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Abstract

In current anesthesiology practice, anesthesiologists infer the state of unconsciousness

without directly monitoring the brain. Drug- and patient-specific electroencephalographic

(EEG) signatures of anesthesia-induced unconsciousness have been identified previously.

We applied machine learning approaches to construct classification models for real-time

tracking of unconscious state during anesthesia-induced unconsciousness. We used cross-

validation to select and train the best performing models using 33,159 2s segments of EEG

data recorded from 7 healthy volunteers who received increasing infusions of propofol while

responding to stimuli to directly assess unconsciousness. Cross-validated models of uncon-

sciousness performed very well when tested on 13,929 2s EEG segments from 3 left-out

volunteers collected under the same conditions (median volunteer AUCs 0.99-0.99). Models

showed strong generalization when tested on a cohort of 27 surgical patients receiving

solely propofol collected in a separate clinical dataset under different circumstances and

using different hardware (median patient AUCs 0.95—0.98), with model predictions corre-

sponding with actions taken by the anesthesiologist during the cases. Performance was

also strong for 17 patients receiving sevoflurane (alone or in addition to propofol) (median

AUCs 0.88—0.92). These results indicate that EEG spectral features can predict uncon-

sciousness, even when tested on a different anesthetic that acts with a similar neural mech-

anism. With high performance predictions of unconsciousness, we can accurately monitor

anesthetic state, and this approach may be used to engineer infusion pumps to intelligibly

respond to patients’ neural activity.
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Introduction

Most surgery are performed under general anesthesia (GA). The reversible, drug-induced state

consists of antinociception, unconsciousness, amnesia, and immobility with maintenance of

physiological stability [1]. Anesthesiologists induce and maintain this state by administering

combinations of intravenous and/or inhaled anesthetic, analgesic, and muscle relaxing drugs.

Anesthesiologists primarily assess level of unconsciousness during surgery by monitoring a

patient’s physiological signs (e.g., blood pressure, heart rate, respiratory rate, movement and

perspiration).

Some anesthesiologists use EEG-based indices to track the state of unconsciousness [2, 3].

The most commonly used indices are the bispectral index (BIS) [4], the patient state index

(PSI) [5], Wavelet-based Anesthetic Value for Central Nervous System (WAVCNS) [6], and

Narcotrend [7]. Each index is computed in near real time using an algorithm that scales the

output between 0 and 100, so that 100 is wide awake and 0 is profoundly unconscious. For a

given index, it is assumed that same index value indicates the same anesthetic state indepen-

dent of the agents being administered. Each index provides a range which the anesthesiologist

is advised to target to ensure that the patient is appropriately unconscious. The range for the

BIS monitor is 40 to 60, whereas the range for the PSI is 25 to 50. While these indices have

helped guide anesthetic management, they can be inaccurate. For example, it is widely appreci-

ated that the BIS index assessments of the level of unconsciousness can be when the anesthetics

being used are nitrous oxide, ketamine and dexmedetomidine [8, 9]. The BIS index can also

give inaccurate readings when monitoring the brain states of children under general anesthe-

sia. To complicate things further, there are known differences in prediction of sedation/uncon-

sciousness between these monitors [10]. Perhaps unsurprisingly, studies have been

inconclusive regarding whether the use of BIS improves patient outcomes [11–13].

The reasons for these inaccuracies are now understood. A unidimensional index cannot

accurately describe a patient’s state of unconsciousness for all anesthetics because the EEG

dynamics of anesthetized patients change systematically with anesthetic class and mechanism

of action, anesthetic dose, and patient age [14, 15]. Although propofol is an intravenous anes-

thetic and sevoflurane is an inhaled ether, their primary mechanism of action is through con-

trol of neural circuits in the brain and central nervous system by binding to GABA-A

receptors on inhibitory interneurons [1, 15]. Not surprisingly, the EEG patterns of these two

anesthetics are similar. In contrast, the presence of slow-delta oscillations in a patient anesthe-

tized with propofol indicates a profound state of unconsciousness whereas the same oscilla-

tions produced by dexmedetomidine only suggests sedation. The reason is clear in that

dexmedetomidine acts in the brain’s circuits controlled by alpha-2 adrenergic receptors and

therefore, produces slow-delta oscillations through a mechanism entirely different from pro-

pofol’s GABAergic mechanism [15]. Likewise, slow-delta oscillation is thought to be due to N-

methyl-d-aspartate receptor (NMDAR) antagonism in ketamine [16]. The EEG patterns of

children from 1 to 18 years of age are similar to those of adults 18 to 35 years old. However, the

distribution of power across the spectral bands differs [17]. In young adults, propofol’s alpha

band ranges from approximately 8 to 12 Hz, whereas the corresponding band in young chil-

dren ranges from 10 to 20 Hz. Power in the upper range of the 10 to 20 Hz band suggests a sed-

ative state in an adult whereas it is characteristic of the unconscious state in a child. In adults

over the age of 60, the alpha band power is likely to lie in the lower part of the 8 to 12 Hz range

and have a lower amplitude relative to a young adult [14].

Recently, machine learning (ML) and deep learning (DL) techniques have been applied to

pattern recognition tasks in medicine with performances similar to human interpretations

[18–20], and may even improve upon human prediction of adverse events during anesthesia
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[21]. Previous studies have applied a wide range ML/DL features and models to predict patient

unconsciousness in Intensive Care Units [22], during dosing of anesthetics to healthy volun-

teers [23], or in the operating room [24–26]. These studies showed that many methods from

machine learning applied to raw or processed EEG data perform well in tracking Modified

Observer’s Assessment of Alertness/Sedation (MOAA/S) scores or whether a patient had

received an anesthetic bolus. We sought to compare the use of several different features and

methods for classification and improve upon existing methods in two manners. First, we con-

sidered the explicit time-dependent nature of unconsciousness in a statistically principled fash-

ion with Hidden Markov Models (HMMs), which can combine ML or DL EEG features from

individual epochs with information on how the EEG temporally evolves between epochs and

thus may yield improvements in ML classification of unconsciousness without loss of

interpretability. Second, we hypothesized that incorporating known neurophysiological mech-

anisms by training and testing within a class of anesthetics that function via similar mecha-

nisms would yield strong performance.

To test this hypothesis, we developed an ML training-testing-generalizability paradigm.

