth use theories
developed based on their domain knowledge. Some of the problems raised in box 1, including model
misspecification and decision spaces that exclude the true value of the unknown components, can
only be addressed using a theoretical understanding of the phenomenon of interest. Without this
understanding, there is no theoretical reason to believe that reproducibility rates will inform us about
our proximity to truth.

It would be beneficial for reform narratives to steer clear of overly generalized sloganeering regarding
reproducibility as a proxy for truth (e.g. reproducibility is a demarcation criterion or non-reproducible
results are fairy tales). A nuanced view of reproducibility might help us understand why and when it
is or is not desirable, and what its limitations are as a performance criterion.

2.3. False results might be reproducible
Contrary to proposition 2.2, the next proposition considers false results and the respects in which these
can sometimes be highly reproducible (per step 2 of our formal approach).

Proposition 2.3. There exists false results Ro =RF, whose true reproducibility rate ϕF is arbitrarily close to 1.
(Per step 3 of our formal approach, proof is provided in appendix B.)

In well-cited articles in methodological reform literature, high reproducibility of a result is often
interpreted as evidence that the result is true [4,12,24,25]. A milder version of this claim is also
invoked, such as ‘Replication is a means of increasing the confidence in the truth value of a claim.’
([12], p. 617). The rationale is that if a result is independently reproduced many times, it must be a
true result.4 This claim is not always true [36,57]. To formally establish this, it is sufficient to note that
the true reproducibility rate of any result depends on the true model and the methods used to
investigate the claim. We follow with two examples (step 4a).

First, consider a valid hypothesis test in which the researcher unreasonably chooses to set α = 1. Then,
a true null hypothesis will be rejected with probability 1 and this decision will be 100% reproducible,
assuming that replication studies also set the significance criterion (α) to 1. While we know better
than to set our significance criterion so high, this example shows how reproducibility rate is not only
a function of the truth but also our methods. Second, consider estimators that exploit the bias-
variance trade-off by introducing a bias in the estimator to reduce its variance. These estimators have
a higher reproducibility rate but for a false result by design. In this case, researchers deliberately
choose false results that are reproducible when they prefer a biased estimator over a noisy one for
usefulness. Next, we give a realistic example, in which we describe a mechanism for why
reproducibility cannot serve as a demarcation criterion for truth.

We consider model misspecification under a measurement error model in simple linear regression.
Simple linear regression involves one predictor and one response variable, where the predictor
variable values are assumed to be fixed and known. The measurement error model incorporates
unobservable random error on predictor values. The blue belt in figure 2 shows that as measurement
4An epistemic claim that well-confirmed scientific theories and models capture (approximate) truths about the world is an example of
scientific realism. The arguments for and against scientific realism (e.g. positivism) are beyond the scope of this paper. Interested readers
may follow up on discussions in the philosophical literature (e.g. [55,56]).
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error variability grows with respect to sampling error variability, effects farther away from the true effect
size become perfectly reproducible. At point F in figure 2, the measurement error variability is ten times
as large as the sampling error variability, and we have perfect reproducibility of a null effect when the
true underlying effect size is in fact large.

Now consider a scientist who takes reproducibility rate as a demarcation criterion. Assume she starts
at point A and she performs a study which lands her at point B—which might happen by knowingly or
unknowingly choosing noisier measures or by reducing sampling error variability. The reproducibility of
her results has increased (from white to inside the blue belt) and to increase it further, she performs
another study by further tweaking the design, which then lands her at point C. If she were to move
horizontally to the right with her future studies, the reproducibility of results will decrease, and she
will turn back to C, which ultimately will be a stable equilibrium of maximal reproducibility. Further,
this is just one of the possible paths that she could take to achieve maximal reproducibility. When at
point B, she might perform a study that follows the purple path, always increasing the reproducibility
of her results ending up at point D, which is another stable equilibrium point of maximal
reproducibility. In fact, any sequence of studies that increases reproducibility will end at one of the
points that corresponds to the darkest blue colour in the belt. At this point, however, we note that
going from point A to point C, our researcher started with a false result where the estimated slope
was some ≈13 units off the true value (y-axis, point A) and arrived at the same false result (y-axis,
point C), even though she has maximized the reproducibility of her results. Worse, when she arrived
at point D, the estimated slope is now some ≈15 (y-axis, point D) units away from the true value,
even though she still maximized the reproducibility of her results.

Taking a step back, we note that to approach the true result, one needs to move to the origin in this
plot. However, that approach is controlled by the vertical axis, and not the horizontal. Unless we know
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that we are committing a model misspecification error, we get no feedback when we perform studies that
move us randomly on the vertical axis (yellow arrows). For example, points C and D have similar
reproducibility of results but at C we are closer to truth then D. In fact, consider points E and F: we
get high reproducibility of results at both points, but estimates obtained at point E are much closer to
the true value than estimates obtained at point F. The mechanistic explanation of this process is that
reproducibility-as-a-criterion can be optimized by the researcher independently of the underlying truth of
their hypothesis. That is, optimizing reproducibility can be achieved without getting any closer to the
true result. This is not to say that reproducibility is not useful, but it means that it cannot be used as
a demarcation criterion for science.

While we advance a statistical argument for the reproducibility of false results, the truth value of
reproducible results from laboratory experiments has also been challenged for non-statistical reasons
[58, p. 30). Hacking notes that mature laboratory sciences sometimes construct an irrefutable system
by developing theories and methods that are ‘mutually adjusted to each other’. As a result, these
sciences become what Hacking calls ‘self-vindicating’. That is:
Soc.Open
‘The theories of the laboratory sciences are not directly compared to ‘the world’; they persist because they are
true to phenomena produced or even created by apparatus in the laboratory and are measured by instruments
we have engineered.’ [58, p. 30]
Sci.8:200805
Hacking concludes that ‘[h]igh level theories are not ‘true’ at all.’ They can be viewed as a summary of
the collection of laboratory operations to which they are adapted, but if that set of operations is selected
to match a particular theory, its evidentiary value may be limited. Hacking’s description of what makes
mature laboratory sciences highly reproducible is consistent with our definition of reproducibility rate as
a function of true model, assumed model, and methods.

An example of a theory from laboratory sciences that is not directly compared to ‘the world’ comes
from cognitive science. One high level theory that has become prominent in this field over the last two
decades is the ‘probabilistic’ or ‘Bayesian’ approach to describing human learning and reasoning [59,60].
As the paradigm rose to prominence, questions were raised as to whether claims of the Bayesian theory of
the mind held any truth value at all, in either a theoretical or empirical sense [61].

Within a specific framework, a particular experimental resultmay have value in connection to a theoretical
claimwithout being tied to theworld. For instance, Hayes et al. [62] presented several experiments that appear
to elicit the ‘same’ phenomenon in different contexts, and an accompanying Bayesian cognitive model that
renders these results interpretable within that framework. On the other hand, rational Bayesian models of
cognition have been criticized for not taking into account process-level data and making unrealistic
environmental assumptions [63]. These models function at the computational rather than algorithmic level
(per Marr’s levels of analysis, [64]) and do not aim to explain the true mechanisms underpinning human
reasoning [65]. Hence these robust empirical results from experiments that were designed from and
adapted to the Bayesian framework do not necessarily imply normative claims about mechanisms
underlying human cognition (see the discussion in [62], pp. 40–44).

