Table 3. Performance of 25 classification algorithms.
Model ID | Model Name | 8ROIs_accuracy | 8ROIs_AUC | Sensitivity | Specificity |
---|---|---|---|---|---|
1 | Fine Tree | 85.1 | 0.88 (0.13, 0.79) | 79 | 88 |
2 | Medium Tree | 85.1 | 0.88 (0.13, 0.79) | 79 | 88 |
3 | Coarse Tree | 80.6 | 0.86 (0.19, 0.79) | 79 | 81 |
4 | Linear Discriminant | 78.4 | 0.81 (0.09, 0.47) | 47 | 91 |
5 | Quadratic Discriminant | 76.9 | 0.72 (0.13, 0.5) | 50 | 88 |
6 | Logistic Regression | 76.9 | 0.8 (0.09, 0.42) | 42 | 91 |
7 | Gaussian Naïve Bayes | 79.1 | 0.85 (0.18, 0.71) | 71 | 82 |
8 | Kernel Naïve Bayes | 79.1 | 0.85 (0.18, 0.71) | 71 | 82 |
9 | Linear SVM | 82.1 | 0.82 (0.09, 0.61) | 61 | 91 |
10 | Quadratic SVM | 79.1 | 0.73 (0.09, 0.50) | 50 | 91 |
11 | Cubic SVM | 73.9 | 0.74 (0.17, 0.50) | 50 | 83 |
12 | Fine Gaussian SVM | 71.6 | 0.73 (0.00, 0.00) | 0 | 100 |
13 | Medium Gaussian SVM | 80.6 | 0.80 (0.09, 0.55) | 55 | 91 |
14 | Coarse Gaussian SVM | 80.6 | 0.85 (0.08, 0.53) | 53 | 92 |
15 | Fine KNN | 76.9 | 0.70 (0.14, 0.53) | 53 | 86 |
16 | Medium KNN | 79.1 | 0.81 (0.15, 0.63) | 63 | 85 |
17 | Coarse KNN | 71.6 | 0.78 (0.00, 0.00) | 0 | 100 |
18 | Cosine KNN | 76.9 | 0.82 (0.22, 0.74) | 74 | 78 |
19 | Cubic KNN | 81.3 | 0.81 (0.13, 0.66) | 66 | 88 |
20 | Weighted KNN | 77.6 | 0.82 (0.13, 0.53) | 53 | 88 |
21 | Boosted Trees | 71.6 | n/a | 0 | 100 |
22 | Bagged Trees | 75.4 | 0.78 (0.16, 0.53) | 53 | 84 |
23 | Subspace Discriminant | 80.6 | 0.82 (0.08, 0.53) | 53 | 92 |
24 | Subspace KNN | 76.9 | 0.80 (0.15, 0.55) | 55 | 85 |
25 | RUSBoosted Trees | 77.6 | 0.83 (0.20, 0.71) | 71 | 80 |
ROIs: regions of interest. AUC: area under curve.