The training cohort consisted of non-surgical healthy volunteers receiving computer-con-

trolled infusions of propofol for approximately 2.5 hours. We recorded continuously 64-leads

of EEG and computed spectral features to predict level of unconsciousness. We assessed level

of unconsciousness by recording every 4 seconds the response to a binary task. We tested the

classification model using a subset of the non-surgical volunteers whose data were not

included in the training set. We also tested the classification model by using it on a cohort of

surgical patients who received only intravenous propofol as anesthetic for induction and main-

tenance of unconsciousness. Their EEG activity was recorded using a 4-lead system and level

of consciousness was based on the anesthesiologists clinical assessment. We finally assessed

generalizability by using the classification model on a second cohort of surgical patients who

received sevoflurane as their primary anesthetic for maintenance of unconsciousness.

Results

Study cohorts

We trained the ML models on data recorded from healthy volunteers administered propofol

using a target-controlled infusion (TCI) protocol [27]. We tested and assessed the generaliz-

ability of the ML models using data from a hold-out set of the healthy volunteers who under-

went the same TCI protocol and on data recorded from a separate cohort of surgical patients.

The characteristics of the healthy volunteer and surgical cohorts are shown in Table 1, and the

selection criteria for the surgical cohorts are shown in Fig 1. To approximate the relationship

between unconsciousness and EEG-induced anesthetic dynamics, we re-analyzed for the

healthy volunteers the time series of EEG measurements and simultaneously recorded binary

(yes-no) responses to an auditory task executed every 4 seconds. We operationally defined

unconsciousness as loss of responsiveness. The binary responses analyzed with a binary

smoothing algorithm were used to label every 2-second interval as responsive (conscious) or

unresponsive (unconscious) as in [27]. We divided the data from the 10 healthy volunteers

into a training cohort of 7 subjects and a test cohort of 3 subjects. Details on the cohort are

included in the Methods. A schematic of the cross-validation, model selection and testing

approach is shown in Fig 2.

Cross-validation and model selection

We used seven-fold cross-validation to estimate how trained models will perform on unob-

served patients. We used cross-validation results to select 3/15 models that performed well and
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yield clinically relevant interpretations. We trained these models using the full volunteer train

cohort (7 subjects) and applied the resulting models to the volunteer test cohort and surgical

test cohorts. Cross-validation and model selection results are shown in Fig 3. We found that

many models performed well (mean AUC > 0.9 on the left-out subject from each of the seven

folds) during cross-validation.

Table 1. Cohort characteristics for the healthy volunteer subjects from Purdon et al. 2013 and the cases included from the surgical case respository.

Statistic Volunteer Cohort Sevoflurane Surgical Cohort Propofol Surgical Cohort

No. of patients 10 17 27

Time series

Duration of EEG (min), mean (sd) 157 (7) 108 (67) 52 (42)

Conscious duration (min), mean (sd) 79 (16) 10 (13) 6 (13)

Unconscious duration (min), mean (sd) 78 (19) 81 (63) 38 (34)

Patient

Age, mean (sd) 24 (3) 50 (20) 32 (22)

Female Sex, % (No.) 50 (5) 71 (12) 56 (15)

Height Cm, mean (sd) 171 (8) 165 (9) 167 (13)

Weight kg, mean (sd) 68.590 (8.350) 72.534 (26.938) 67.657 (17.771)

Acuity

Asa 1, % (No.) 100 (10) 24 (4) 30 (8)

Asa 2, % (No.) 0 (0) 53 (9) 63 (17)

Asa 3, % (No.) 0 (0) 24 (4) 7 (2)

Airway

Endotracheal Tube, % (No.) 0 (0) 76 (13) 4 (1)

Laryngeal Mask Airway, % (No.) 0 (0) 12 (2) 7 (2)

Mask Ventilation, % (No.) 0 (0) 6 (1) 4 (1)

Spontaneous Ventilation, % (No.) 100 (10) 6 (1) 85 (23)

Procedure

Breast Tissue Expander Placement, % (No.) NA 6 (1) 0 (0)

C Palate Repair, % (No.) NA 6 (1) 0 (0)

Colonoscopy, % (No.) NA 6 (1) 4 (1)

Colonoscopy+Egd, % (No.) NA 0 (0) 30 (8)

D C Hysteroscopy, % (No.) NA 6 (1) 0 (0)

Derm Surg, % (No.) NA 0 (0) 7 (2)

Egd, % (No.) NA 0 (0) 22 (6)

Eswl, % (No.) NA 0 (0) 7 (2)

Exam Under Anesthesia, % (No.) NA 6 (1) 7 (2)

Hernia Repair, % (No.) NA 0 (0) 11 (3)

Kidney Transplant, % (No.) NA 6 (1) 0 (0)

Laparoscopic Inguinal Hernia Repair, % (No.) NA 6 (1) 0 (0)

Laparoscopic Rouxeny Gastric Bypass Moderate, % (No.) NA 6 (1) 0 (0)

Laprascopic Cholecystectomy, % (No.) NA 6 (1) 0 (0)

Laser Lithotripsy Ureteroscopy Retrograde Stent Cystoscopy, % (No.) NA 12 (2) 0 (0)

Mastectomy With Sentinel Node Biopsy With Implant Reconstruction, % (No.) NA 6 (1) 0 (0)

Muscle Biopsy, % (No.) NA 0 (0) 7 (2)

Photo Selective Vaporization Of The Prostate Pvp Medium, % (No.) NA 6 (1) 0 (0)

Scaphoid Wrist Orif Perilunate Orif And Left Carpal Tunnel Release, % (No.) NA 0 (0) 4 (1)

Tibial Plateau Fracture Orif, % (No.) NA 6 (1) 0 (0)

Vaginal Hysterectomy, % (No.) NA 6 (1) 0 (0)

Surgery Vulva Biopsy, % (No.) NA 6 (1) 0 (0)

https://doi.org/10.1371/journal.pone.0246165.t001
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We chose three models with similarly high performance, as shown in bold on Fig 3: mutlita-

per power spectrum in decibels (SDB) features with no HMM, principal component analysis

(PCA) features with no HMM, and linear discriminant analysis (LDA) features with a two-

state HMM (LDA+HMM2). Details of the featurization and HMM is provided in the Methods.

These models yielded mean AUC scores of 0.957, 0.958, and 0.970, respectively, for the left-out

subject during cross-validation. LDA with a six-state HMM also performed well (mean

AUC = 0.970) but we considered this to be redundant with LDA+HMM2 and did not keep

this model for further analysis. We did not perform significance testing for differences in AUC

between models during cross-validation due to the low sample size and large number of poten-

tial models. Despite the small number of volunteers, each volunteer recording consisted of

approximately 2h of EEG data separated into 2 s epochs for training, increasing the power of

our approach despite the dependence of samples from the same subject.