As this example illustrates, Hacking’s observations about the ‘mutual tuning’ between theoretical
claims and laboratory manipulations are observed in practice, in cognitive science and potentially in
other disciplines. Our measurement error example shown in figure 2 provides just one possible
realization for Hacking’s conjecture (see also [66], for a detailed discussion on measurement practices
that might exacerbate measurement error). Other forms of inference under model misspecification
might present different scenarios under which this mutual tuning may take place—for example, the
inadvertent introduction of an experimental confound or an error in a statistical computation have the
potential to create and reinforce perfectly reproducible phantom effects. The possibility of such tuning
renders suspect the idea that reproducibility is a good proxy for assessing the truth potential of a result.

The reformmovement began as a response to the proliferation of false results in scientific literature. Our
formal analysis suggests that if we were to treat observed reproducibility of a given result as a heuristic to
establish its truth value, we might incentivize research that achieves high levels of reproducibility for the
wrong reasons (per Goodhart’s law) and end up canonizing a subset of false results that satisfy specific
criteria without facilitating any true discoveries. Hence we believe that turning reproducibility into a
new false idol goes against the essence of the ongoing efforts to reform scientific practice.
3. Claim 2: using data more than once invalidates statistical inference
A well-known claim in the methodological reform literature regards the (in)validity of using data more
than once, which is sometimes colloquially referred to as double-dipping or data peeking. For instance,
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Wagenmakers et al. ([13], p. 633) decry this practice with the following rationale: ‘Whenever a researcher

uses double-dipping strategies, Type I error rates will be inflated and p values can no longer be trusted.’
The authors further argue that ‘At the heart of the problem lies the statistical law that, for the purpose of
hypothesis testing, the data may be used only once.’ Similarly, Kriegeskorte et al. ([67], p. 535) define
double-dipping as ‘the use of the same data for selection and selective analysis’ and add the
qualification that it would invalidate statistical inference ‘whenever the test statistics are not inherently
independent of the selection criteria under the null hypothesis.’ This rationale has been used in
reform literature to establish the necessity of preregistration for ‘confirmatory’ statistical inference [13,22].

In this section, we provide examples to show that it is incorrect to make these claims in overly general
terms. The reform literature is not very clear on the distinction between ‘exploratory’ and ‘confirmatory’
inference. We will revisit these concepts in the next claim but for now, we evaluate the claim that using
data multiple times invalidates statistical inference. For that, we will steer away from the exploratory-
confirmatory dichotomy and focus on the validity of statistical inference specifically.

The phrases double-dipping, data peeking, and using data more than once do not have formal definitions
and thus they cannot be the basis of any statistical law. These verbally stated terms are ambiguous and
create a confusion that is non-existent in statistical theory.

A correct probability theory approach to establish the effect of using the data—in any way—is to
derive the distributions of interest that will make the procedure valid under that usage. In fact, many
well-known valid statistical procedures use data more than once (see [68], for a detailed analysis in
the context of data dependent priors). In these procedures, the conditioning is already taken into
account while deriving the correct probability distribution of the quantity of interest. The consumers
of statistical procedures are often not exposed to steps involved in derivations and it might be
surprising to find that some of the well-known statistical procedures actually use the data more than
once. Colloquially, phrases such as double-dipping, data peeking, and using data more than once
might be associated with practices such as model selection followed by inference and sequential
testing. However, here, we pick a somewhat unusual example to make our point clear. Our main
message is that one has to think carefully and formally what these phrases actually might mean.

We consider testing whether the population mean μ, of a normally distributed random variable X is
equal to a fixed value μo. We assume that we have a simple random sample of size n from X∼Nor(μ, σ)
where σ is the population standard deviation.

If we start to develop a test using the sample mean �X, a reasonable development towards obtaining a
test statistic would be as follows: under Ho we have X∼Nor(μo, σ), and thus �X � Nor(mo, s=

ffiffiffi
n

p
), and so

we must have

(�X � mo)
s=

ffiffiffi
n

pð Þ � Nor(0, 1): (3:1)

The test statistic in equation (3.1) is distributed as standard normal and therefore the test is a z-test. This is
all good, however, the test requires knowing σ, which we often do not. To surpass this issue, we now
think of extracting the sample standard deviation from the data (using the data once more) and
substitute it as an estimate of σ in equation (3.1) so that we can perform the test. However, because
we use the sample quantity s, the distribution of the new statistic is not standard normal anymore.
What we can do, however, is to derive the correct probability distribution of the new statistic and still
have a valid test. Indeed the quantity

(�X � mo)
s=

ffiffiffi
n

pð Þ , (3:2)

is t-distributed and results in a t-test. Technically, the quantity in equation (3.2) uses the data at least three
times, specifically to obtain n, �X, and s. Although this example is simplistic, its main point is instructive:
irrespective of how many times the data is used or whether it is used in a single-step or a multi-step
fashion, if the correct distribution of a test statistic can be derived via appropriate conditioning or
from scratch, then it must yield a valid statistical procedure.

The principle of deriving the correct distribution of statistics to obtain a valid statistical procedure also
applies when we perform a variety of statistical activities on the data prior to an inferential procedure of
specific interest. These activities can be of any type, including exploration of the data by graphical or
tabular summaries, or performing other formal procedures such as tests for assumption checks (see
[69], for a formal approach for testing model assumptions). In fact, one can even build a valid
statistical test by using the data to obtain almost all aspects of a hypothesis test that are not
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specifically user-defined, including the hypotheses themselves. The key to validity is not how many

times the data are used and for which type of activity, but appropriate application of the correct
conditioning as dictated by probability calculus as information from the data is extracted with these
activities [70]. When deriving valid statistical procedures, these rules must invariably hold for all cases
of manipulations of random variables, whether it is a t-pivot, or a multi-step analysis. This is a
mathematical fact and the validity of statistical procedures depend only on mathematical facts.
Furthermore, under many cases, the conditioning does not affect the validity of the test of interest,
and therefore can be dropped, freeing the data from its prison for use prior to test of interest [71].

When conditioning on prior activity on the data is indeed needed to make a test valid, overlooking
that a procedure should be modified to accommodate this prior activity might lead to an erroneous test.
However, this situation only arises if we disregard the elementary principles of statistical inference such
as correct conditioning, sufficiency, completeness and ancillarity. Conditional inferences are statistically
valid when their interpretation is properly conditioned on the information extracted from the observed
data, which are sufficient for model parameters. Therefore, unconditionally stating that double-dipping,
data peeking, or using data more than once invalidates inference does not make statistical sense. In
contrast with common reform narratives, one can use the data many times in a valid statistical
procedure. Below, we describe the conditions under which this validity is satisfied. We also discuss
why preregistration cannot be a prerequisite for valid statistical inference, confirmatory or otherwise.
i.8:200805
3.1. Valid conditional inference is well established
Imagine we aim to confirm a scientific hypothesis of interest which can be formulated as a statistical
hypothesis and be tested using a chosen a test of interest. We suppose that we perform some
statistical activity on the data as described in the previous section, until we begin the test of interest.
We aim to assess the effect of information gained by this activity on the validity of the test of interest
to be performed. To be useful in establishing results, it is necessary to assume that such information
can be summarized by a statistic, as in a statistic obtained from prior analyses.

