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S U M M A R Y
Bayesian inversion of electromagnetic data produces crucial uncertainty information on in-
ferred subsurface resistivity. Due to their high computational cost, however, Bayesian inverse
methods have largely been restricted to computationally expedient 1-D resistivity models.
In this study, we successfully demonstrate, for the first time, a fully 2-D, trans-dimensional
Bayesian inversion of magnetotelluric (MT) data. We render this problem tractable from a
computational standpoint by using a stochastic interpolation algorithm known as a Gaussian
process (GP) to achieve a parsimonious parametrization of the model vis-a-vis the dense pa-
rameter grids used in numerical forward modelling codes. The GP links a trans-dimensional,
parallel tempered Markov chain Monte Carlo sampler, which explores the parsimonious model
space, to MARE2DEM, an adaptive finite element forward solver. MARE2DEM computes
the model response using a dense parameter mesh with resistivity assigned via the GP model.
We demonstrate the new trans-dimensional GP sampler by inverting both synthetic and field
MT data for 2-D models of electrical resistivity, with the field data example converging within
10 d on 148 cores, a non-negligible but tractable computational cost. For a field data inversion,
our algorithm achieves a parameter reduction of over 32× compared to the fixed parame-
ter grid used for the MARE2DEM regularized inversion. Resistivity probability distributions
computed from the ensemble of models produced by the inversion yield credible intervals and
interquartile plots that quantitatively show the non-linear 2-D uncertainty in model structure.
This uncertainty could then be propagated to other physical properties that impact resistivity
including bulk composition, porosity and pore-fluid content.

Key words: Electrical properties; Magnetotellurics; Non-linear electromagnetics; Inverse
theory; Probability distributions.

1 I N T RO D U C T I O N

Geophysical inversion aims to extract information about an earth
model from field observations, where the earth model is a quanti-
tative, discretized description of the spatial (and possibly temporal)
distribution of physical properties of interest. For example, this
might be a 1-D model with layers that contain a constant scalar
property (e.g. isotropic electrical resistivity), or a 2-D or 3-D dis-
cretized model with a number of scalar or vector properties de-
fined on a grid sufficiently fine to capture the desired degree of
model complexity. The field observations are often made at the sur-
face, yet the physical properties of interest (e.g. electrical resistivity,
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seismic velocity) are at depth. Deterministic inversion methods at-
tempt to produce a single model estimate by combining data fit
with a priori assumptions about the model in the form of model
regularization, which also serve to stabilize the non-unique and
usually ill-posed inverse problem (e.g. Constable et al. 1987; Cal-
vetti & Somersalo 2018; Fournier & Oldenburg 2019; Newman
& Alumbaugh 2000). Bayesian sampling-based inverse methods
instead produce an ensemble of physical models, each of which
fit the data and from which statistical information about model
parameters can be inferred (Mosegaard & Tarantola 1995). As a
result, these methods provide crucial information about inverted
model parameter uncertainty, which is necessary to place statisti-
cally informed constraints on related physical properties of interest
or their structure (de Pasquale & Linde 2017; Blatter et al. 2019).
In addition, Bayesian methods are better able to address strong
non-linearity since they do not rely upon linearization (Dettmer &
Dosso 2013).
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This additional information comes with an added computational
cost relative to deterministic inversion methods. Deterministic lin-
earized inversion methods typically proceed by iteratively taking
small steps down the local gradient of the objective function, typ-
ically requiring tens to hundreds of forward calculations to find a
good fitting model at a minimum of the objective function. Con-
versely, Bayesian sampling methods can require 105–106 forward
computations to converge to the posterior distribution (Bodin &
Sambridge 2009; Agostinetti & Bodin 2018). This cost rises as
the spatial dimensions of the model increase from 1-D to 2-D to
3-D for two main reasons. First, calculating the model response
(forward modelling) usually becomes significantly more expensive
computationally as the model dimensionality increases. Second, the
number of model parameters that must be sufficiently sampled in-
creases exponentially since 2-D and 3-D models can represent more
complicated structures and typically have many more free parame-
ters than 1-D models. In order to extend Bayesian inversion to 2-D
and 3-D models, the cost of forward modelling must be reduced so
that the entire inverse problem can be solved in a practical amount
of computational time; here we define practical to mean solvable
on a time scale of up to a few weeks compute time. This can be
achieved via high performance computing (HPC) and parallel com-
putational architectures that permit efficient parallel programming
constructs.

Even when using HPC methods to speed up forward modelling,
to make Bayesian inversion tractable in 2-D and 3-D the number
of parameters the Bayesian algorithm samples over (the dimension
of the model space) must remain small enough to allow for sam-
pling to converge within practical computing times. Neal (2011)
provides a succinct example of the difficulties faced in sampling
high dimensional distributions, especially if each dimension is in-
dependent of the others. The forward model response must be com-
puted numerically, requiring a discrete representation of the model.
Usually, this is accomplished through a mesh or grid of scalar-
or vector-valued cells. This mesh must be fine enough to capture
the model complexity resolvable by the data, often necessitating
thousands of independent model parameters. Not all of these model
parameters are truly independent, however. The model structure that
can be resolved by diffusive methods such as low-frequency elec-
tromagnetics (EM), for instance, is typically lower-wavenumber
than the density of the mesh required to accurately represent it.
For instance, accurately representing a simple, sinusoidal varia-
tion in subsurface properties might require many thousands of dis-
crete grid cells (Commer & Newman 2009). This is evident even
when sharp, piecewise-constant parametrizations are used such as in
Minsley (2011), Ray & Key (2012), Brodie & Sambridge (2012) and
Ley-Cooper (2016).

That the model structure resolvable by the data is lower-
wavenumber than the discrete mesh grid necessary to describe it
implies that it should be possible to discover a parsimonious rep-
resentation of the physical model that can still capture the neces-
sary degree of model complexity. This low-dimension model space
can be searched efficiently by the Bayesian sampler. Further, a
transform from the parsimonious to the dense model parametriza-
tion can be used to connect the Bayesian sampler to the forward
solver to allow the data misfit of each parsimonious model to be
evaluated.

Trans-dimensional Markov chain Monte Carlo (MCMC) al-
gorithms (Green 1995; Malinverno 2002; Bodin & Sambridge
2009; Ray et al. 2016), in which the number of model parame-
ters is selected by the data during the inversion and is allowed

to freely vary, are ideally suited to this task. Because of the
parsimony inherent in Bayes’ rule (Malinverno & Leaney 2000;
Malinverno 2002; MacKay 2003; Schoniger et al. 2015), trans-
dimensional Bayesian sampling algorithms prefer models with
fewer parameters. This means that they are naturally able to dis-
cover a parsimonious parametrization that fits the observations.
Thus, the user need not know beforehand the degree of simplifi-
cation vis-a-vis the dense parameter grid that is appropriate for the
data.