Model testing: Volunteer cohort

We tested the selected models first on EEG recordings from three healthy volunteers in the

same study used for training [27]. As shown in Fig 4A, the SDB, PCA, and LDA+HMM2 mod-

els yielded median AUCs of 0.986, 0.988, and 0.991 respectively for the held-out volunteers.

Accuracy was similarly high, with medians of 0.910, 0.925, and 0.941 for each model, using the

default threshold of 0.5. A representative subject is shown in Fig 4C. Notably, after propofol

was administered but before the subject lost consciousness, the SDB and PCA models show a

progressive decrease in the probability of consciousness. In contrast, the LDA+HMM2 model

shows an abrupt transition between conscious and unconscious. While the LDA+HMM2

model yielded a slightly higher AUC, it did so at the expense of continuous probability of con-

sciousness values.

Fig 1. Inclusion criteria for surgical cohorts. The 44 cases included in the surgical cohorts consisted of 27 and 17

cases respectively for which propofol and sevoflurane were the primary anesthetics administered to maintain

unconsciousness.

https://doi.org/10.1371/journal.pone.0246165.g001
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Model testing: Propofol surgical cohort

Next, we applied the three classification models trained on healthy volunteers to data collected

during surgical cases that used a propofol total intravenous anesthesia approach (TIVA) for

GA. That is, propofol was used for both induction and maintenance of unconsciousness. The

healthy volunteer EEG recordings were collected in a tightly controlled environment. In con-

trast, the surgical data were measurements during surgery, used different EEG equipment, and

were recorded from patients with a wider range of age and health status (see Table 1 and Meth-

ods for details). We designated EEG data collected prior to induction and after surgery started

as conscious and unconscious, respectively, and made no predictions between induction and

surgery start. Despite the data collection differences, the classification models generalized well

with median casewise AUCs of 0.947, 0.953, and 0.980 for SDB, PCA, and LDA+HMM2

respectively (Fig 5). These results are comparable to those found for propofol in [23, 24].

Although median accuracy was also high with a default threshold of 0.5, some cases exhibited

low accuracy (<0.50). Tuning the individual threshold by maximizing true positive rate (TPR)

and minimizing false positive rate (FPR) improved the accuracy for the least-accurate cases.

Selecting a personalized classification threshold may be useful in a surgical context and may

improve performance. We also note that accuracy here is affected by the imbalance between

conscious and unconscious duration for each patient.

We examined the propofol surgical cohort predictions in detail to determine if the models

yield information that may be subjectively useful during a surgery. We tested the classification

model and found that for an example volunteer and an example surgical case, performing

Fig 2. Summary schematic of machine learning approach. The healthy volunteer cohort was split into volunteer train and volunteer test cohorts

comprised of seven and three subjects, respectively. Each model consisted of a feature set, a two-state or six-state HMM or no HMM, and a logistic

regression classifier of the resulting time series of features. We performed model selection via sevenfold leave-one-out cross-validation on the volunteer

training cohort. We selected three of the fifteen possible models and fit the models using the full seven training subjects. We applied the resulting

models to data recorded from the three held-out subjects in the volunteer test cohort, the 27 patients in the propofol surgical cohort, and 17 patients in

the sevoflurane surgical cohort.

https://doi.org/10.1371/journal.pone.0246165.g002
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prediction for each 2 s epoch took <0.1s on a MacBook Pro using a 2.4 GHz Quad-Core

Intel1Core i5 with 16 GB RAM. This indicates potential for the algorithm to be run in real-

time without unreasonable computational need (S3 Fig). Fig 6 shows two representative cases

for application of the classification models to data from the OR.

The first case (Fig 6A) was a 28-year-old man undergoing a colonoscopy. The patient

received five propofol boluses in the ten minutes preceding the procedure start and an infusion

of propofol throughout the procedure. The classifier models correctly predicted consciousness

during the short pre-induction epoch, and continued to predict that the patient was responsive

until just before the start of the procedure (black bar, bottom). The classifier continued to pre-

dict an unconscious state for the duration of the procedure, and likewise the anesthesiologist

did not add any additional propofol boluses after the procedure began.

The second case (Fig 6B) was a 44 year old woman undergoing a left nipple inversion cor-

rection. In this case, the patient received two bolus doses of propofol prior to the start of the

procedure start and unconsciousness was maintained by an infusion of propofol. The models

correctly predicted consciousness pre-induction, loss of consciousness during the induction

period, and a deeply sedated state during the start of the surgery. Just before 20 min post-EEG

start, all three classifier models began to predict a higher probability of the patient being con-

sciousness. At approximately minute 19 and following the model prediction of recovery of

consciousness, the anesthesiologist administered two additional propofol boluses, and the

models correctly predicted that the patient returns to a state of unconsciousness. Here, the

models may have correctly identified a situation of inadequate sedation during a case, showing

subjectively that such an approach may be useful in the OR. This is especially suggestive

because the tracking algorithm predicted the return to consciousness several minutes before

the anesthesiologist administered additional propofol boluses. A third case (with the lowest

Fig 3. Cross-validation and model selection results. Area under the receiver operating characteristic (ROC) cuve (AUC) on the left-out cross-

validation subjects for the 15 candidate models. A model consisted of one feature set (multitaper spectrogram: SDB, bandwise power: BWP, principal

components of the spectrogram: PCA, linear discriminant scores: LDA, principal components of features generated by a convolutional neural network:

CNN) and one time series treatment (no treatment of features as a time series, a two-state HMM: HMM2, a six-state HMM: HMM6). Median AUC is

shown with a black bar. We chose to keep three models with similar performance to examine in detail (shown in bold). These models were LDA

+HMM2 (best performance and more parsimonious than LDA+HMM6), PCA with no treatment of features as a time series (best non-HMM

performance, used in control previously [28]), and SDB with no treatment of features as a time series (simplest case).

https://doi.org/10.1371/journal.pone.0246165.g003
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casewise AUC) is shown in S1 Fig. Here we note that the label assigned retrospectively may

not correspond well with the true patient state during surgery; it appears that the patient was

indeed minimally conscious and sedated until more than ten minutes following the start of the

procedure.