First, we categorize the amount of information contained in the test statistic of interest. This statistic
may contain anywhere from no information to all information in the data about the parameter of interest.
Furthermore, it can satisfy some statistical optimality criterion, in which case it is identified as the best
statistic with respect to this criterion. The case of no information is trivial and not interesting. The
case of all information is well known.5 For many commonly used models, an optimal statistic is also
well known6 (first column in left and right blocks, box 2). Other cases include partial information
(second column in left and right blocks, box 2).

Second, the statistic that summarizes the analyses performed on the same data prior to the test of
interest may also contain anywhere from no information to all information in the data (rows in left
and right blocks, box 2). However, here the case of no information is also of interest.7

If the statistic summarizing the prior analysis is used in a subsequent analysis for the test of interest,
the validity of the test is guaranteed by conditioning the subsequent analysis on this statistic, using
probability calculus. A relatively simple case may involve only conditioning on the statistic obtained
from prior analysis (left block, box 2). In this case, no quantity exogenous to the model generating the
data is introduced into the test of interest. If the test of interest uses an optimal statistic (which is the
case for many well-known models), the conditioning is irrelevant because the validity of the test is
not affected by the prior information (left block first column in box 2). The same result with the same
validity is obtained as if we did not perform any activity on the data, previous to the test of interest.
Hence, one can freely use information prior to performing the test of interest without any
modification in the test of interest. If the test of interest does not use an optimal statistic, then
conditioning will maintain the validity and often improve the performance of the test (left block
second column in box 2). This is a manifestation of Rao–Blackwellization of the test statistic to reduce
its variance. We reproduce an example by Mukhopadhyay [72] of estimating the parameter of a
normal distribution whose mean and standard deviation are equal using a randomly sampled single
observation in figure 3. Therefore, claim 2 is false for this case. Furthermore, results showing
this falsity can be generalized beyond hypothesis testing into other modes of inference such as
5Sufficient statistic.
6Complete sufficient statistic.
7Ancillary statistic.
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We assume a test based on an unbiased test statistic generates valid inference, in the sense of
achieving its nominal Type I error probability, under its assumptions within the Neyman–Pearson
hypothesis testing paradigm. Information extracted from the data prior to the test of interest is
represented by a statistic from prior analysis. Cells describe the necessity and/or the outcome of
conditioning the test of interest on this statistic from prior analysis, for varying levels of
information captured. Some technical clarifications for special cases are discussed in appendix C.

Left. The statistic from prior analysis is not used in decision making, for example, by combining it
with a user-defined criterion which might affect aspects of the test of interest. Many commonly used
linear models fall in the first column where procedures are based on an optimal test statistic and
therefore, using the information from prior analysis does not affect the validity of the test of
interest. However, even if the statistic for the test of interest is not optimal, conditioning on the
statistic from prior analysis is not necessary for validity of inference. Furthermore, conditioning
never hurts the validity of inference and improves the performance in most cases. Details of the
conditional analyses in this block are provided in propositions 3.1 and 3.2.

Right. The statistic from prior analysis is combined with a user-defined criterion to affect aspects
of the test of interest through a decision. An example is using the data to determine which
subsamples to compare. The validity of the test of interest is maintained when inference is
conditioned on this decision if the statistic from prior analysis contains at least some information
about the parameter to be tested.

The change in corresponding cells between the left block and right block shows the effect of using
this user-defined criterion on conditional statistical inference.
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estimation. Formally, we have the following definition and results (per steps 1 and 2 of our formal
approach, respectively).

Definition. Let Sn � P(Snju) be a test statistic such that it is: (1) a function of an unbiased estimator
of θ, and (2) fixed prior to seeing the data. Let U � P(Uju) be a statistic obtained from the data, after
seeing the data. If U is complete sufficient for θ, it is denoted by Us, and if U is ancillary for θ, it is
denoted by Ua.
Proposition 3.1. Let S0
n ¼ E(SnjUs). For an upper tail test, define a ¼ P(Sn � sajHo) ¼ P(S0

n � s0ajHo).
Then, sa � s0a and P(S0

n � sajHo) , a. Parallel arguments hold for lower and two tail tests.



0.2 0.6 1.0

0.
2

0.
6

1.
0

Rao−Blackwellization and power

power of single observation
 as the test statistic 

po
w

er
 o

f 
si

ng
le

 o
bs

er
va

tio
n

 a
s 

th
e 

te
st

 s
ta

tis
tic

 c
on

di
tio

na
l

 o
n 

its
 a

bs
ol

ut
e 

va
lu

e 
 

Figure 3. For a normally distributed variable with equal mean and variance, we randomly sample a single observation from the
population. We plan to use this observation as a test statistic for the common parameter. However, prior to this test we observe the
absolute value of the sample and we decide to perform the test using the information in both the observation and its absolute
value, therefore, using the unsigned part twice. The plot compares power of the test based on the single observation and on the
single observation conditioned on its absolute value. Conditioning improves inference by reducing the variance of the test statistic.
This case corresponds to the left block, first row, second column in box 2. Lighter shades represent larger true parameter values.
Technical details are given in appendix D.
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Proposition 3.2. Let Ho : θ∈Θ o such that Θ o = g(Ua), where g is a known function and Ua is a function of
the data. Then, the upper tail test P(Sn � sjHo) � a is a valid level α test. Parallel arguments hold for lower and
two-tailed tests.

(See appendix C for proofs per step 3 of our formal approach).

An intuitive interpretation of these formal statements is as follows. Assume a hypothesis test where a
statistical procedure is pre-planned in the sense that its elements are determined before seeing the data.
We then imagine using the data to obtain other statistics (necessarily after seeing the data). The
propositions consider two scenarios regarding these statistics. In the first scenario, we consider a
statistic that captures all the information in the data about the parameter being tested in a most
efficient manner. Then, conditioning on this statistic results not only in a valid procedure, but also an
equally good or improved one with respect to the pre-planned procedure. In the second scenario, we
consider a statistic that contains no information about the parameter being tested. The null hypothesis
is built using this statistic obtained from the data, and the test based on the pre-planned procedure
still remains valid.

A more complicated case occurs when one not only obtains a statistic from prior analysis but also
makes a decision to redefine the test of interest based on the observed value of that statistic—a
decision that depends on an exogenous criterion and alters the set of values the test statistic of interest
is allowed to take (right block, box 2). For example, an exogenous criterion might be to perform the
test only if the statistic from prior analysis satisfies some condition. Subgroup analyses or determining
new hypotheses based on the results of prior analysis (HARKing) are other examples [73]. Conditional
quantities which make the test of interest valid are now altered because conditioning on a statistic and
conditioning on whether a statistic obeys an exogenous criterion have different statistical consequences. If
this criterion affects the distribution of the test statistic of interest, then conditioning is necessary. The
correct conditioning will modify the test in such a way that the distribution of the test statistic under
the null hypothesis is derived, critical values for the test are re-adjusted, and desired nominal error
rates are achieved. A general algorithm to perform statistically valid conditional analysis in this sense
is provided in appendix E. Adhering to correct conditioning, then, guarantees the validity of the test,
making claim 2 false again.