Multiple trans-dimensional approaches to reducing model space
dimensionality have been proposed. Layers work well in 1-D (Ma-
linverno & Leaney 2000; Minsley 2011; Dettmer et al. 2015;
Blatter et al. 2018), while Voronoi cells have been successfully
implemented in 2-D (Bodin & Sambridge 2009; Dettmer et al.
2014; Ray et al. 2014; Burdick et al. 2018; Galetti & Cur-
tis 2018), although their sharp edges are not necessarily ideal
for inverting some types of data, including diffusive EM tech-
niques such as the magnetotelluric (MT) method (Hawkins et al.
2019). In 3-D, however, the computational geometry of Voronoi
cells becomes complex and expensive (Agostinetti et al. 2015),
though this is an active area of research (Zhang et al. 2018).
Hawkins & Sambridge (2015) developed a tree structure for trans-
dimensional inversion using wavelets as basis functions. This ap-
proach is flexible, dimension agnostic, and efficient. However, it
suffers from the need to specify prior distributions on wavelet or
other basis function coefficients. Because these are not physical
properties, it is difficult to select appropriate prior distributions
for them.

To achieve a parsimonious model representation that allows
specifying priors on physical properties, we implement the trans-
dimensional Gaussian process (TDGP) algorithm of Ray & Myer
(2019) that utilizes a stochastic interpolation algorithm known as a
Gaussian process (GP, e.g. Williams & Rasmussen 1996). We uti-
lize HPC, including parallel tempering (Sambridge 2013; Dettmer
& Dosso 2012), to reduce the time required to sufficiently sample
the model space.

We apply our algorithm to both synthetic and field MT data. The
TDGP sampler successfully produces an ensemble of models that
fit the data. In our example application with synthetic data, the pos-
terior model ensemble recovers the features of the true model, while
in the field data case the ensemble mean includes features that are
strikingly similar to those in a regularized, gradient-based inverse
solution. In addition, however, our algorithm produces posterior
model parameter uncertainties that do not rely on linearization. In
these examples, the TDGP algorithm achieves a parameter space
reduction of more than 4× for the lightly parametrized synthetic
problem, and more than 32× for the more densely parametrized
field data problem.

The computational cost is dominated by the cost of the forward
problem and is non-negligible, yet well within the limitations of
modern computer power. At 0.3 s per forward computation, the
synthetic inversion took 3.5 d for convergence to the posterior dis-
tribution when run on an HPC system using 480 processing cores.
The field data inversion, meanwhile, took just under 10 d at 0.85 s
per forward computation when run on 168 cores. The synthetic data
contained more frequencies and hence was able to benefit from
a greater number of cores. Though 2-D and 3-D probabilistic in-
versions of MT data have been carried out by Chen et al. (2012)
and Rosas-Carbajal et al. (2013), our inversions represent, to our
knowledge, the first trans-dimensional 2-D Bayesian inversions of
MT data.
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2 M E T H O D S

2.1 MT method

The MT method uses natural variations in the Earth’s magnetic field
to probe subsurface resistivity structure (Cagniard 1953; Tikhonov
1950). The frequencies at which the natural field varies, in conjunc-
tion with the subsurface resistivity, determine the depth to which MT
data are sensitive. Higher frequencies are sensitive to shallower por-
tions of the model, while lower frequencies (longer periods) sense
deeper structure. In addition, the more resistive the subsurface is,
the deeper MT soundings can penetrate, while a more conductive
subsurface limits depth sensitivity. See Chave & Jones (2012) for a
recent MT review that spans theory, data processing, modelling and
interpretation techniques.

The MT method is governed by a diffusive differential equation,
which means that MT data are an integrated quantity. While MT
data can be sensitive to sharp structural gradients, the structures
MT data are able to resolve will be smoothed, integrated versions of
the subsurface geology. For MT examples relevant to this study, see
Key et al. (2006) and Naif et al. (2013), who image a salt body in
the Gulf of Mexico and a melt channel at the base of the lithosphere
offshore Nicaragua, respectively.

2.2 Bayesian inversion

The posterior probability distribution that Bayesian methods seek
to sample from is defined by Bayes’ Rule

p(m|d) ∝ p(d|m)p(m), (1)

where m is a vector of parameters that constitute our model of the
Earth, d is the vector of observed data, p(d|m) is the likelihood,
p(m) is the prior and p(m|d) is the posterior. In order for eq. (1) to
represent the posterior, it must be normalized by the probability of
the data. In any relative inference formulation, including trans-D,
however, this quantity does not need to be calculated explicitly. The
prior distribution represents a priori information, assumptions, and
beliefs about the model, independent of field data. The likelihood
is the probability that the difference between the observed data, d,
and the forward modelled data, f (m), is due purely to random error.
Therefore, models that fit both the data and our prior assumptions
on the model have a higher posterior probability.

We assume the data noise to be Gaussian and define the likelihood
as follows

p(d|m) = 1√|2πCd |
× exp

(
−1

2
[ f (m) − d]T Cd

−1[ f (m) − d]

)
, (2)

where Cd is the data error covariance matrix. The prior distribution,
which depends on the number of model parameters, k, and on the
details of how the model is parametrized, will be discussed in the
next section following Ray & Myer (2019).

2.3 TDGP Markov chain Monte Carlo

The MCMC method is an iterative algorithm that draws samples
from the posterior distribution by means of a guided random walk
through the model space. At each step, a proposal model m′ is gen-
erated from a proposal distribution q(m′|m), and is then accepted or
rejected by means of an acceptance probability α(m′|m). α depends
on the posterior probability of m′ and m, as well as q and the number

of model parameters in m′ and m, which can change at each itera-
tion. The acceptance probability guides the Markov chain towards
the posterior distribution. The proposal is selected by the user, and
needs to be carefully chosen as it can affect the rate of convergence
(the number of iterations before the algorithm has sufficiently sam-
pled the model space). In general, a proposal that closely resembles
the posterior can accelerate convergence (Mosegaard 2019).