Model testing: Sevoflurane surgical cohort

Data recorded during an additional 17 cases were identified where sevoflurane was used to

maintain unconsciousness as shown in Fig 7. Although sevoflurane EEG recordings during

general anesthesia differ slightly from propofol alone, we expected moderate generalizability

because both propofol and sevoflurane both alter neural circuit activity by binding to GABA

receptors. We found that our models performed well for the sevoflurane cases, with median

casewise AUCs of 0.875, 0.912, and 0.916 for SDB, PCA, and LDA+HMM2 respectively. Our

AUCs in this test dataset were comparable to the two sevoflurane cases in [24] and shown for a

larger cohort. Meanwhile, these AUC scores improve on performance in comparison to sevo-

flurane cases in [23]. Still, accuracy using a default threshold of 0.5 was in some cases low, indi-

cating that these classification thresholds must be tuned.

Fig 4. Model performance on volunteer test cohort (n = 3). (A) Casewise AUCs for each of the three selected models

with median values shown in black. Median AUCs were 0.986, 0.988, and 0.991 for SDB, PCA, and LDA+HMM2

respectively. (B) Casewise accuracy for each of the three selected models with median values shown in black. Median

accuracies were 0.910, 0.925, and 0.941 for SDB, PCA, and LDA+HMM2 respectively. (C) Model performance on a

representative subject, showing the multitaper spectrogram and model-predicted probability of consciousness (P(y))

and ground-truth conscious state as recorded in [27].

https://doi.org/10.1371/journal.pone.0246165.g004
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Discussion

Automated tracking of unconsciousness during clinical anesthesia has the potential to enable

precise titration of anesthetics and can be used readily in conjunction with current anesthesia

practice. Here, we sought to develop classification models for making a binary conscious/

unconscious decision using 2s epochs of EEG. Most classification models performed remark-

ably well given the straightforward nature of our approach and the simplicity of using logistic

regression for classification. The high AUC by case (>0.95 for propofol cases) indicated that

more complicated machine learning approaches are unnecessary for tracking conscious state

during anesthesia. This is due to the clear and large-magnitude difference in signatures of con-

sciousness or unconsciousness in the recordings, as well as the use of a gold-standard dataset

for training. While anesthesiologists have read EEG to monitor the brain clinically, our result

supports this approach. This study extends previous works which indicated that signatures of

consciousness differed from those of unconsciousness during anesthesia by showing that the

signatures of (un)consciousness are sufficient to discriminate between states with a high per-

formance. Importantly, the model performance remained high when applied to cases recorded

during GA for surgery, and when using the GABAergic anesthetic sevoflurane. Generalizabil-

ity across a patients undergoing anesthesia maintained by GABAergic anesthetics points the

potential to use known physiology to construct or apply classification models.

Classification models trained using PCA and SDB performed comparably, indicating that

the information pertinent to making the classification is maintained through the linear PCA

dimensionality reduction. The use of an HMM did not show improvement in AUC for fea-

tures generated in an unsupervised fashion. This is likely because HMM-learned hidden states

Fig 5. Model performance on propofol surgical test cohort (n = 27). (A) The classifier model performances were

high on a by-case basis, with median casewise AUCs of 0.947, 0.953, and 0.980 for SDB, PCA, and LDA+HMM2

respectively. The lowest-performing case was consistent between classifiers and is examined further in S1 Fig. (B)

Classifier accuracy with default threshold of 0.5 was high on average (median accuracies 0.926, 0.948, and 0.948 for

SDB, PCA, and LDA+HMM2 respectively). However, several cases had low accuracy, likely due to improper inter-

individuality in optimal threshold. (C) Although median accuracy is nearly identical for case-specific thresholds (0.944,

0.931, and 0.944 for SDB, PCA, and LDA+HMM2 respectively), performance for low-accuracy cases improved. (D)

Optimal threshold was determined by maximization of (1 − FPR) + TPR, as described in methods. A threshold

personalization procedure would be essential for clinical accuracy.

https://doi.org/10.1371/journal.pone.0246165.g005
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are unsupervised and did not correspond well with conscious/unconscious states, thus adding

temporal stability with an HMM was unable to improve prediction. When LDA was used to

generate features in a supervised fashion, the HMM was able to add temporal continuity to the

supervised features and thus performance exceeded our other models. The benefit of using an

HMM with LDA is incorporating the inherent temporal continuity of the state of conscious-

ness: a patient is unlikely to flip rapidly between states of consciousness, and the HMM pro-

vides some increased robustness to noisy flipping between states. The cost of this temporal

continuity is that the binary state of the HMM results in a more discontinuous transition

between likely-conscious and likely-unconscious states (as shown by the less smooth transi-

tions in in Figs 4 and 6). Approaches for closed-loop anesthesia delivery (CLAD) may find a

marker of conscious state with more dynamic range, such as the PCA or SDB classifier a more

suitable signal for control. Although the use of deep learning in the form of convolutional neu-

ral network featurization did not yield useful results in this study, we cannot rule out that deep

learning may provide utility in a future study. We also emphasize that spectral features are not

exhaustive: any number of features, from raw EEG signal to Granger causality to any number

of hand-picked features may be used for classification. We elected to use spectral features

alone due to a well-established link between EEG spectral composition, anesthetic dose, and

unconsciousness [1–3, 14]. A training set that is larger by one or more orders of magnitude

may yield increasingly useful features.

Our classification models performed favorably in comparison to previous studies involving

the use of machine learning to track conscious state. One recent study was able to predict

depth of anesthesia in one of four qualitatively defined classes (from “profound unconscious-

ness” to “awake”) in real time with average accuracy = 0.92 using hand-selected features [29].

Fig 6. Two example propofol surgical cohort cases with multitaper spectrogram of EEG data (A,D), propofol and other drug doses (B,E) and

model-predicted probability of consciousness (C, F) with patient state as determined by clinical records. (A-C) Following a brief pre-induction

conscious epoch, the patient was induced using a bolus of propofol. The procedure (black bar, bottom) started after the final induction bolus, and the

model predictions indicated loss of consciousness only toward the end of the epoch between induction and procedure start. The model predicted that

the patient remained unconscious throughout the procedure. (D-F) The patient was induced using two propofol boluses and the model predicted loss

of consciousness. At approximately 19 minutes, the model begins to predict the return of consciousness. Several minutes later, the patient was

administered two propofol boluses, a real-time adjustment by the anesthesiologist in response to an inadequate level of unconsciousness, which was

correctly detected by the model.

https://doi.org/10.1371/journal.pone.0246165.g006
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The good average performance of the classifier used in this study is complicated by an unclear

clinical/physiological inference of the “true” patient state, which was subjectively assigned in a

post-hoc manner. A different study constructed a classification algorithm using EEG collected

during sedation driven by several anesthetics and tested using similar healthy volunteers [23].