Figure 4 provides an example of how conditioning can be used to ensure that nominal error rates are
achieved (step 4a). We aim to test whether the mean of population 1 is greater than the mean of
population 2, where both populations are normally distributed with known variances. An appropriate
test is an upper-tail two-sample z-test. For a desired level of test, we fix the critical value at z, and the
test is performed without performing any prior analysis on the data. The sum of black and dark
orange areas under the black curve is the nominal Type I error rate for this test. Now, imagine that we
perform some prior analysis on the data and use it only if it obeys an exogenous criterion: we do not
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perform our test unless ‘the mean of the sample from population 1 is larger than the mean of the sample
from population 2.’ This is an example of us deriving our alternative hypothesis from the data. The test
can still be made valid, but proper conditioning is required. If we do not condition on the information
given within quotes and we still use z as the critical value, we have inflated the observed Type I error
rate by the sum of the light grey and light orange areas because the distribution of the test statistic is
now given by the orange curve. We can, however, adjust the critical value from z to z� such that the
sum of the light and dark orange areas is equal to the nominal Type I error rate, and the conditional
test will be valid. This case corresponds to the right block, first row, first column in box 2. Technical
details are provided in appendix D.

Caution with regard to double-dipping might sometimes be justified. However, the claim that it
invariably invalidates statistical inference is unsupported. In fact, the opposite is true because all cells
in box 2 yield valid tests. Following steps 1-4a of our formal approach, we established some
foundations for claims regarding double-dipping. These are summarized in box 2. Furthermore, we
provide a fairly generic algorithm (appendix E) to obtain the sampling distribution of any statistic
conditional on using some information in the data. Statistically and computationally nimble readers
should find it straightforward to apply this algorithm to specific double-dipping problems they
encounter. On the other hand, extending theoretical results from steps 1-4a of the formal approach to
its applied part of steps 4b and 5 typically takes intensive work. This, for example, involves
developing user friendly and well-tested tools of analysis, ready for mass consumption to perform
conditional inference in a specific class of statistical models.

Clearly, proper conditioning solves a statistical problem. However, the garden of forking paths
applies to problems of scientific importance as well, because our conclusions become dependent on
decisions we make in our analysis. Statistical rigor is the prerequisite of a successful solution, but we
should ask: solution to which problem? Statistical validity does not necessarily imply scientific
validity [74]. The connection between statistical and scientific models might be weak—a problem that
cannot be fixed by statistical rigor.8 Furthermore, valid inference by proper conditioning entails
maintaining the same conditioning for correct interpretation of scientific inference.

Conditioning is not the only statistically viable way to address double-dipping related problems.
Alternatives to conditioning include but are not limited to multilevel modelling [16,85], multiverse
analysis [86], simultaneous inference for valid data-driven variable selection [87], sequential or
stepwise model selection procedures for optimal post-selection inference [88,89], and iterative Bayesian
workflow [90]. The key to successfully implement these solutions is a good understanding of
statistical theory and a careful interpretation of results under clearly stated assumptions.
8Testing hypotheses with no theory to motivate them is a fishing expedition regardless of methodological rigor. See [44,75–84] for
discussions on scientific theory.
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3.2. Preregistration is not necessary for valid statistical inference

Nosek et al. [22, p. 2601] claim that ‘Standard tools of statistical inference assume prediction’9. Nosek et al.
[22] intend to convey that in hypothesis testing, the analytical plan needs to be determined (i.e.
preregistered) prior to data collection or observing the data for statistical inference to have diagnostic
value, that is, to be valid. Wagenmakers et al. [13] suggest that preregistration would allow for
confirmatory conclusions by clearly separating exploratory analyses from confirmatory ones and
preventing researchers from fooling themselves or their readers. According to the methodological
reform, any inferential procedure that is not preplanned or preregistered should better be categorized
as postdiction or exploratory analysis, and should not be used to arrive at confirmatory conclusions [21,91].

In this section, we first clarify the statistical problem which preregistration aims to address. Then we
assess what preregistration cannot statistically achieve under its strict and flexible interpretation. We
discuss how preregistration can harm statistical inference while trying to solve its intended problem.
After showing that preregistration is not necessary for valid statistical inference, we describe what it
can achieve statistically.

What is the statistical problem that preregistration aims to address? Statistically, preregistration is offered as a
solution to the problemof using datamore than once and issues of validity of statistical procedures resulting
from this usage [13,22,92,93]. Once a hypothesis and an analytical plan is preregistered, the idea is that
researchers would be prevented from performing analyses that were not preregistered and subsequently,
from presenting them as ‘confirmatory’. We have shown that using data multiple times per se does not
present a statistical problem. The problem arises if proper conditioning on prior information or decisions
is skipped. The reform literature misdiagnoses the problem as an ordinal issue regarding the order of:
hypothesis setting, decisions on statistical procedures, data collection, and performing inference.
Preregistration locks this order down for an analysis to be called ‘confirmatory’. Our examples of valid
tests in box 3 (per step 4a of our formal approach) show that the problem is not ordinal but one of
statistical rigor. Prediction and postdiction—as proposed by Nosek et al. [22]—do not have technical
definitions in their intended meaning that reflects on statistical procedures. Furthermore, the reform
literature does not present any theoretical results to show the effects of this dichotomy on statistical
inference. All well-established statistical procedures deliver their claims when their assumptions are
satisfied. Other non-mathematical considerations are irrelevant for the validity of a statistical procedure.
A valid statistical procedure can be built either before or after observing the data, in fact, even after using
the data if proper conditioning is followed. Therefore, the validity of statistical inference procedures
cannot depend on whether they were preregistered.

How can preregistration (strict or flexible) harm statistical inference? Preregistration may interfere with
valid inference because nothing prevents a researcher from preregistering a poor analytical plan.
Preregistering invalid statistical procedures does not on its own ensure the validity of inference (see
also [73]), while it does add a superficial veneer of rigor.

Assume hypotheses, study design, and an analysis plan are preregistered, and the researchers follow
their preregistration to a T. Many hypothesis tests make parametric assumptions and not all are robust to
model misspecification. Dennis et al. [94] show that under model misspecification, the Neyman–Pearson
hypothesis testing paradigm might lead to Type I error probabilities approaching 1 asymptotically with
increasing sample sizes. Model misspecification is suspected to be common in scientific practice
[74,81,95]. Because the validity of a statistical inference procedure depends on the validity of its
assumptions, performing assumption checks—where it is possible and sensible to do so—to choose
and proceed with the model and method whose assumptions hold is sound practice. Assumption
checks are performed after data collection and on the data, but before specifying a model and a method for
analysis. To accommodate assumption checks under preregistration philosophy, an exception would
need to be made to the core principle because they necessitate using data multiple times. Indeed such
exceptions are often made [22,92] and it has been suggested that assumption checks and contingency
9Prediction here is not used in statistical sense but refers to ‘the acquisition of data to test ideas about what will occur’ ([22], p. 2600). To
clarify, statistics uses sample quantities (observables) to perform inference on population quantities (unobservables). Inference,
therefore, is about unobservables. Statistical prediction, on the other hand, is defined as predicting a yet unobserved value of an
observable and therefore, is about observables. The quote refers to a procedure about unobservables and hence ‘prediction’ is not
used in a statistical sense. Instead, it is used to demarcate the timing of hypothesis setting and analytical planning with regard to
data collection or observation. The authors also specifically refer to the null hypothesis significance testing procedure as the
standard tool for statistical inference referenced in this quote. While the statement itself can be misleading because of these local
definitions and assumptions, our aim is to critique the intended meaning not the idiosyncratic use of statistical terminology.
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plans should be preregistered. However, no statistical reasoning is provided to define the boundaries of