We implement here a trans-dimensional variant of Metropolis–
Hastings–Green MCMC (Metropolis et al. 1953; Hastings 1970;
Green 1995), in which the number of model parameters is itself a
parameter that the data select for. A detailed description of the algo-
rithm is found in Ray & Myer (2019). Our algorithm implements a
‘birth-death’ scheme (Geyer & Moller 1994) that allows the number
of model parameters to increase, decrease, or remain unchanged at
each step of the MCMC algorithm. The trans-dimensional nature of
the algorithm is reflected in the acceptance probability

α(m′|m) = min

[
1,

(
p(d|m′)
p(d|m)

)1/T p(m′)
p(m)

q(m|m′)
q(m′|m)

× |J |
]

,

(3)

where T is an annealing temperature as part of our implementation
of parallel tempering (see Ray et al. 2013; Blatter et al. 2018, for
details). Only samples from T = 1 chains are used as part of the
model ensemble. The matrix J is the Jacobian of the jump from m
to m′. For the types of trans-dimensional jumps used in this paper,
|J| = 1 (Agostinetti & Malinverno 2010).

In order to converge to the posterior probability distribution,
trans-dimensional MCMC must adequately sample the parameter
space. This means that the time to convergence can grow rapidly
with the number of model parameters. There is a natural parsimony
built into Bayes’ rule, meaning that for models that fit the data
equally well, Bayesian inversion prefers those with fewer parame-
ters. In this vein, trans-D Bayesian algorithms also attempt to solve
the problem of model selection, ensuring there is sufficient model
complexity to fit the data. As a result, if the model space is not ap-
propriately parametrized, Bayesian parsimony may not be enough to
prevent inversions for models with two or more spatial dimensions
from becoming prohibitively expensive computationally.

Here we utilize a TDGP MCMC sampler to achieve a parsi-
monious model parametrization (Ray & Myer 2019). A GP is the
interpolation of a Gaussian random field using a spatial autocorre-
lation function, and allows inference to be made on the probable
value of an arbitrary continuous function at locations where the
value of the function is unknown. These inferences are made on
the basis of knowledge of the function at a finite number of loca-
tions, in conjunction with a kernel function that specifies how the
ensemble of function values correlate spatially. GPs view functions
as realizations from spatially-correlated, multivariate Gaussian dis-
tributions, where the number of variables is in principle infinite.
This is mathematically equivalent to the concept of Kriging, which
has been applied in mining and reservoir modelling (Krige 1952;
Pyrcz & Deutsch 2014, for an overview), as well as least squares
collocation in geodesy (Moritz 1980). A Bayesian treatment of this
kind of interpolation can be found in Tarantola & Valette (1982).
In practice, since we implement GPs on computers, we know the
value of the function at a finite number of points x, which we here
refer to (for reasons that will become clear later) as ‘interpolation
nodes’, and we seek the probable value of the function at another
finite set of points x∗, which we will call ‘gridpoints’.

The spatial correlation is key to defining a GP, and is specified
by a kernel function, which can take any number of forms. Here we
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Figure 1. Description of the high performance computing implementation and workflow of the trans-D MCMC algorithm. Loading the data and the dense
finite element parameter mesh is handled in MARE2DEM. At iteration n, Birth-death MCMC (step 1), the parsimonious to dense GP transformation (step 2),
and the acceptance/rejection of the proposed next model (step 5) are performed on the parsimonious model, m, which provides the GP mean through eq. (9),
on the manager CPU of the compute node, in Julia. Forward modelling in MARE2DEM (step 3) and misfit calculation (step 4) are performed on the dense
model (m∗) on the worker CPUs, in Fortran. Communication between Julia and Fortran is handled through a direct Julia-to-Fortran interface subroutine. The
numbers 1–5 represent the chronological order of operations at each iteration, as described in the text.

Figure 2. Resistivity model from which synthetic data were generated. The model consists of shallow, extrusive volcanics overlying a resistive lithosphere and
conductive asthenosphere. A conductive anomaly at the base of the lithosphere represents a partial melt prism. Synthetic data were generated at 11 MT sites
(white triangles) over a period range of 10–10 000 s. The model grid x∗ consists of 818 independent resistivity cells.

use the following:

K ( y, y′) = exp

(
−1

2
[ y − y′]T Cλ

−1[ y − y′]
)

, (4)

where y and y′ are points in R
nd , where nd is the number of spatial

dimensions. In this context, y and y′ are general and either can
represent x or x∗. This kernel defines an exponential spatial corre-
lation and is appropriate for inverting data with a smooth resolution
kernel, such as low-frequency MT data. For sharper transitions the
Matern 3/2 or 5/2 kernels may also be used, but are not investigated
here (Williams & Rasmussen 1996).

The matrix Cλ is diagonal with nd entries that specify the spatial
length scale over which the function of interest is correlated. These
correlation length scales must be selected by the user and represent
some of the key adjustable parameters in our TDGP approach. Their
value should be at least as small as the size of the smallest features
resolvable by the data. Correlation length scales smaller than this
will not improve model resolution but may result in additional time
to convergence, since more interpolation nodes may be required to
fit the data. Correlation length scales larger than this will fail to
adequately capture the degree of model complexity resolvable by

the data. Since it is not always possible to know precisely what the
maximum resolution of the data is, some care should be taken in
the choice of correlation length scales.

A related issue is the need for an explicit, discrete parameter
grid. While the GP representation of the model is in principle
continuous (it defines the model at an arbitrary, infinite number
of locations), the need to solve the 2-D or 3-D forward problem
numerically on computers, (using for example, the finite element
or finite difference methods), requires a discrete model represen-
tation. This usually takes the form of a grid or mesh of cells,
each with a constant physical property value or vector of values,
with each cell independent of the others. This mesh must be de-
signed with the model complexity resolvable by the data in mind.
A parameter grid that is too coarse to adequately represent the
model structures that the data can resolve will be unable to achieve
an acceptable fit to the data. For most realistic synthetic models
and for field data, this usually requires a dense mesh with thou-
sands or even millions of cells. The design of an adequate pa-
rameter mesh is problem-specific and can be guided by gradient-
based inversion, repeatedly refining the mesh until the data fit is
adequate.
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Figure 3. Synthetic TE (red circles) and TM (blue circles) mode apparent resistivity and phase for 11 MT sites (see white triangles in Fig. 2). In addition, the
forward responses for 50 randomly selected models from the posterior ensemble are plotted in grey (TE mode) and blue (TM mode). The distribution of the
RMS fit to the data across the ensemble had a mode of 1.25.