In comparison to this study, our models for tracking propofol unconsciousness performed

comparably (mean AUC> 0.9), however, our models outperformed the models from [23] that

were applied to sevoflurane cases. Our performance on our cohort of 17 sevoflurane cases was

more comparable to the two sevoflurane cases in [24]. Another recent study that sought to

identify EEG patterns of emergence during sevoflurane anesthesia found four distinct patterns,

and used spectral features (primarily ratio of delta to alpha power) to distinguish between

these patterns [30]. While this approach performed well (mean accuracy = 0.7-0.9), it was used

to retroactively classify entire emergence epochs rather than track depth of anesthesia. Our

models had higher performances than a prior study predicting consciousness and delirium in

Intensive Care Units (ICUs) [22]. Our higher performance may reflect the more profound

level of unconsciousness required for GA than is required for sedation in the ICU, less signal

noise in the more controlled operating room, or greater variability in the brain states of the

severely ill ICU patients.

Beyond performance, there are several advances in this study. Prior classification models

did not use continuous measures of patient responsiveness to construct models and instead

relied on (frequently post-hoc or subjective) human labeling to generate a set of data for

Fig 7. Model performance on sevoflurane surgical cohort (n = 17). (A) The classifier model performances remained

high on a case-by-case basis, with median casewise AUCs of 0.875, 0.912, and 0.916 for SDB, PCA, and LDA+HMM2

respectively. (B) Classifier accuracy with default threshold of 0.5 was moderate on average (median accuracies 0.783,

0.853, and 0.773 for SDB, PCA, and LDA+HMM2 respectively). (C) As with propofol, case-specific thresholds for

sevoflurane yielded improvements for poorly performing cases but little change on average (median accuracies 0.832,

0.825, 0.840 for SDB, PCA, and LDA+HMM2 respectively), performance for low-accuracy cases improved. (D)

Optimal threshold was determined by maximization of (1 − FPR) + TPR, as described in the Methods.

https://doi.org/10.1371/journal.pone.0246165.g007
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training. The successful transfer of models to a real-world setting favorably indicates that data

recorded under tightly controlled study conditions indeed matched well with data recorded

during clinical anesthesiology practice. Furthermore, prior consciousness monitoring studies

with surgical data often handpicked clean regions of EEG data to form training and testing

sets, avoiding the frequently noisy and imprecise nature of surgical recordings. Here, we

applied our classifier to EEG data recorded during entire surgical cases, and found results indi-

cating that our approach will potentially work even in the frequently hectic operating room

environment. Aside from differing recording conditions, the surgical cases were recorded

using different hardware (4-lead EEG in OR vs. 64-lead EEG in study of healthy volunteers)

and software, further indicating that our model features are highly generalizable and do not

require tuning to each specific system that may be in use.

Despite these successes, there are significant limitations to our approach. First, our training

cohort is small and homogeneous in age and health status. EEG signatures of unconsciousness

are known to vary with age and health [14], and so a more generalizable approach would

involve training using a larger and more diverse cohort. We found that the signatures identi-

fied in healthy volunteers translated surprisingly well to the surgical test cohorts, which was

notably older and sicker by ASA standards. Still, true personalization may involve finding indi-

vidualized thresholds in order to attain the high casewise AUC performance values in Fig 5.

Future work will seek to determine how such a threshold might be adjusted as a function of

patient clinical characteristics such as age or ASA status. The propofol surgical cohort was also

comprised primarily of simple and brief surgeries, whereas deeper states of unconsciousness

are common during more invasive procedures such as cardiac surgeries. A cohort with greater

variety in surgical conditions would also improve detection of burst suppression, a very deep

state of anesthesia or medically induced coma [1] which was sometimes misclassified as con-

sciousness, as in S4 Fig. This is because during suppression epochs EEG is isoelectric (flat),

and lacks the strong slow-alpha power characteristic of GABAergic modulation necessary used

to identify unconsciousness. That the classifier differentiated between unconsciousness and

burst suppression/coma suggests a three-state classification model may improve brain moni-

toring during anesthesia, where consciousness and coma are both undesirable. However, we

did not seek to include burst suppression classification in this study because existing burst sup-

pression segmentation methods perform well [31].

Finally, we note that our tracking algorithm does not seek to replace anesthesiologists, but

instead to provide additional information to assist in guiding anesthetic administration. An

anesthesiologist will be able to incorporate additional information about patient status to bet-

ter assess consciousness. Our results support the utility of developing algorithms for tracking

unconsciousness under a supervised learning framework. Finally, our results support the

development of algorithms for tracking unconsciousness in a classwise manner grouped by

anesthetic mechanism.

Methods

Datasets

All data were collected in accordance with relevant guidelines, and approved by the Human

Research Committee at Massachusetts General Hospital.

Healthy volunteer cohort. The healthy volunteer cohort consisted of ten subjects between

the ages of 18-36, American Society of Anesthesiology Physical Status I, and with Mallampati

Class I airway anatomy. Clinical details are provided in Table 1 and Ref. [27]. Propofol was

administered via computer-controlled infusion to achieve target effect-site concentrations of

0, 1, 2, 3, 4, and 5 μg/mL. Each target concentration was held for 14 minutes. Propofol infusion
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rates were decreased in a stepwise fashion so that both induction of and emergence from

unconsciousness were gradual. Unconsciousness was measured by whether a patient

responded to auditory stimuli. Auditory stimuli (clicks or words) were presented every 4s in a

repeating sequence of click-click-word-click-click, with a total of 210 stimuli per effect-site

concentration level. Subjects were instructed to press one button if they heard a word and

another button if they heard a click. Stimuli details are further described in [27]. Unrespon-

siveness in this setting corresponded to unconsciousness because subject were unresponsive to

auditory stimuli.

In order to determine the probability of response to click and verbal stimuli, Bayesian

Monte Carlo methods were used to fit a state-space model to these data. Loss of consciousness

(LOC) was labeled as the first time following induction at which the probability of response to

an auditory stimulus (Pverbal) was less than 0.05 and remained so for at least 5 min. Return of

consciousness (ROC) was the first time during emergence at which Pverbal was greater than

0.05 and remained so for at least 5 min.

EEG was recorded using a 64-channel BrainVision MRI Plus system (Brain Products) with

a sampling rate of 5,000 Hz, bandwidth 0.016-1000 Hz, and resolution 0.5μV least significant

bit. The Fp1 channel was used for all further analysis. Subjects were instructed to close their

eyes for the duration of the study to avoid eye-blink artifacts in the EEG.

The healthy volunteer cohort was divided into a training cohort (seven subjects), and a test

cohort (three subjects).