such deviations from preregistration.
A common reform slogan states that ‘preregistration is a plan, not a prison,10’ offering an escape route

from undesirable consequences of rigidity. Nosek et al. ([22], p. 2602) suggest that compared to a researcher
who did not preregister their hypotheses or analyses, ‘preregistration with reported deviations provides
substantially greater confidence in the resulting statistical inferences.’ This statement has no support
from statistical theory. On the other hand, the claim may make researchers feel justified in changing their
preregistered analyses as a result of practical problems in data collection or analysis, without accounting
for the conditionality in their decisions, leading to invalid statistical inference.

A study of 16 Psychological Science papers with open preregistrations shows that research often
deviated from preregistration plans [96]. Hence, in practice, preregistration fails to lock researchers in
an analytical plan. Deviating from a preregistered plan might prevent a statistically flawed procedure
from being implemented, and hence, might improve statistical validity of conclusions. On the other
hand, it is possible to deviate from a plan by introducing more sequential decisions and contingency
to data analysis, which if not accounted for, would invalidate the statistical inference. A strict
interpretation of preregistration may also lead to invalid inference by locking researchers in a faulty
plan. As such, preregistration or deviations from preregistration have little say over the diagnosticity
of p-values or error control. Statistical rigor can neither be ensured by preregistration nor would be
compromised by not preregistering a plan.

What can preregistration achieve statistically? Strict preregistration might work as a behavioural sanction
that prevents researchers from doing any statistical analysis that involves conditioning on data, valid or
invalid. This way, preregistration can prevent using data multiple times without proper conditioning by
preventing proper conditioning procedures along with it. Nevertheless, as we show in box 2,
conditioning on data may improve inference. On the other hand, a flexible interpretation of
preregistration that allows for deviations in the plan so long as they are labelled as ‘exploratory’ rather
than ‘confirmatory’ has no bearing on statistical outcomes. If proper conditioning is performed, analyses
that are referred to as ‘exploratory’ in the reform literature might observe strict error control and if it is
not, analyses currently being labelled ‘confirmatory’ might be statistically uninterpretable.

There exist other social advantages to preregistration of empirical studies, such as the creation of a
reference database for systematic reviews and meta-analysis that is relatively free from publication bias.
While these represent genuine advantages and good reasons to practise preregistration, they do not
affect the interpretation or validity of the statistical tests in a particular study. We demonstrate some of
the points discussed in this section with examples in box 3. Our exposition and illustration in this section
have policy implications, primarily suggesting caution when proceeding to step 5 of our formal
approach in this context. The statistical theory behind these examples show that the benefits of
preregistration—in promoting systematic documentation and transparent reporting of hypotheses,
research design and analytical procedures—should not be mistaken for a technical capacity for ensuring
statistical validity. If and only if a statistically appropriate analytical plan has been preregistered and
performed, would preregistration have a chance of ensuring the meaningfulness of statistical results. Yet
a well-established statistical procedure always returns valid inference, preregistered or not.
4. Claim 3: exploratory research uses ‘wonky’ statistics
A large body of reform literature advances the exploratory-confirmatory research dichotomy from an
exclusively statistical perspective. Wagenmakers et al. [13, p. 634] argue that purely exploratory
research is one that finds hypotheses in the data by post hoc theorizing and using inferential statistics
in a ‘wonky’ manner (borrowing Wagenmakers et al.’s [13] terminology) where p-values and error
rates lose their meaning: ‘In the grey area of exploration, data are tortured to some extent, and the
corresponding statistics is somewhat wonky.’ The reform movement seems to have embraced
Wagenmakers et al. [13]’s distinction and definitions, and this dichotomy has been emphasized in
required documentation for preregistrations [97], registered reports [21], and exploratory reports [98].

We start by discussing why the exploratory-confirmatory dichotomy is not tenable from a purely
statistical perspective. The reform literature does not provide an unambiguous definition for what is
10While not part of our core argument this particular slogan is underspecified. It is not clear how the argument for the necessity of
preregistration for statistically valid inference should be reconciled with the proposed flexibility of preregistrations. In any case, this
line of thinking is moot from our perspective because the underlying premise itself does not hold.



Box 3. Validity of statistical analyses under strict, flexible and no preregistration.

We show how a strict interpretation of preregistration and a failure to use proper statistical
conditioning may hinder valid statistical inference with a simulation example. Our simulations
consist of 106 replications of hypothesis tests for the difference in the location parameter between
two populations. We build the distribution of p-values under the null hypothesis of no difference
for three cases and four true data generating models. In addition to the normal distribution with
exponentially bounded tail, we use Cauchy and T distributions for heavy tail, and Gumbel
distribution for light tail. By a well-known result, the distribution of p-values under the null
hypothesis is standard uniform for a valid statistical test.
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distribution of p-values for test of location parameter under valid and invalid tests
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— Hypothesis tests in group 1 (solid lines) were performed using the following procedure:
(i) collect data with no specification of hypothesis, model, or method (no preregistration);
(ii) calculate the sample medians. Set the alternative hypothesis so that the median of the

population corresponding to the larger sample median is larger than the median of the
other population (using the data to determine the hypotheses);

(iii) build the conditional reference distribution of the test statistic by permuting the data (reusing
the data to determine the method); and

(iv) calculate the test statistic from the data to compare with the reference distribution (reusing
the data to calculate observed value of the test statistic).

The tests in group 1 derive almost all their components from the data by reusing them multiple
times. The distribution of the p-values show that these tests are valid because they follow the
standard uniform distribution (solid lines).
— Hypothesis tests in group 2 (dashed lines) demonstrate a situation that may arise under either

flexible preregistration (assumption checks allowed) or no preregistration, when proper
statistical conditioning is not performed in step 3. This is akin to HARKing without statistical
controls. In this case, the distribution of p-values is uniform on (0, 0.5). These tests are not
valid, because P(p � ajH0) ¼ 2a for some significance thresholds α.

