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EZH2 inactivation in RAS-driven myeloid neoplasms hyperactivates
RAS-signaling and increases MEK inhibitor sensitivity
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To the Editor

Mutations modifying RAS (RASmut) occur frequently in
myeloid neoplasms (MN) and play a key role in myeloid
leukemogenesis [1, 2]. The most commonly observed
RASmut in MN comprise aberrations in NRAS and KRAS, as
well as in three genes that modulate the levels of active
RAS-GTP (NF1, PTPN11, and CBL) [3]. Mechanistically,
RASmut activate a multitude of downstream signaling cas-
cades, with the MAPK/ERK module being considered one
of the major RAS-effector pathways [4]. Consequently,
pharmacologic MAPK/ERK inhibition—i.e., by MEK
inhibitors—is an appealing therapeutic approach. Indeed,
the development of MN in Rasmut mice can be effectively
attenuated by treatment with these substances [2].

Unfortunately, these promising results could not be trans-
lated into human MN, with disappointing results in clinical
trials [5]. One potential reason is the fact that RASmut do not
exist as solitary events within these tumors [1, 6]. The
existence of co-occurring mutational and non-mutational
aberrations has the potential to further influence the acti-
vating effects of RASmut, which ultimately aggravates or
inhibits RASmut-driven leukemogenesis and thereby changes
the dependency on activated RAS-signaling [6, 7]. Conse-
quently, these co-occurring events might also change the
sensitivity to MEK inhibitors, as recently shown for the co-
existence of mutations in NRAS and TET2 [7]. Enhancer of
zeste homolog 2 (EZH2) is the core component of the
Polycomb Repressive Complex 2 (PRC2). It regulates the
expression of a broad range of genes and thereby controls a
variety of basic cellular functions [8]. In more detail,
EZH2 serves as histone methyltransferase that catalyzes
trimethylation of lysine 27 of histone H3 (H3K27me3),
which in turn causes the transcriptional repression of its
target genes. Inactivation of EZH2 (EZH2inact)-either by
mutation, deletion or a decrease in EZH2 expression-can be
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observed in a series of MN [8, 9]. Recently, EZH2inact has
been linked to RAS-signaling as Ezh2 deletion aggravated
the development of Nrasmut-driven MN in mice. Moreover,
Ezh2 deletion in Krasmut-induced lung cancers hyper-
activated Krasmut-driven MAPK/ERK-signaling [10]. These
findings suggest that the dependence on activated RAS-
signaling in RASmut tumors might be altered by the addi-
tional occurrence of EZH2inact.

In this study, we aimed to investigate this hypothesis in
the context of myeloid leukemogenesis. By studying almost
450 primary patient specimens with chronic myelomono-
cytic leukemia (CMML) and acute myeloid leukemia
(AML), we show that EZH2inact and RASmut co-exist in MN,
and that this co-occurrence is associated with a poor prog-
nosis in affected patients. Importantly, however, we further
demonstrate that concomitant EZH2inact and RASmut

increases the dependence on RAS-signaling and, conse-
quently, the sensitivity to pharmacologic MEK inhibition in
myeloid leukemia cells.

Initially, we were interested whether EZH2inact and
RASmut indeed co-exist in MN. Therefore, we re-analyzed
previously published Next-Generation Sequencing (NGS)
data of 260 chronic myelomonocytic leukemia (CMML)
patients within the Austrian Biodatabase for CMML [11].
We chose this entity, since CMML is often driven by
mutations modifying the RAS genes [1, 3, 6]. Within this
cohort, 112/260 (43.1%) patients exhibited at least one
RASmut, EZH2 was mutated in 50/260 (19.2%) cases and 32/
260 (12.3%) presented with both genetic aberrations toge-
ther. 32/112 (28.6%) RASmut patients exhibited additional
EZH2 mutations, whereas 32/50 (64%) cases with EZH2
mutations presented with an additional RASmut (Fig. 1A;
Supplementary Table 1). Importantly, the frequency of
patients with EZH2 mutations was increased in cases with
one or more RASmut (28.6% in RASmut, vs. 12.2% in RASwt;
P= 0.001; Fig. 1B). From a clinical point of view, RASmut