Surgical cohorts. Two cohorts were created by reviewing a database of 247 patients who

underwent general anesthesia and simultaneous EEG recording collected between November

1, 2011 and August 20, 2015. Excluded from the cohort were cases without corresponding clin-

ical information, cases with ketamine used a primary anesthetic, cases with corrupted or

improperly recorded data, cases without a relevant timestamp (induction, surgery start, or sur-

gery end), and cases without the EEG recorded both before induction and after surgery start.

We excluded ketamine cases because ketamine is known to have a very different spectral signa-

ture of effect, due to its role primarily as an NMDA antagonist [32]. Ultimately, 44 cases were

deemed suitable for analysis and a full breakdown is shown in Fig 1. Data collected during

these cases were split into a propofol surgical cohort (where propofol alone was used for induc-

tion and maintenance of GA) and a sevoflurane surgical cohort (where sevoflurane was used

for maintenance of GA though propofol was commonly used for induction).

Patient status was labeled as consciousness or unconscious using surgical timestamps of

induction, surgery start, and surgery end. All EEG epochs before induction were labeled as

conscious, and all epochs between surgery start and surgery end were labeled as unconscious.

Times in between induction and surgery start were labeled as an undetermined state of con-

sciousness and all times after surgery end were not used.

Frontal EEG data were recorded using the Sedline brain function monitor (Masimo Corpo-

ration, Irvine, CA, USA). The EEG data were recorded with a pre-amplifier bandwidth of 0.5-92

Hz, sampling rate of 250 Hz, and with 16-bit, 29 nV resolution. The standard Sedline Sedtrace

electrode array recorded from electrodes located approximately at positions Fp1, Fp2, F7, and

F8, with ground at Fpz and reference electrode 1 cm above Fpz. Impedance was less than 5 kO

for each electrode. Only electrode Fp1 was considered in all further analyses. Epochs where EEG

signal dropped out were removed by filtering out epochs with a total power less than -30,000dB.

Signal processing

Detrending and preprocessing. EEG recordings from healthy volunteers were down-

sampled to 250 Hz before analysis using an anti-aliasing filter. EEG data recorded from all
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individuals were processed in a manner enabling real-time assessment of conscious state, with

no retrospective analysis requiring knowledge of the full time series in advance. EEG data were

windowed for multitaper spectral analysis and detrended via a linear detrend of each window

(as in [27]). We discarded epochs with very low power (<-30,000 dB), which generally indi-

cates that the sensor was disconnected from the patient. The most prominent artifacts

observed were before/during induction and at times in the middle of the surgery, which we

suspect is due to the surgical and anesthesia care teams moving or repositioning the patient.

Multitaper spectral analysis. The power spectrum and spectrogram were computed for

each subject using the multitaper spectral estimation methods implemented in the NiTime

package [33]. The spectrogram is an estimate of the EEG power spectrum performed on conse-

cutive windows of EEG data. The spectrograms of the Fp1 electrode were computed using the

following parameters: window length T = 2 s with no overlap, time-half-bandwidth product

TW = 3, and a spectral resolution of 3Hz. 2TW-1 = 5 tapers were used, resulting in better than

90% spectral concentration within the bandwidth [34]. An adaptive weighting routine was

used to combine estimates of different tapers as described in [35]. This resulted in a set of

power spectral estimates collected at 2 s intervals for the duration of an anesthetic regimen.

Classification models

Each classification model consisted of a feature set, a model for treating the time-evolution of

the features, and a logistic regression classifier to map the resulting temporal series of features

to prediction of unconsciousness.

We developed classification models by processing EEG data into a feature set, adding a

time series analytical approach via Hidden Markov modeling, and then training a classifier to

learn a representation between EEG features and patient conscious state. The feature sets used

were the multitapered EEG spectral power (denoted SDB), EEG bandwise power (denoted

BWP), the first three principal component [36] scores of the multitaper spectrogram (denoted

PCA), the linear discriminant [36] score of the multitaper spectrogram (denoted LDA, with

supervised learning performed by including the labels), and the first ten principal component

scores of a set of features generated by a deep convolutional neural network (denoted CNN).

Features for each epoch were either directly passed to a logistic regression classifier [36] to

map features to patient conscious state, or input into a HMM to model evolution in time. In

the HMM case, the HMM state likelihood from the prior 2 s epoch was used in the logistic

regression classification. The EEG features updated every 2 s and models were developed such

that they may be run in real time and predict unconsciousness in real time.

Featurization methods. Five sets of features were derived from the EEG multitaper spec-

trogram. These features were:

• The multitapered power spectral estimate (X(SDB)):Formally, this matrix of features is S 2
R100�N which is the multitapered power spectral estimate at each of N 2 s epochs (columns of

S), where 2N s is the duration of the EEG recording. The feature vector at epoch n is given by

xðSDBÞn ¼ sn ¼ ½sn;0; sn;1; . . . ; sn;100�
T
, which is a vector of estimates of spectral power between 0

and 50 Hz in 0.5 Hz bands.

• Bandwise power in canonical spectral ranges (X(BWP)): EEG activity in canonical fre-

quency ranges relates to unconsciousness [2]. Power in these bands was estimated from the

multitaper power spectral estimate and was given to the ensuing classification model in dB.

The bands used were: slow (0-1 Hz), delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta

(13-25 Hz), and gamma (25-50 Hz), as delineated in [2]. Thus, the X(BWP) feature set B 2
R6�N

has feature vector at epoch n of the form xðBWPÞn ¼ bn ¼ ½bn;s; bn;d; bn;y; bn;a; bn;b; bn;g�
T
.
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• Principal components of the multitaper spectrogram (X(PCA)): PCA is a technique for lin-

early transforming observations of multiple correlated variables into a collection of linearly

uncorrelated variables of decreasing variance, enabling the dimensionality of the data to be

reduced while capturing the variation within the dataset. In the present context, the observa-

tions are considered to be the 100-dimensional vectors corresponding to the mean-centered

multitapered power spectral estimate in a given time window, and each principal component

can be viewed as a set of weights over the power in various frequency bins. Formally, let S 2
R100�N

be a matrix whose columns correspond to the N 2 s windows (comprised of all sub-

jects included in training) and whose columns correspond to the 100 frequency bins from 0

Hz to 50 Hz. The ith principal component wi 2 R
100 is then given by the eigenvector corre-

sponding with the ith largest eigenvalue of the matrix S ST and the ith principal component

score for a window sn 2 R
100

(n = 1, . . .,N) is computed as pn;i ¼ sTnwi. Given that this proce-

dure is unsupervised (i.e. performed independently of the consciousness labels), there is no

guarantee that the principal component scores will enable effective discrimination between

the conscious/unconscious classes. By plotting the principal components as a function of fre-

quency, it is evident that the first three principal components correspond with clinically rele-

vant features and capture 92.1% of the total variance (see S2 Fig). As such, the PCA features

for a given time n are given by xðPCAÞn ¼ pn ¼ ½pn;1; pn;2; pn;3�
T
. For testing and generalization

phases, the principal components wi from training were used to compute the principal com-

ponent scores corresponding to a new 2 s window. PCA was performed using scikit-learn

[37].