— Hypothesis tests in group 3 (dotted lines) demonstrate a situation that may arise under a strict
preregistration protocol (altering the preregistered model or methods not allowed) when there is
model misspecification. The preregistered model is normal, but the data are generated under
other models. These tests are not valid, because P(p � ajH0) . a for some significance
thresholds α.
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considered ‘confirmatory’ or ‘exploratory’. There are many possible interpretations including: (i) formal
statistical procedures such as null hypothesis significance testing are confirmatory, informal ones are
exploratory; (ii) only preregistered hypothesis tests are confirmatory, non-preregistered ones are
exploratory; and (iii) only statistical procedures that deliver their theoretical claims (e.g. error control)
are confirmatory, invalid ones are exploratory. These three dichotomies are not consistent with each
other and lead to confusing uses of terminology. One can speak of formal statistical procedures such
as significance tests, and informal procedures such as data visualization, or valid and invalid
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statistical inference, but there is no mathematical mapping from these to exploratory or confirmatory

research, especially when clear technical definitions for the latter are not provided, in clear violation
of step 1 of our formal approach. Moreover, the general usefulness and relevance of this dichotomy
has also been challenged for theoretical reasons [79,80]. In this section, we sidestep issues with the
dichotomy but argue against the core claim presented by [13] regarding the nature of exploratory
research specifically, advancing the following points:

— exploratory research aims to facilitate scientific discovery, which requires a broader approach than
statistical analysis alone and cannot be evaluated formally to derive meaningful methodological
claims;

— exploratory data analysis (EDA) is a tool for performing exploratory research and uses methods that
only answer to their assumptions to be valid. When making claims about EDA specifically, we should
follow the steps of our formal approach;

— using ‘wonky’ inferential statistics does not facilitate and probably hinders exploration, because
statistical theory only provides guarantees for statistical inference when its assumptions are met; and

— exploratory research needs rigor to serve its intended aim of facilitating scientific discovery.

Scientific exploration is the process of attempting to discover new phenomena [99]. Outside of the
methodological reform literature, exploratory research is typically associated with hypothesis generation
and is contrasted with hypothesis testing—sometimes referred to as confirmatory research. Exploratory
research may lead to serendipitous discoveries. However, it is not synonymous with serendipity but is a
deliberate and systematic attempt at discovering generalizations that help us describe and understand an
area about which we have little or no knowledge [100]. In this sense, it is analogous to topographically
mapping an unknown geographical region. The purpose is to create a complete map until we are
convinced that there is no element within the region being explored that remains undiscovered. This
process may take many forms from exploration of theoretical spaces (i.e. theory development; [82,83])
and exploration of model spaces [77,101] to conducting qualitative exploratory studies [102] and
designing exploratory experiments [103,104], and finally to exploratory data analysis [105–108].

This process of hypothesis generation is notoriously hard to formalize, as Russel ([109], p. 544) so
clearly laid out:
11Ab
hyp
spec
poss
com
and
As a rule, the framing of hypotheses is the most difficult part of scientific work, and the part where great ability is
indispensable. So far, no method has been found which would make it possible to invent hypotheses by rule.
Usually, some hypothesis is a necessary preliminary to the collection of facts, since the selection of facts demands
some way of determining relevance. Without something of this kind, the mere multiplicity of facts is baffling.
Therefore, without further work on formal approaches it is not easy to implement a formal approach to
make methodological claims about exploration, since we will fail at step 1. At least in our current
knowledge state, we are not able to formally define exploration as a research activity. Informally,
hypothesis generation requires creativity, flexibility, and open-mindedness to allow for ideas to emerge
[99,100]. The inferential approach employed during exploration cannot be described as deduction or
induction as it requires adding something new to known facts. This process of generating explanatory
hypotheses is known as abduction proper11 [112], which involves studying the facts and generating a
theory to explain them ([112], p. 90). Abduction proper requires scientists to absorb and digest all
known facts about a phenomenon, mull them over, use introspection and common sense [113],
evaluate them against their background knowledge [83], and add something as of yet unknown,
with the intention of providing new insight or understanding that would not have been possible
without abduction [112]. Hypothesis generation, therefore, cannot be reduced down to formal
statistical inference, whose methods are deductively derived and used inductively in application.
In fact, meticulous exploration via abduction proper would improve our statistical inference by
facilitating the first two conditions mentioned in box 1 by constraining our search space in a
theoretically meaningful fashion.

That said, exploratory data analysis (EDA) can be instrumental in hypothesis generation. Tukey [108]
suggests that EDA is not a bundle of formal inferential techniques and that it requires extensive use of
ductive inference involves both the process of making inference to the best explanation based on a set of candidate
otheses [110]. and the process of generating that set of hypotheses. The latter process, which is of interest to our discussion, is
ifically known as abduction proper [83,111]. Abduction proper is then a way to meaningfully reduce the search space for
ible hypotheses. Blokpoel et al. [111] show that abduction proper is uncomputable when unconstrained and remains
putationally intractable even when constrained. This seems to render attempts at efficiently capturing this process with rules
formalism somewhat futile.
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data visualization with a flexible approach. EDA is usually an iterative process of model specification,

residual analysis, examination of assumptions, and model respecification [77,105] to find patterns and
reveal data structure. If inferential statistics are employed for the purposes of data exploration, we can
prioritize minimizing the probability of failing to reject a false null hypothesis [114,115] as opposed to
minimizing false positives because priority is given to not missing true discoveries. Nonetheless, other
methods than hypothesis testing are often more closely associated with EDA owing to their flexibility
in revealing patterns, such as graphical evaluation of data [105,108], exploratory factor analysis
[105,107], principal components regression [116] and Bayesian methods to generate EDA graphs
[106,117,118].

Whichever method is selected for EDA; however, it needs to be implemented rigorously to maximize
the probability of true discoveries while minimizing the probability of false discoveries. As Behrens
([105], p. 134) observes:
 os

R.Soc.Open
A researcher may conduct an exploratory factor analysis without examining the data for possible rogue values,
outliers, or anomalies; fail to plot the multivariate data to ensure the data avoid pathological patterns; and
leave all decision making up to the default computer settings. Such activity would not be considered EDA
because the researcher may be easily misled by many aspects of the data or the computer package. Any
description that would come from the factor analysis itself would rest on too many unassessed assumptions to
leave the exploratory data analyst comfortable.
Sci.8:200805
The implication is that using ‘wonky’ statistics cannot be a recommended practice for data
exploration. The reason is that by repeatedly misusing statistical methods, it is possible to generate an
infinite number of patterns from the same data set but most of them will be what Good ([113], p. 290)
calls a kinkus—‘a pattern that has an extremely small prior probability of being potentially explicable,
given the particular context’. If the process of hypothesis generation yields too many such kinkera
(plural of kinkus), it can neither be considered a proper application of abduction principle nor would
serve the ultimate goal of exploratory research: making true discoveries. Relying on statistical abuse in
the name of scientific discovery will easily lead to well-known statistical problems such as increasing
false positives by multiple hypothesis testing [119], specifically by multiple tests of the same
hypothesis [120,121], or by failing to use proper conditioning as we outlined in the previous section.

If exploratory research needs to satisfy a certain level of rigor to be effective but we are not able to
formalize it, what criteria should we use to assess its quality? Because the process of exploration is
elusive and informal, it may not be possible to derive some minimum standards all exploratory studies
need to meet. Nonetheless, some desirable qualities can be inferred from successful implementation of
exploratory approaches in different fields: (i) as suggested by Russell’s quote, exploration needs to start
with subject matter expertise or theoretical background, and hence, cannot be decontextualized, free of
theory, or completely dictated by the data [83,102,104,105,111,113]; (ii) the key for running successful
exploratory studies is the richness of data [122]. Random datasets that are uninformative about the area
to be explored will probably not yield important discoveries; (iii) exploration requires robust methods
that are insensitive to underlying assumptions [105]. As such, rather than misusing or abusing standard
procedures for inferential statistics, using robust approaches such as multiverse analysis [86] or
metastudies [123] could be more appropriate for exploration purposes; and (iv) exploratory work needs
to be done in a structured, systematic, honest and transparent manner using a deliberately chosen
methodology appropriate for the task [10,122].