Once this mesh is defined, we let the locations of the mesh cells
be the gridpoints, x∗, enabling the GP to connect the parsimonious
model parametrization defined at the interpolation nodes, x, to the
denser, computational model. A detailed description follows:

Given a kernel function K , a GP can be specified as

[
g(x)
g(x∗)

]
= N

(
0 ,

[
Km K∗
K∗T K∗∗

])
, (5)

where the posterior covariance matrix is made up of sub-matrices
defined as follows:

Km = K (x, x) + σm
2 (6)

K∗ = K (x, x∗) (7)

K∗∗ = K (x∗, x∗). (8)

Here, x ∈ R
ninter p and x∗ ∈ R

ngrid , where ninterp is the number of
interpolation nodes and ngrid is the number of gridpoints. The sub-
matrices Km, K∗ and K∗∗ have sizes (ninterp × ninterp), (ninterp × ngrid),
and (ngrid × ngrid), respectively. For example, suppose we have a 2-D
earth model with 1000 model parameters in the dense computational
model, and 50 interpolation nodes in the parsimonious parametriza-
tion. Then x has length 50, x∗ has length 1000, and the full posterior
covariance matrix K has size 1050 × 1050. σm

2 is a diagonal co-
variance matrix (or ‘nugget’, for details see Pyrcz & Deutsch 2014)
that specifies how closely the GP interpolation must adhere to the
function value at the interpolation nodes, x.

In essence, via eqs (5)–(8) a GP defines the values of the func-
tion at the gridpoints g(x∗) as conditional Gaussian realizations—
conditional on the value of the function at the interpolation nodes
g(x). The relationship between them is determined by the cho-
sen kernel function (eq. (4)), such that nearby points will be
similar in value while distant points will be independent of one
another.
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Figure 4. Smooth resistivity model obtained from regularized inversion of the synthetic MT data using MARE2DEM. The smooth model indicates the scale
of features resolvable by the data and can assist in selecting a resistivity mesh (outlined in black) sufficiently dense to capture the model complexity, as well as
appropriate choices for the GP correlation length scales. Smooth versions of the main features of the melt prism model are present in the regularized estimate,
including the extrusive volcanics, lithosphere, melt prism, and asthenosphere. The LAB is not sharply resolved.

Figure 5. Synthetic inversion results. (a) The mean of the model ensemble captures the conductive melt prism (black box). The LAB (thin black line) is
less well resolved. The resistivity mesh (outlined in black) and the interpolation node locations (black dots) for a model selected at random from the model
ensemble are shown. (b) The marginal posterior distribution between 60 and 80 km depth [the region between the horizontal dashed lines in (a)] indicates that
the uncertainty in the distribution beneath the conductive melt prism is greater than on either side of it. The true model values are indicated by white squares.
(c) Marginal distribution through the melt prism [the region between the vertical dashed lines in (a)] shows a tightening of the uncertainty where the model is
conductive, relative to where it is resistive. The red lines represent the 5th and 95th percentiles, and indicate the 90 per cent credible interval.

Because g(x∗) is viewed as a conditional random variable, many
different realizations of the function are possible. Here we use the
mean of the distribution of realizations, analytically provided by the
equation

μ∗ = K∗T Km
−1 g(x), (9)

where μ∗ = E[g(x∗|x)] is the expected value of g at the gridpoints
x∗, given the value of g at the interpolation nodes x. If we now take
the function locations to be subsurface coordinates and g to be some
subsurface property of interest—in our case, electrical resistivity—
we can use eq. (9) to connect a parsimonious model parametrization
described at x by g(x) to the dense computational model described
at the mesh cells x∗ by μ∗. Essentially, the GP acts as both a
parsimonious description of the subsurface, via the interpolation
nodes (x, g(x)), and as the transform between it and the dense

computational model μ∗, via eq. (9) and the kernel function in
eq. (4). From here on, we use the identities m = (x, g(x)) and
m∗ = (x∗, μ∗) to refer to the parsimonious and dense subsurface
resistivity models, respectively (steps 1–5 in Fig. 1).

In the context of trans-dimensional MCMC, we do not use the GP
by itself to infer the value of subsurface properties. As a result, there
is no need to generate realizations from a large covariance matrix,
which has traditionally been a computational bottleneck in the use
of high dimensional GPs (See Lindgren et al. 2011; Emzir et al.
2020, for possible workarounds). Instead, the MCMC sampling is
performed on m, the parsimonious model specified by the GP nuclei
(i.e. their positions and resistivities), while the data misfit of each
of these models is calculated using their dense representation, m∗.
Thus our approach strikes a balance between a parsimonious model
representation m that is suitable for efficient MCMC sampling with
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Figure 6. Gemini MT data inversion results. (a) Deterministic inversion of the Gemini data, obtained using MARE2DEM. (b) Mean of the TDGP model
ensemble. The dense resistivity mesh is outlined in black, while the interpolation node locations for a model randomly chosen from the ensemble are shown in
(b) as black circles. The MT sites are represented by white triangles, in order from station 1 on the left to station 7 on the right. The uncertainty on the base of
the salt (blue object in the center) is one of the key questions left unresolved by this inversion. The similarities between (a) and (b) are striking given the highly
varied nature of the models in the ensemble (Fig. 10). Note the use of a linear colour scale given the small range of inverted resistivity.

the necessary spatial structure required to fit the data in the dense
model m∗.

The prior distribution, p(m), can now be properly defined, fol-
lowing Ray & Myer (2019), in terms of the number of interpolation
nodes, k, their locations, xk , and their resistivities, mk , as

p(m) = p(mk, xk, k). (10)

To be more explicit, mk represents the base-10 logarithm of electri-
cal resistivity, ρ, at the k interpolation nodes, xk . Using the chain
rule of conditional probabilities, we can rewrite this as

p(mk, xk, k) = p(mk |xk, k)p(xk |k)p(k). (11)

If we now assume that the resistivities are uniformly distributed
over a log-resistivity range �ρ and that the interpolation nodes are
uniformly distributed over a length, area, or volume (determined by
the value of nd) defined by

∏nd
i=1 �xi , we can write the prior as

p(mk, xk, k) = 1

�ρk

k!

(
∏nd

i=1 �xi )k
p(k). (12)

There are a number of choices for the prior distribution on the
number of interpolation nodes, p(k). Here we choose it to be uni-
form

p(k) = 1

kmax − kmin + 1
, (13)

where kmax and kmin are the maximum and minimum allowed number
of interpolation nodes, respectively. We select kmin = 2 and kmax such
that the vast majority of models found by the inversion have fewer
than kmax interpolation nodes.