and EZH2 aberration co-occurrence was associated with a
shortened overall survival (median 14 vs 29 months, P=
0.005; Fig. 1C). To delineate whether these findings are of
relevance for other MN as well, we then performed a
database retrieval of 187 AML patients via The Cancer
Genome Atlas (TCGA) (see supplementary methods for
details) [12]. In addition to clinical parameters, this database
comprises information about mutations, gene expression
and DNA copy number variations [12]. Out of the 187
patients within this cohort, 33 (17.6%) exhibited at least one
RASmut, 25/187 (13.4%) exhibited inactivation of EZH2 and
9/187 (4.8%) presented with both genetic aberrations
together. 9/33 (27.3%) RASmut patients exhibited with
additional EZH2inact, whereas 9/25 (36%) cases with
EZH2inact presented with an additional RASmut (Fig. 1A;
Supplementary Table 2). Moreover, in line with our data
from CMML, EZH2inact was significantly more common in

RASmut cases (27.3% in RASmut vs. 10.4% in RASwt; P=
0.020; Fig. 1B; EZH2inact defined as EZH2 mutations and/or
copy number losses). As in CMML, this genetic co-
existence was associated with a dismal outcome (median
survival 7 vs 19 months, P= 0.039, Fig. 1C). Accordingly,
the mRNA expression of EZH2 was significantly decreased
in AML cases carrying one or more RASmut (Supplementary
Fig. 1). Taken together, these data indicate that RASmut and
EZH2 aberrations indeed co-exist in human MN and that
this co-occurrence seems to be associated with a poor
prognosis. Hence, novel therapeutic approaches are despe-
rately needed for these patients, particularly as RASmut has
been described as difficult to target so far.

Next, we investigated whether EZH2inact influences the
RASmut-driven MAPK/ERK activation in myeloid leukemia
cells (for details on materials and methods see supplemen-
tary data). For this purpose, we chose two myeloid cell lines
(HL-60 and THP-1). Both carry an activating RASmut, show
normal EZH2 mRNA expression and lack other EZH2
aberrations (Supplementary Fig. 2 and Supplementary
Table 3). We treated these cells with the two EZH2 inhibi-
tors GSK-126 and 3-Deazaneplanocin A (DZNep), respec-
tively. While GSK-126 is an enzymatic inhibitor, which
does not affect EZH2 protein expression itself, DZNep
induces EZH2 protein degradation [9]. Both drugs success-
fully inhibited EZH2 activity, as assessed by reduced
H3K27me3 levels. Importantly, however, both inhibitors
caused hyperactivation of RAS-MAPK/ERK-signaling, as
evidenced by increased phosphorylation of ERK (pERK;
Fig. 2A, B; Supplementary Fig. 3A, B). To exclude potential
unspecific off-target effects of the EZH2 inhibitors used, we
established a puromycin-selected stable short hairpin RNA
(shRNA)-mediated EZH2-knockdown (EZH2-KD) after
lentiviral transduction in both cell lines. Empty vector-
transduced cells served as controls. Again, EZH2-KD
reduced H3K27me3 levels and simultaneously increased
pERK (Fig. 2C, Supplementary Fig. 4), which indicates that
EZH2inact amplifies MAPK/ERK activation in RASmut mye-
loid cells. Next, we explored whether EZH2inact increases the
sensitivity to MEK inhibitors in RASmut myeloid cells.
Therefore, we treated HL-60 and THP-1 cells with and
without EZH2-KD with the MEK inhibitor U0126. U0126
efficiently inhibited pERK in all conditions tested. Most
importantly, however, the U0126-induced apoptosis was
significantly increased in cells with additional EZH2-KD
(Fig. 2D; Supplementary Fig. 5), which indicates that these
cells are hypersensitive to pharmacologic inhibition of the
MAPK/ERK pathway. These findings could be corroborated
in 7-AAD/BrdU cell cycle/proliferation assays. Again, the
U0126-mediated decrease in proliferation was enhanced in
cells with additional EZH2-KD (Supplementary Fig. 6). We
then aimed to shed more light on the mechanisms behind
EZH2inact-induced MAPK-hyperactivation in RASmut