• The linear discriminant of the multitaper spectrogram (X(LDA)): Linear Discriminant

Analysis (LDA) is a supervised learning dimensionality reduction technique that removes

redundant or dependent elements from higher dimensional space by transforming the fea-

tures to lower dimensional space. LDA can be viewed as a supervised analogue of PCA,

where rather than simply maximizing the variance of the variables in the transformed space,

it seeks to maximizes the ratio of between-class to within-class separability [38]. This yields a

linear discriminant which maximally separates the two classes. Specifically, let Sð0Þ 2 R100�N0

and Sð1Þ 2 R100�N1 be the subsets of the complete data S corresponding to 2 s windows of

consciousness and unconsciousness, respectively, with N0 + N1 = N. For j 2 {0,1}, let μj be

the sample mean of S(j) and define the scatter matrix as the unnormalized sample covariance

matrix Mj ¼
P

n2Nj
ðsðjÞn � μjÞðsðjÞn � μjÞ

T
.Within-class scatter matrix is defined as MW = M0

+ M1 and the between-class scatter matrix was defined as MB = (μ0 − μ1)(μ0 − μ1)T, with the

goal of projecting the data into a space where there is a large variability between classes but a

small variability within a each class. Thus, the linear discriminant v� 2 R100
is found as the

solution to:

argmax
v

vTMBv
vTMWv

ð1Þ

Finally, the resultant feature from a 2 s window is found by projecting the multitapered

power spectral estimate onto the linear discriminant: xðLDAÞn ¼ ln ¼ sTnv
�. LDA was performed

using scikit-learn [37].

• Convolutional neural network (X(CNN)) features: Convolutional neural networks (CNNs)

are deep neural networks that use convolution operations to compute spatial features in an

image. In this case, spatial convolutions of the multitaper spectrogram correspond to time/
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frequency relationships within the EEG recording. A previously described neural network

architecture called MobileNet was used for this purpose because it is a relatively low-capacity

network [39]. This network architecture is built-in to deep learning libraries (https://www.

tensorflow.org/api_docs/python/tf/keras/applications/MobileNet). We replaced the final

fully connected and 1000-output softmax layers with a single 2-output softmax layer.

Because of the limited amount of EEG training data, image features were those learned for

photographic image recognition in the ImageNet challenge [40], and the network was

trained to associate these features with conscious state in a process called transfer learning.

Transfer learning has previously been used to train CNN models for image recognition tasks

in other medical fields such as radiology [41–43] and pathology [44]. CNN model inference

was performed using the keras library with tensorflow backend [45].

The CNN input was the multitapered power spectral estimate for the preceding 30 s with 2 s

steps between windows (28 s overlap). Pixel intensities for an entire case were normalized to

values between 0 and 1. The CNN mapped each R15�100
30 s spectrogram window into vn 2

R1280 features, resulting in the full CNN feature matrix V 2 R1280�ðN� 28Þ. A PCA was per-

formed on the CNN feature matrix V in an analogous manner to above, reducing the CNN

feature matrix to its first ten PC scores. This yielded the CNN features xðCNNÞn 2 R10
at each of

(N − 28) epochs.

Time series analysis with Hidden Markov modeling. HMMs were used to incorporate

temporal patterns into model predictions. A HMM is a state-space model that has been used

to describe time series data in a wide variety of fields. It assumes anM-state system has {q0, q1,

. . .qM−1} discrete latent states which evolve over time, driven by a first-order, ergodic Markov

chain resulting in a sequence of states Z = (z0, z1, . . .,zN). Observations of the system (in our

case, the EEG features defined previously) are distributed according to state-specific Gaussian

emission distributions B = {bm} where bm ¼ N ðμm;ΣmÞ for each state qm with mean μm and

covariance Sm. In our application, Sm was constrained to be diagonal.

The Markov chain transition matrix is A = {aij} where aij = P(zn+1 = qj|zn = qi). The initial

state of the system is drawn from the discrete initial state distribution π. The entire HMM is

fully parameterized by λ = (A, B, π). In the model system, the state of the system at each dis-

crete time n is based on the Markov chain transition probabilities and an observed feature is

generated according to current state zn resulting in a sequence of observations X = (x0, x1, . . .,

xN). [46]

Each HMM was trained with the Baum-Welch algorithm using one of the five previously-

described features (computed from healthy volunteer data) as the observations of the model

system. For prediction of latent state, only the HMM forward algorithm was used so the classi-

fication models are applicable for future real-time implementation. The normalized forward

probability is defined as α(qi) = P(zn = qi|x0, . . .,xn, λ). One of three time series treatments was

applied to each feature: a 2 state HMM, a 6 state HMM, or no time series treatment. A 2-state

HMM was chosen to match the binary classification scheme, where each latent state reflects a

subject state of consciousness or unconsciousness. A 6-state HMM was also used to reflect that

there may exist multiple distinct EEG states which may then map to conscious or unconscious

subject. Despite using a binary classification scheme, intermediate states may arise during the

transition from consciousness to unconsciousness. Purdon et al. [27] showed that unique spec-

tral EEG features appear before complete loss of consciousness and again after returning to

consciousness, but before the return of normal behavior. Six states were chosen based on the

six increasing steps of target effect site concentration in the healthy volunteer cohort (Fig 4).

AIC was calculated for a range of 2-30 state numbers, but no minimum was found.
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Thus, for each feature vector xðf Þn at 2 s epoch n for f 2 {SDB, BWP, PCA, LDA, CNN}, the

2-state HMM yielded xðfþHMM2Þ
n 2 R2

, and the 6-state HMM yielded xðfþHMM6Þ
n 2 R6

.

In some cases in the surgical cohorts, the EEG signal was temporarily interrupted. Because

the HMM was used to model the temporal dynamics of the system, only continuous lengths of

data were used. In surgical cohorts cases where the EEG signal did drop out, the HMM for-

ward algorithm was re-initialized at the start of where the EEG signal came back online. The

HMM models were built using the Python hmmlearn package (https://github.com/hmmlearn/

hmmlearn), modified to use the output of the forward algorithm alone for prediction.