2.4 HPC and code implementation

We implement the TDGP sampler in Julia, a computationally effi-
cient, modern software language designed for scientific and HPC
(Bezanson et al. 2017). The MT forward modelling in our code
leverages the MARE2DEM (Key 2016) code, a parallel, goal-
oriented adaptive finite-element solver written in modern Fortran
that uses the message-passing interface (MPI) standard for efficient
parallel forward calculations. MARE2DEM uses a dual grid ap-
proach and thus is well suited for our TDGP method. The dense
resistivity grid calculated from the parsimonious GP parametriza-
tion is input to MARE2DEM as regions of piecewise constant con-
ductivity and then MARE2DEM automatically generates a finite
element mesh that conforms to the dense grid. This mesh is au-
tomatically adaptively refined until MARE2DEM obtains accurate
EM responses given the input resistivity structure and data param-
eters. Further, since MARE2DEM uses an unstructured triangular
mesh, it can readily handle complicated model structures such as
topography or seismically imaged geologic surfaces. In our imple-
mentation, the input data and model grid files use the same format
as used for regularized inversion with MARE2DEM; thus a TDGP
inversion can be run after regularized inversion with only a small
additional amount of user effort. To communicate between Julia
and Fortran in a HPC environment, we utilize a Julia-to-Fortran
interface subroutine that directly passes variables in memory. See
Fig. 1 for a description of the workflow.

The GP-based transform from parsimonious (m) to dense (m∗)
parametrization is computationally efficient, and for parsimonious
models with a few thousand parameters can be accomplished on a
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Figure 7. Gemini TE mode apparent resistivity and phase for 7 MT sites (see white triangles in Fig. 6). In addition, the forward responses for 50 randomly
selected models from the ensemble are plotted in grey. The distribution of the RMS fit to the data across the ensemble was 1.1–1.5, with a peak at 1.28.

single CPU in under 0.1 s via Cholesky factorization. As described
in Ray & Myer (2019), only parts of the kernel matrices Km and
K∗ have to be updated at each MCMC step, leading to significant
computational savings in the computation and storage of the kernel
function in eq. (4). This means that the computational heavy lifting
for 2-D MT occurs during forward modelling. As a result, all the
MCMC and GP steps can be efficiently performed on a single
CPU, which we refer to as the ‘manager’. This includes producing
the proposal model, m prop, from the current model via birth-death
MCMC, as well as computing m∗ using eq. (9).

Once m∗ has been calculated on the manager in Julia, these model
parameters are passed via the direct Julia-to-Fortran interface to
worker CPUs, who compute the forward response and data misfit in
parallel using MARE2DEM. This information is then passed back
to the manager to determine whether m prop or the current model,
mn, is accepted as the next model in the Markov chain.

Finally, we implement parallel tempering, which allows multiple
Markov chains running in parallel to swap temperatures at the end

of each iteration. This facilitates more efficient sampling of the
model space and accelerates convergence of the Markov chains to
the posterior distribution. In addition, parallel tempering is easily
implemented in an HPC environment, enabling convergence to be
sped up by harnessing more CPUs. Further details of our parallel
tempering and MCMC implementations can be found in Ray et al.
(2013) and Blatter et al. (2018).

3 R E S U LT S

3.1 Synthetic inversion

We test our algorithm on a synthetic data set generated from a
resistivity model designed to simulate a prism of partial melt at the
lithosphere–

asthenosphere boundary (LAB), inspired by the asthenospheric
melt channel beneath the Cocos Plate seen in Naif et al. (2013).
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Figure 8. Transformation from linear depth (km) to sampled depth, ẑ, given
in eq. (15). The choice of b and c determines the fraction of a given interval
[0, ẑmax] in the transformed domain that maps to shallow depths in the
untransformed domain. The dashed lines indicate for each combination of
b and c the point ( ẑmax

2 , h( ẑmax
2 )), the linear depth that corresponds to the

midpoint of [0, ẑmax].

Fig. 2 shows the true model, which includes shallow, extrusive vol-
canics; resistive lithosphere; conductive asthenosphere; and deeper
mantle. At the base of the lithosphere is a 10 km thick, 40 km wide,
conductive melt prism. Synthetic apparent resistivity and phase data
were generated using MARE2DEM at 11 MT sites (white triangles)
spaced 20 km apart, over a period range from 10 to 10 000 s to
which uncorrelated Gaussian noise (4 per cent of the absolute value
of each datum) were added. This period range was chosen since it
represents the working bandwidth of broadband (cf. long-period)
marine MT receivers in the deep ocean (Constable 2013), which
are able to measure the shorter period signals sensitive to astheno-
sphere conductive structure. Fig. 3 shows the synthetic data for all
11 MT sites, which exhibit a characteristic lowering of the TE mode
apparent resistivity and larger TE phases at 100–1000 s period for
stations located over the conductive melt prism.

We first conduct a gradient-based inversion of the synthetic data
using MARE2DEM (Fig. 4). MARE2DEM utilizes the Occam
method that searches for the smoothest model that fits the data
(Constable et al. 1987). The smooth inversion model indicates the
features of the model that the synthetic data are likely able to re-
solve. Plotted on top of the smooth inversion model in Fig. 4 are the
outlines of the discrete resistivity mesh. Because MT data are most
sensitive to shallow structure near the MT receivers, the resistivity
mesh must be finer near the receivers than at depth. This means that
for data broadband sets that have sensitivity spanning from shal-
low to deep depths the TDGP algorithm will need to spend equal
portions of the time sampling the small, near surface intervals and
large, deep intervals. We therefore sample the model space in the
base-10 logarithm of depth rather than linear depth. This has the
added benefit of allowing a correlation length scale that varies with
depth. We choose λz to be 0.1 log units in depth to roughly match
the depth scale of features in the smooth inversion, and 15 km in the
horizontal direction to match the scale of features resolvable given
the 20 km station spacing.

The ideal choice of these parameters is not immediately obvious.
We selected them by first doing a ‘pixel-matching’ test—taking the
true resistivity at each resistivity cell (plus noise) as the ‘data’ and
minimizing the square of the distance between the TDGP model and
true model resistivity. Solving this low-cost problem by inverting
these ‘data’ using different choices of correlation length-scale is
an efficient way of finding values of these parameters that ensure

that the GP can adequately represent the features of the true model.
For this synthetic model, this scale length selection process took
less than 10 min when running on a single processor. In the case
of inverting field data, where the true model is not known, a deter-
ministic inversion model (e.g. Fig. 4) can be used instead since this
model should contain the scale of features resolvable by the field
data, though this amounts to a choice of prior length scale.