The above discussion should make two points clear, regarding claim 3: first, exploratory research
cannot be reduced to exploratory data analysis and cannot be formalized, rendering broad
methodological claims about exploration unwarranted. Second, when exploratory data analysis is
pursued as a preferred method for scientific exploration, it needs rigor and formal justifications.
Describing exploratory research as though it were synonymous with or accepting of ‘wonky’
procedures that misuse or abuse statistical inference not only undermines the importance of systematic
exploration in the scientific process but also severely handicaps the process of discovery.
5. Conclusion
Our call for statistical rigor and scientific nuance encompasses all claims regarding scientific practice and
policy changes. Rigor requires attention to detail, precision, clarity in statements and methods, and
transparency. Nuance necessarily means moving away from speculative, sweeping claims and not
losing sight of the context of inference. Simple solutions to complex scientific problems rarely exist.
Simple fixes motivated by speculative arguments, lacking rigor and proper scientific support might
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appear to be legitimate and satisfactory in the short run, but may prove to be counter-productive in the

long run. It is instructive to remember how taking p < 0.05 as a sign of scientific relevance or even truth
has proved to be detrimental to scientific progress.

Recent developments in methodological reform have already been impactful in inducing behavioural
and institutional changes. However, as Niiniluoto [124] suggests, impact of research ‘only shows that it
has successfully ‘moved’ the scientific community in some direction. If science is goal-directed, then we
must acknowledge that movement in the wrong direction does not constitute progress.’ Unfortunately,
the reform literature has largely overlooked the necessity of first principles and formalism in
advancing methodological tools. That is: providing mathematical definitions of fundamental concepts
the methods rely on, making claims about these tools with transparency and under clearly stated
assumptions, supporting these claims by and mathematical or simulation proofs, and documenting
the limitations of these tools. Such a formal approach aids us in making positive contributions to
scientific progress. The five-step formal approach we illustrated in this article is just an example of
this formalism, showing how to encapsulate the necessary standard for methodological rigor and
nuance. With this example, and its application to three proposed reform policies, we hope to
contribute to laying the groundwork of a formal methodology in scientific reform.
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Appendix A

A.1. Regularity conditions and notation
We assume some regularity conditions which are sufficient for our purposes here for all random
variables:

— distribution functions F ; F(w) ¼ P(W � w), are absolutely continuous and non-degenerate,
endowed with the density function f (w) = dF(w)/dw;

— {E(jW jn) , 1, 8n}, E(W2) . 0, where E(W) ¼ Ð1
�1 f(w)dw, and V(W) ¼ E(W2)� [E(W)]2; and

— we make frequent use of the indicator function: I{A} = 1 if A, and 0 otherwise.

A.2. Assumptions of idealized study
We build on the notion of idealized study [101], obeying the following assumptions below:

A1. There exists a true probability model MT, completely specified by FT of random variable X, which is
the observable for a phenomenon of interest.

A2. Some known background knowledge K partially specifies MT up to property θ∈Θ, which denotes
unknown and unobservable components of MT. For notational economy, K is often dropped, with
the understanding that all statements are conditional on K.

A3. A statement that is in principle testable via statistical inference using a simple random and finite
sample Xn = (X1, X2, …, Xn), where Xi∼ FT is made about θ.

A4. Candidate mechanisms Mi, inducing distribution functions Fi are formulated.
A5. A fixed and known function S is used to extract the information in Xn pertinent to Mi. S evaluated at

Xn returns Sn, with non-degenerate distribution function P(Sn � s).
A6. Formal statistical inference returns a result {R = d(Sn, c), R , Θ}, where c is a user-defined known

quantity, and d( · , · ) is a fixed and known non-constant decision function which formalizes the
statistical inference (by inducing a frequency assessment for a result).
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Definitions.

— ξ = (Mi, θ, Xn, S, K, d ) is an idealized study.
— ξ(i) which differs from ξ only in K and X(i)

n generated independently from Xn, is a replication
experiment.

Appendix B

B.1. Relationship between true results and reproducible results

Proof. Proofs of propositions 2.1, 2.2 and 2.3. R(i) are {0, 1} exchangeable random variables since ξ(i)

are invariant under permutation of labels. By De Finetti’s representation theorem for {0, 1} variables,
there exists a ϕ such that R(i) are conditionally independent given ϕ. For a finite subsequence R(1), R(2),
…, R(N ), and the relative frequency of reproduced results defined by fN ¼ N�1 PN

i¼1 I{R(i)¼Ro jRo}, we
have lim N→∞ϕN = ϕ, by the Law of Large Numbers.

By definition ϕ≥ 0, because it is a probability. It follows by contradiction that ϕ = 1 only in highly
specific cases: assume ϕ = 1. We have f ¼ E(I{R¼RojRo}) ¼ P(R ¼ RojRo) ¼ 1, which implies that
I{R(i)¼RojR} ¼ 1 for all i. Therefore, d(Sn, c) in A6 must return a singleton (Ro) for all values of Sn. This
can happen in three ways: Xn is non-stochastic, which contradicts A1, or Sn is non-stochastic, which
contradicts A5, or Ro is not a proper subset of Θ, which contradicts A6.

The truth of 1.2 implies 1.3 and vice versa: if a result is not true, then it is false because ϕT + ϕF = 1. To
see that ϕT can be arbitrarily close to zero (and ϕF arbitrarily close to 1), fix RT. Choose S such that d(Sn, c)
does not return RT with probability 1− ϕT. A simple example is a biased estimator of a parameter in a
probability distribution. We also note that by proposition 1.1, ϕT must have positive probability for
every point on its support for some ξ, which includes values arbitrarily close to 0. ▪

Remark. ϕN should not be misinterpreted as an estimator with less than ideal properties. Quite the
opposite: By Central Limit Theorem, (ϕN− ϕ)/[ϕ(1− ϕ)] converges to the standard normal distribution
and ϕN has excellent statistical properties as an estimator of ϕ [125–127].
B.2. Remarks for some cases in box 1
Bullet 1. Fix c such that e(c) > 0. Consider a model selection problem where d(Sn, c) returns a model
between two candidate models M1 and M2, which are different from the true model MT. The selected
model M1 or M2 is false with probability 1 independent of how well S performs. Yet, M1 and M2 can
be chosen so that the divergence or metric on which the model selection measure S is based satisfy
selecting M1 over M2 with probability ϕF = 1− e(c).