Classification with logistic regression. Logistic regression (LR) is a standard approach to

binary classification tasks [36]. For each combination of feature generation technique and

time series treatment described above, a different LR model was trained. Let xn = [xn,1, xn,2,

. . .,xn, K]T be a feature vector corresponding to any of the techniques described above, where

the dimension K of the feature vector will be determined by the specific featurization method.

For each window n, the feature vector is accompanied by a label yn 2 {0,1} indicating whether

the window corresponds with conscious or unconscious brain activity. A LR model is parame-

terized by a vector β 2 RKþ1 ¼ ½b0; b1; . . . ; bK �
T
. For a given parameterization β, the LR esti-

mated probabilities of consciousness and unconsciousness for window n are given by:

PrðConscious j xn; βÞ ¼
expβT~xn

1þ expβT~xn
PrðUnconscious j xn; βÞ ¼

1

1þ expβT~xn
ð2Þ

where ~xn ¼ ½1; xTn �
T

is the feature vector with a one prepended, enabling β0 to serve as a con-

stant offset. Thus, training a LR model entails finding the parameter set that maximizes the ℓ2-

regularized log-likelihood of the labels corresponding to the training set:

β̂ ¼ argmin
β

XN

n¼1

� logPrðyn j xn; βÞ þ
1

2
jjβjj2

2
ð3Þ

where k β k2
2
¼ βTβ. Given that this procedure is repeated across featurization methods, likeli-

hood maximizing parameter set will be obtained for each (for example, β̂ðSDBÞ trained on

X(SDB)). In all cases, the parameter vector was computed using scikit-learn with ℓ2 regulariza-

tion and the liblinear solver [37].

Statistical analyses

Cross-validation and model selection. Seven-fold leave-one-out cross-validation [36]

was used to compare model performance using the seven healthy volunteers in the volunteer

training cohort. PCA and LDA features were fit and each model was trained on six cases for

each fold and validated on the held-out case. Model performance was compared using area

under the receiver operating characteristic curve (description in ensuing section). Due to the

small number of independent samples (seven patients) tests for statistical significance between

models were not performed. We elected to keep three high-performing models with different

features and temporal models to gain insight into how these characteristics affect model per-

formance and interpretation.

Model testing on healthy volunteers and surgical patients. Classification models were

evaluated on data recorded from subjects that were not used in model training: held-out

healthy volunteers, patients surgery procedures using propofol, and patients undergoing sur-

gery where sevoflurane was the primary anesthetic. For each of the three classifiers selected

and each test cohort, a receiver operating characteristic (ROC) curve, the area under the ROC

curve (AUC), and the classifier accuracy were computed. The ROC curve is the plot of true
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positive (TP) rate (TPR = TP/(TP + FN), where FN = false negative count) vs. false positive

(FP) rate (FPR = FP/(TN + FP) where TN = true negative count) while varying the threshold

between positive and negative. An AUC of 0.5 is equivalent to random labeling, and an AUC

of 1.0 is perfect performance. Accuracy, the fraction of the time the classifier is correct: ACC =

(TP + TN)/(TP + FP + TN + FN), was also calculated. Accuracy was calculated for thresholds

of 0.5 (default threshold) or personalized thresholds, selected by computing optimal threshold

topt:

topt ¼ arg max
t
ð1 � FPRðtÞÞ þ TPRðtÞ

where t is a threshold between 0 and 1. AUC is generally a more valuable statistic because it is

balanced by the incidence of positives and negatives. AUC was also computed by case to deter-

mine if errors predominantly occurred for specific patients, or if they were distributed

throughout the data.

Supporting information

S1 Fig. Propofol surgical patient for which classifier performance is worst for every classi-

fier. This surgery was a 21-year-old woman undergoing extracorporeal shock wave lithotripsy.

Propofol was repeatedly bolused during the early portion of the procedure. The classifier pre-

dicts consciousness until the penultimate bolus, after which the classifier predicts a rapid shift

to a deeply sedated state. We interpreted this as the clinician seeking a deeper level of sedation

due to stimuli during the procedure. Rather than performing poorly, our classifier is appar-

ently capturing this phenomenon accurately.

(TIF)

S2 Fig. Visualization of PCA and LDA features. (A) Multitaper spectrogram for a test healthy

volunteer, used to visualize how PCA and LDA transform a spectrogram S. Loss and return of

consciousness (as defined in Methods) are indicated by white vertical lines. (B) Fraction of

data variance explained by each of the first ten principal components. All PCs past PC3

explained <2% of data variance and were thus excluded. (C) Clinical interpretation of the first

three PCs corresponds well with understanding of how the multitaper spectrogram evolves

during propofol anesthesia. PC1 is the overall power. PC2 is predominantly the gamma power

minus the slow-delta, theta, and alpha power (all known to be higher during unconsciousness).

PC3 may be thought of as the slow-delta power (high during unconsciousness) minus the beta

power (high during the transition between consciousness and unconsciousness). (D) Plotting

the dynamics of the PC score during the subject in A shows interpretation of PC scores. PC1

increases slightly during unconsciousness, but is highly noisy. PC2 is high during conscious-

ness and low during unconsciousness. PC3 is high during consciousness, low during the tran-

sition from conscious to unconscious, and high during the transition between states. (E)

Linear discriminant vector. Although vector values are less readily interpretable, trends similar

to PC2 may be seen: predominantly negative values for slow-delta and alpha bands, and posi-

tive values for high-frequency gamma. (F) Likewise, the overall temporal dynamics of the LD

score is visually similar to the trend for PC2 for this example subject.

(TIF)

S3 Fig. Timing of classifier shows real-time capability. We computed the time it took to per-

form classification for each 2 s window of raw EEG data for an example healthy volunteer case

and an example case from the surgical cohort. We found that computation time for classifica-

tion was<0.1s for all windows, and thus the algorithm may be run in real time. Computation

was performed on MacBook Pro using a 2.4 GHz Quad-Core Intel1 Core i5 with 16 GB
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RAM.

(TIF)

S4 Fig. Classification model performance on a healthy volunteer subject with burst sup-

pression classification results circled in red. Although this region was predominantly labeled

unconscious, some 2 s windows were labeled conscious. A three-class classification model

might add burst suppression as an additional undesirable state during surgery where the

patient is at a different level of unconsciousness closely resembling coma.

(TIF)
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