We invert the synthetic data on a cluster using 480 processors
and 20 parallel tempering chains, with three chains at the coldest,
unmodified annealing temperature T = 1. See Ray et al. (2013)
and Blatter et al. (2018) for background on temperature settings.
The average time per MCMC step was 0.3 s, owing to the relative
simplicity of the resistivity mesh, which contained 818 resistivity
cells. We ran the algorithm for one million MCMC steps totaling
3.5 d of compute time. We eliminated the first 300 000 models of
each T = 1 chain as burn-in (i.e. the time it takes to find the first
models with an acceptably low misfit), with the rest comprising the
model ensemble. The TDGP algorithm required 150–200 interpo-
lation nodes to fit the data compared with 818 model parameters in
the dense model, representing a model-space reduction of over 4×.
Model responses from 50 models randomly selected from the model
ensemble are shown in Fig. 3. The data misfit across all models in
the ensemble is χ 2-distributed with a peak implying a RMS misfit
of 1.25.

The mean of the ensemble is shown in Fig. 5(a). While the mean
of the ensemble is not always an accurate representation of the
subsurface, in this case it contains the main features of the model.
The melt prism is well recovered, albeit represented as a smooth
anomaly rather than one with sharp edges. This is expected, given
our choice of an exponential spatial correlation kernel function
to represent the model. The interpolation node locations, x, for a
model chosen at random from the ensemble are shown in Fig. 5(a)
as well. The bulk of them are clustered in the shallow portion of the
model, as expected given our choice to sample log-depth, as well as
the greater data sensitivity there. The mean of the ensemble is, in
many respects, similar to the regularized inversion result (Fig. 4).
In neither model is the LAB sharply imaged.

Bayesian inversion produces far more than just the mean, how-
ever. Marginal distributions obtained by taking horizontal and verti-
cal slices through the model are shown in Figs 5(b) and (c), respec-
tively. The brighter colours indicate regions of higher probability
density, while the red lines indicate the 5th and 95th percentiles
and delineate the 90 per cent credible interval. The vertical pro-
file through the conductive anomaly quantitatively shows the well-
known fact that MT data are better able to constrain the resistivity
of conductors than resistors, as shown by the tightening of the 90
per cent credible interval over the anomaly and again at depth. The
model uncertainty is significantly higher in the more resistive por-
tions of the model. Interestingly, there is high uncertainty directly
beneath the melt prism, visible in the mean as the resistive body
beneath the anomaly, as well as in the broadening of the 90 per cent
credible interval in this region in both the vertical and horizontal
profiles. This is due to the loss of signal strength due to the overlying
conductor, which effectively shields sensitivity to the region beneath
it. The deterministic inversion provides an estimate of the resistivity
in this region, but without this corresponding uncertainty informa-
tion, whereas the Bayesian inversion shows this region could be
moderately resistive (around 100 �m) or highly resistive (around
10 000 �m).

Generally, the true model lies within the 90 per cent credible
interval defined by the model ensemble (see 5b). One exception is
in the shallowest portion of the model (the conductive sediments,
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Figure 9. Convergence properties of the trans-D GP inversion of the Gemini data set. Convergence properties (RMS misfit, number of interpolation nodes,
and acceptance rates for the birth, death, resistivity update and position update moves) as a function of MCMC iteration number for the three Markov chains at
temperature T = 1 are plotted in green, orange and blue. Histograms of these properties across all three chains are shown beneath. Models in the ensemble fit
the data in the range RMS 1.1–1.5. The bulk of the models contained 125–475 interpolation nodes, compared with 8424 finite elements used by MARE2DEM.

as seen in the shallowest part of Fig. 5c). This is likely because λz,
the correlation-length scale in depth, was insufficiently small in the
shallow part of the model. Finding a value of λz that is adequate for
all portions of the model given the depth-dependent sensitivity of
the data to subsurface structure is challenging. Sampling the base-10

logarithm of depth proved largely adequate, given that the synthetic
model spanned a depth range of 150 km. The ideal choice depends
on the geology, the data sensitivity, and the dimensional scale of
the problem. In the next section we adopt a different approach to
selecting λz, given a shallower region of interest.
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Figure 10. Several resistivity models chosen at random from the model ensemble, evaluated at the gridpoints. Despite the wide degree of variability, the mean
of the ensemble coherently images the salt body. The degree of variability provides crucial knowledge of uncertainty in the subsurface resistivity. For example,
note how in the vicinity of the magenta square there is always a resistor; similarly, in the vicinity of the white square there is always a conductor, whereas in
some other locations the model exhibits more variability among the samples shown here (e.g. the tan circle).

3.2 Field data inversion

To test our algorithm on field data, we invert a selection of seven MT
sites from the Gemini data set. This data was collected in the Gulf
of Mexico to image a salt body surrounded by conductive sediments
and has been analysed in several past studies (Constable et al. 1998,
2015; Hoversten et al. 2000; Key et al. 2006). A new gradient-based
inversion of the 1–250 s period data using MARE2DEM is shown
in Fig. 6(a), while the mean of a TDGP inversion is shown in Fig.
6(b). Because MT data have low sensitivity to resistive bodies in
conductive sediments, the resolved salt body appears as only a small
increase in resistivity over the background, despite the actual salt
likely having resistivity greater than 1000 �m. This is enough to
deflect MT currents and saturate the MT responses (e.g. Hoversten
et al. 2000). Thus here we show resistivity on a linear scale. The
relatively resistive (>3 �m) upper salt body is clearly imaged,
surrounded by conductive (<1 �m) sediments. At depth, a larger
resistor is present, possibly including a thin layer of salt that may
or may not connect to the upper salt body. While the regularized
inversion images the top and sides of the salt, the base of the salt is
not clear.

We invert the TE mode apparent resistivity and phase since these
have the strongest sensitivity to the resistive salt body (Key et al.
2006). The data errors were estimated using standard MT data
processing workflows, with an error floor imposed of 2.5 per cent

for apparent resistivity and phase. We assume our data errors to be
uncorrelated. The data are shown in Fig. 7.