Bullet 3. Let θo be the parameter of interest of FT and u
0
o be nuisance parameters. Assume that the true

value of θo is in Θ. We let d(Sn, c) to return Sn as an estimator of parameter θo where E(Sn) is not equal to
the true value. Sn is often a pivotal quantity. We consider two cases: if furthermore Sn is a statistic, then it
is ancillary for θo. Let V(Sn) ¼ e(c)2. By Chebychev’s inequality, we have jSn � E(Sn)j � e(c) with
probability 1. Thus, the result returned is false and ϕF > 1− e(c). Else if, Sn is not a statistic, but
depends on u

0
o, choosing the value of u

0
o suitably yields the result.
Appendix C

C.1. Conditional analysis
Proof 2.1. By Chebychev’s inequality, we have PðjSn � uj � ffiffiffiffiffiffiffiffiffiffiffiffi

V(Sn)
p

=aÞ � a2 and
PðjS0

n � uj � ffiffiffiffiffiffiffiffiffiffiffiffi
V(S0

n)
p

=aÞ � a2, where V(Sn)=a and V(S0
n)=a are critical values of the two tests. We

have 0 � V(S0
n) � V(Sn) by Rao–Blackwell Theorem ([128], p. 342). It follows that sa � s0a and

P(S0
n � sajHo) , a.
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Proof 2.2. By ancillarity, we have P(Uaju) ¼ P(Ua), implying P(UajSn, u) ¼ P(UajSn). The sampling

distribution of Sn given θ can be written as:

P(Snju) ¼ P(SnjUa, u)P(Uaju)
P(UajSn, u)

¼ P(SnjUa, u)[P(Ua)=P(UajSn)],

where the second equality follows by substituting for P(Uaju) and P(UajSn, u). The term within the
brackets is independent of θ, so that a test based on Sn, and a test based on Sn|Ua yield the same
result. Therefore, using Ua to inform Ho does not affect the validity of the test.

Remarks for some cases in box 2.

Left block, 1st row, 1st column. If Sn is not complete sufficient and Us is minimally sufficient, then for
an upper tail test P(Sn � sjUs, Ha) � P(Sn � sjHa) for some s is possible, where Ha is the alternative
hypothesis. That is, the test conditional on a statistic from prior analysis can be more powerful.
Parallel arguments hold for lower and two-tailed tests.
Left block, 1st row, 2nd column. Rao–Blackwellization guarantees that V(SnjU) � V(Sn). See figure 3
for an example.
Right block, 1st row, 1st column. Conditioning on a decision based on user-defined criterion might
alter the support of the sampling distribution of Sn. In these cases, conditioning is necessary for a
valid test. See figure 4 for an example.
Right block, 3rd row. Ua and Sn might be dependent (see Casella & Berger ([128], pp. 284–285) for an
example). Applying a decision with a user-defined criterion and Ua might affect the support of the
sampling distribution of Sn. In these cases, conditioning on the decision regarding Ua is necessary
for a valid test.

Appendix D

D.1. Details of models used in figures
Figure 1a. The simple linear regression model is given by yi = β0 + β1xi + ei, where the errors obey Gauss–
Markov conditions: E(ei) ¼ 0, V(ei) ¼ s2

e , 8i, and Cov(ei, e j) ¼ 0, 8(i, j). The xi are assumed fixed and
known. The errors ei ∼Nor(0, se). The measurement error model is the true model when there
is stochastic measurement error in x making it a random variable X. We assume Xi = xi + ηi, where
ηi∼Nor(0, ση). The assumed (incorrect) model under which inference is performed is the simple linear
regression model, which corresponds to ση = 0. Specific values used in the plot are: x∼Unif(0, 10),
β0 = 2, β1∈ {2, 20}, se = 1, ση∈ {0.01, 0.02, …, 1.0}, and the sample size is 50.

Figure 2. The model is the same as in figure 1a, except that the values plotted are ση∈ {0.01, 0.02, …,
10}, and the true value is β1 = 20. The vertical axis shows the distance between b̂1 and β1.

Figure 3. This example is from Mukhopadhyay [72]. Let X � Nor(m, m), m . 0. The data are a single
observation X1, which is an unbiased estimator of μ. Using Rao–Blackwellization, |X1| is a sufficient
statistic for μ and the mean of X1 conditional on the value |X1| improves the power of a test while
maintaining its validity.

Figure 4. Let Xi � Nor(mX, s
2
X) and Yi � Nor(mY, s

2
Y), i ¼ 1, 2, . . . , n independent samples with

known population variances s2
X and s2

Y. Let the null and the alternative hypotheses be Ho : μX = μY,
Ha : μX > μY, respectively. An appropriate test statistic for level a ¼ P(Z � zajHo) test is the z-score:
Z ¼ (�X � �Y)=(sX=

ffiffiffi
n

p þ sY=
ffiffiffi
n

p
), which follows a standard normal distribution under Ho. Assume we

perform the test only if we observe �X � �Y . 0. Define: U(c) ¼ �X � �Y if �X . �Y, and U(c) = 0 otherwise.
Here, U(c) is the statistic U ¼ �X � �Y whose non-zero values are constrained by the user-defined
criterion c, given by �X . �Y. The conclusion of the test depends on U(c) because when �X . �Y, the
larger the value of U, larger the value of Z. The distribution of the conditional test statistic Z|U(c), Ho

is not standard normal and therefore the level of the test is not necessarily α for the critical value za,
as is with the test statistic Z. However, if the distribution of Z|U(c), Ho is available then the correct
critical value, can be chosen to perform a level α test. We let W ¼ ZI{�X.�Y}, the standard normal
random variable with support on non-negative real line (folded at zero), properly normalized. This is
known as the standard half-normal distribution.

We see that P(W . zajHo) ¼ 2a. For the level of the conditional test to be α, we adjust the critical
value as z� = zα/2 and have P(W . z�jHo) ¼ a:
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Appendix E

E.1. A simulation-based method to sample the conditional distribution of the test statistic
If the distribution of the conditional test statistic under Ho is not available as a closed form solution, an
appropriate simulation-based method can be used to sample it. Here, we give an example for the
unconditional test statistic Sn with distribution P(SnjHo), where Ho : θ = θo. We aim to sample M
values from the conditional distribution of Sn|U(c), Ho where U(c) is a statistic obtained from the data
constrained by a user-defined criterion c.
Algorithm.

Initialize: Set M (large desired number), and i = 0.

Begin While i < M, do:

1. Simulate X j � P(Xijuo), j ¼ 1, 2, . . . , n independently of each other. Set X(i)n ¼ (X1, X2, � � � , Xn).
2. Calculate S(i)n ¼ S(X(i)n ) and U

(i) ¼ U(X(i)n ).

3. If U(i) obeys c accept S(i)n as a draw from the distribution of the conditional test statistic and set i = i + 1. Else

discard (X(i)n , S
(i)
n , U

(i)).

End While

ournal/rsos
R.Soc.Open
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The accepted values S(1)
n , S(2)

n , . . . , S(M)
n is a sample from the distribution Sn|U(c), Ho. A valid level α

test can be built by finding the relevant sample quantile. This method is precise up to a Monte Carlo error
which vanishes as M→∞.

Sometimes it may not be possible to condition on the exact value of statistic U(c), for example when c
involves an equality (instead of inequality) and U is continuous random variable. In these cases, the
algorithm given above can be modified to build an approximate test using an approximate simulation
method such as a likelihood free method. The error rates in approximation can be estimated by simulation.
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