3.2.1 Choosing correlation length scales

Choosing λz, the correlation length-scale in depth, proved chal-
lenging owing to the fact that the near-surface is characterized by
small-scale structure while at depth the features of the model re-
solvable by the data are larger-scale. Simply sampling the base-10
logarithm of depth proved in this case insufficient to adequately rep-
resent the variable length-scales of the model structure resolvable
by the MT data. When sampling the base-10 logarithm of depth, the
TDGP chains were unable to achieve a satisfactory level of misfit.
To achieve a λz that appropriately increases with depth, we used the
transform

ẑ = logc

(
1 − z(1 − c)

b

)
, (14)

where z is linear depth, in meters, ẑ is transformed depth sampled by
the TDGP algorithm, and b and c are constants to be selected. This
transform can be intuitively understood by examining its inverse

z = h(ẑ) = b
1 − cẑ

1 − c
(15)
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Figure 11. Marginal distributions for subsurface resistivity taken at various depth slices through the model: (a) 1.2–1.4 km; (b) 2.5–3.5 km; (c) 4.5–6.0 km and
(d) 8.0–10.0 km. Warmer colours indicate higher probability density while the red lines denote the 90 per cent credible interval. The white squares represent
gradient-based resistivity estimates at the gridoints within the depth slice. In general, model regions consistent with the salt body (brown shaded regions)
exhibit an increase in the 5th percentile to above 1 �m, while regions consistent with sediments (pink shaded regions) have a 5th percentile that is significantly
lower.

Figure 12. Marginal distributions for subsurface resistivity taken at various vertical slices through the model: (a) –5 to –3 km; (b) –0.5 to 0.5 km; (c) 4.5 to
5.5 km and (d) 7.5 to 8.5 km. Warmer colours indicate higher probability density while the red lines denote the 90 per cent credible interval. The white squares
represent gradient-based resistivity estimates at the gridpoints within the depth slice. In general, model regions consistent with the salt body (brown shaded
regions) exhibit an increase in the 5th percentile to above 1 �m, while regions consistent with sediments (pink shaded regions) have a 5th percentile that is
significantly lower.

which is the sum of a geometric series. It is clear from eq. (15)
that z increases geometrically with ẑ. As a consequence, it can be
shown (see the Appendix) that for a fixed correlation length in the
transformed variable, λẑ , the correlation length in linear depth, λz,
increases linearly with depth

λz = a0 + a1z, (16)

where a0 = b(1−cλẑ )
1−c and a1 = cλẑ − 1. It follows that sampling ẑ

with a constant λẑ is equivalent to sampling z with a λz that grows

linearly with depth in the model, matching the natural loss of model
resolution with depth inherent in the data.

Examples of the transform described in eqs (14) and (15) are
shown in Fig. 8 for a few choices of b and c. It is clear that the
midpoint of a given interval in transformed depth [0, ẑmax] maps
to much less than the midpoint of the corresponding interval in
linear depth [0, h(ẑmax)]. The dashed lines in Fig. 8 indicate, for
each combination of b and c, the point in linear depth that maps
to the mid-point of the transformed interval, that is ( ẑmax

2 , h( ẑmax
2 )).
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Figure 13. Interquartile range of the model ensemble obtained by TDGP inversion of the Gemini data set. Higher uncertainty generally occurs in the more
resistive parts of the model (upper and lower salt bodies). Relative high uncertainty also occurs in the very shallow parts of the model where structure is
shallower than the skin depths at the shortest periods for each station’s data (shown as white triangles labelled 1–7). The transition between sediments to salt
appears clearly demarcated.

h( ẑmax
2 ) <

h(ẑmax)
2 is a desirable property since we wish to ensure

that small, near-surface depth intervals are given the same sampling
importance as larger, deeper depth intervals.

Choosing a suitable sampling domain/transform for horizontal
distance proved equally important. While the majority of the grid-
points are clustered in the region of interest, to achieve an accurate
forward response the model domain must extend much further,
both horizontally and in depth. This means that a few gridpoints
are located tens to hundreds of kilometers away from the region of
interest. To avoid the TDGP algorithm placing large quantities of
interpolation nodes beyond the region of interest, where data sen-
sitivity is low, we constructed a transform such that λy is constant
within the region of interest (between –11 and 14 km), but grows
rapidly beyond that. While the subject of variable length scales is
discussed in Ray & Myer (2019), warping the GP input space as
we have done here has a long history (Sampson & Guttorp 1992;
MacKay 1998). Here we find that an a priori determined scale length
worked well, but Ray (in-revision) shows how the scale length can
be automatically calculated using a nested GP approach.

3.2.2 Gemini TDGP inversion results

We used the TDGP algorithm to invert this data on 168 processors
and 12 parallel chains, with three chains at T = 1. The average time
per MCMC step was 0.85 s, slightly higher than when inverting
the synthetic data due to the greater complexity of the model. To
accurately represent the model structure resolvable by the MT data,
the resistivity mesh needed 8424 independent resistivity cells. This
grid was designed based on the complexity of the structure seen
in the regularized inversion. We ran the algorithm for one million
MCMC steps, for a total of just under 10 d of compute time. We
eliminated the first 300 000 models of the T = 1 chains as burn-in,
the rest comprising the model ensemble. To fit the Gemini data set,
the TDGP algorithm required 125–475 interpolation nodes, with a
mode of 260—a model-space reduction of approximately 32×. The
inversion convergence properties for the T = 1 chains are shown in
Fig. 9. Six models randomly selected from the ensemble are shown
in Fig. 10.

The high acceptance rates for the trans-dimensional moves shown
in Fig. 9 could be a sign that the TDGP sampler is taking small steps,
possibly suggesting that the algorithm has yet to converge. The fact
that the models in Fig. 10 look highly dissimilar from one another,
however, leads us to believe that this is not the case. Rather, the

high acceptance rates are likely due to the fact that the MT data
are relatively uninformative, leading most changes to the model to
have only a limited effect on the posterior probability. These MT
data have only limited sensitivity to slightly more resistive bodies
embedded in conductive sediments and thus there is a large range
of resistive features that are compatible with the data set, as can
be seen in Fig. 10. Additionally, there is a slight upward trend
in the number of interpolation nodes over time, but since there
is no corresponding change in RMS misfit, we conclude that this
increase in model complexity does not indicate the presence of
as-yet-unexplored high probability modes in model space.

The results of inverting the Gemini data set with our TDGP
algorithm are shown in Fig. 6(b) and Figs 7–13. The upper salt
body, conductive sediments and deeper resistor are clearly visible
in the mean (Fig. 6b). Interestingly, while the mean of the ensemble
resembles the deterministic model estimate (Fig. 6a), the individ-
ual models are highly varied and hardly look like the mean at all
(Fig. 10). Yet, if the models in the ensemble were displayed on
a screen one after another, well-constrained regions of the model
would hardly appear to change from one model to the next, while
poorly constrained regions would appear to fluctuate wildly [Taran-
tola’s ‘movie strategy’, see Koren et al. (1991)]. In regularized
inversions a model roughness penalty is often used to stabilize the
algorithm such that it avoids extremal model structures that are not
required to fit the data. By contrast, Fig. 10 indicates that the TDGP
algorithm samples such extremal structures as well in order to de-
scribe the full range of resistivity that can fit the data, rather than
giving only a single smooth model. As a result, the TDGP model
ensemble provides a fuller picture of non-linear resolution, as well
as critical information on the range of resistivity compatible with
the MT data.

Figs 11 and 12 show marginal distributions of resistivity taken
over horizontal and vertical slices through the model, respectively.
The degree of model structure resolvable by the data as indicated by
fluctuations in the 90 per cent credible interval (bounded by the red
lines) decreases with depth as well as with horizontal distance from
the region of interest as data sensitivity declines and the subsur-
face becomes gradually more resistive at depth. The gradient-based
inversion estimate (white squares) falls within the 90 per cent credi-
ble interval at nearly all depths. Unlike the gradient-based estimate,
however, the Bayesian inversion provides quantitative uncertainty
at each depth. There is a high degree of heterogeneity (and model
uncertainty) in the shallow sediments (Fig. 11a, upper 600 m of
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Fig. 12), due largely to a lack of high frequency data to constrain
the shallow subsurface. By contrast, the salt body is clearly visible
as twin peaks in the resistivity credible interval at 0 and 5 km hor-
izontal position (Fig. 11b) and as peaks in the resistivity credible
interval between 2.5–4.5 km depth and 2–4 km depth (Figs 12b and
c, respectively).

The marginal distributions in Figs 11 and 12 also shed light
on whether the base of the salt body is connected to the deeper
resistor. The distribution in Fig. 11(c) is taken from the depth range
consistent with the base of the salt body and indicates an increase
in the 5th percentile to >1 �m in the vicinity of 0 km horizontal
position. By contrast, the regions of the model characterized by
conductive sediments feature a 5th percentile that is considerably
lower, around 0.3 �m or even less. The absence of a conductive drop
in the 5th percentile to <1 �m in Fig. 12(b) is evidence that the
subsurface there is likely not composed of conductive sediments,
as the MT data would be sensitive to them, as in Fig. 12(c). In
addition, the mean resistivity (Fig. 6b) and the marginal distribution
in Fig. 12(c) image what appears to be a salt overhang at 4.5–5.5 km
along the line, a structure that even the most advanced seismic
imaging techniques (Zhou et al. 2018) struggle to image, and which
require far more data and compute power.

Fig. 13 shows another measure of uncertainty, the interquartile
range (IQR) of the model ensemble, as a function of depth and
horizontal position. Except at very shallow depths, the IQR is gen-
erally lowest in the conductive regions of the model and highest in
the more resistive structures, illustrating MT’s well known sensi-
tivity to conductive features. The IQR is largest in the near-surface,
where there are many small-scale heterogeneities and the MT data
lack the high-frequencies with small enough skin depths necessary
to resolve them. In fact, the subtle IQR variations in the shallow
section correlate with the shortest period data available at each sta-
tion (Fig. 7). Stations 3, 5 and 7 have data to around 1 s period and
we see that the shallow IQR values are smallest near these stations;
conversely, all other stations only obtained usable data at 5 s and
longer periods and have considerably larger IQR values. This clearly
illustrates the importance of the MT data frequency bandwidth for
reducing uncertainty in inversion models, as well as the crucial role
of Bayesian inversion in quantifying model parameter uncertainty.

4 C O N C LU S I O N S

In this study, we successfully demonstrate fully 2-D, trans-
dimensional Bayesian inversion of MT data. We invert synthetic
and field MT data for 2-D models of electrical resistivity using the
TDGP sampler—to the best of our knowledge, the first 2-D trans-
dimensional inversions of MT data to be published. We render this
problem tractable from a computational standpoint by achieving
model parameter reduction through a trans-dimensional formula-
tion that utilizes GPs. Future work could compare the degree of
parameter reduction to that of other trans-dimensional parametriza-
tions. Our algorithm is computationally efficient, converging in less
than 10 d for the real data and 3.5 d for the synthetic example on a
cluster while using only modest HPC resources. This is largely due
to the fact that the GP allowed our TDGP algorithm to sample model
spaces 32 and four times smaller than those used by the forward
solver for the field and synthetic examples, respectively.

A further advantage of our TDGP sampler is that it is spatial
dimension-agnostic, meaning the same basic code and theory are
applicable for parametrizing 1-D, 2-D and 3-D problems. Although
not shown here, we have tested the model parametrization and code

for 3-D problems as well. While the parametrization is efficient,
the full 3-D forward MT problem is not yet tractable for the <1 s
compute times per forward call needed for practical run times. We
expect that our parametrization will prove useful for other geophys-
ical inverse problems such as seismic tomography.

The output of our algorithm—the Bayesian posterior
distribution—provides quantitative uncertainties on subsurface bulk
resistivity. This information is vital for constraining subsurface
properties that impact bulk resistivity. Depending on the particu-
lar geologic target under investigation, the uncertainties in resis-
tivity can be propagated into uncertainties in pore fluid resistivity,
groundwater salinity, porosity, melt fraction and bulk volatile con-
tent (Blatter et al. 2018, 2019; Blatter 2020).
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A P P E N D I X : D E R I VAT I O N O F
L I N E A R LY I N C R E A S I N G
C O R R E L AT I O N L E N G T H S C A L E U S I N G
G E O M E T R I C T R A N S F O R M

We define linear depth in terms of the transform variable ẑ,

z = h(ẑ) = b
1 − cẑ

1 − c
(A1)

= a2(1 − cẑ), (A2)

where a2 = b
1−c . The correlation length scale in linear depth, λz, is

defined in terms of ẑ as

λz = h(ẑ + λẑ) − h(ẑ). (A3)

Substituting in from eq. (A2) above, we have

λz = a2(1 − cẑ+λẑ ) − a2(1 − cẑ) (A4)

= a2cẑ(1 − cλẑ ). (A5)

Using the identity

cẑ = a2 − z

a2
(A6)

from eq. (A2), we obtain

λz = (a2 − z)(1 − cẑ) (A7)

= a0 + a1z, (A8)

where a0 = b 1−cλẑ

1−c and a1 = cλẑ − 1.
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