1522 J. L. Berg et al.



Fig. 1 Association between mutations modifying RAS and EZH2
aberrations in MN. A Next-Generation Sequencing (NGS) results of
260 chronic myelomonocytic leukemia (CMML) patients studied
within the Austrian Biodatabase for CMML [15] showing the dis-
tribution of mutations modifying RAS (RASmut; defined as mutations in
KRAS and NRAS, as well as in the RAS-GTP modulators NF1,
PTPN11 and CBL) and EZH2. In summary, 112/260 (43.1%) and 50/
260 (19.2%) CMML patients had one or more RASmut or EZH2
mutation(s) (EZH2mut), respectively. Below are the results of the
database retrieval of 187 acute myeloid leukemia (AML) patients via
The Cancer Genome Atlas (TCGA) [12] showing the distribution of
RASmut and EZH2 inactivation (EZH2inact; defined as EZH2 mutations
and/or copy number losses). Every column describes one CMML or
AML patient specimen. Colored fields indicate the presence of at least

one mutation (for RASmut) or EZH2inact, respectively. In summary, 33/
187 (17.6%) and 25/187 (13.4%) AML patients had one or more
RASmut mutation(s) or inactivation of EZH2, respectively. B Within
both cohorts, EZH2 aberrations were significantly more common in
patients harboring one or more RASmut compared to those without:
28.6%, vs. 12.2% (P= 0.001) for the CMML cohort (left), and 27.3%,
vs. 10.4% (P= 0.020) for the AML cohort (right). Fisher’s exact test
was employed for the statistical analysis. C Survival curves of the
patients belonging to the CMML cohort (left), and the TCGA AML
cohort (right). In both cohorts, RASmut and EZH2 aberration co-
occurrence was associated with a shortened overall survival (median
14 vs 29 months and 7 vs 19 months for the CMML and AML
patients, respectively). Censored events are indicated by a vertical line.
A log-rank test was used for these comparisons.
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myeloid cells. As EZH2 regulates a multitude of cellular
gene expression profiles via H3K27me3–induced transcrip-
tional repression, we reasoned that EZH2inact causes the
upregulation of genes involved in RAS-MAPK/ERK-sig-
naling. Such a scenario has been identified in a murine in-
vivo model of Krasmut/Ezh2-deleted lung cancer previously

[10]. To test this assumption, we performed RNA-
sequencing in HL-60 cells with and without EZH2-KD
and performed gene set enrichment analysis (GSEA)
[13, 14]. Indeed, we observed enrichment of RAS- and
RAF-signaling signatures in the EZH2-KD situation
(Fig. 2E). This included an extensive list of genes that
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activate the RAS-MAPK/ERK and other signal transduction
cascades (Supplementary Table 4).

Finally, we re-analyzed a previously published ChIP-seq
dataset of AML cells with EZH2 loss [9] via the NCBI Gene
Expression Omnibus (GSE61785). By focusing on genes
with a well-described activator function of RAS-signaling
on the one hand, and a significant upregulation in our RNA-
seq data of EZH-KD cells on the other hand, we were able
to demonstrate decreased H3K27me3 signals in the condi-
tion with EZH2 loss (Supplementary Fig. 7). These data
suggest that the upregulation of these genes in EZH2inact

cells could indeed be mediated through modification of
H3K27me3 within their promoter and/or adjacent genomic
regions.

In conclusion, we demonstrate that mutations within
genes modifying RAS frequently co-occur with inactivation
of the epigenetic modifier EZH2 in MN, and that this co-
existence is linked to a dismal outcome in affected patients.
We further demonstrate that inactivation of EZH2 amplifies
the activation of RAS-MAPK/ERK-signaling in myeloid
cells carrying RAS-modifying mutations. Most importantly,
however, we present preclinical data showing that the co-
existence of EZH2 inactivation and RAS-modifying muta-
tions might confer increased sensitivity to MEK inhibitors,
thereby providing a potential novel therapeutic rationale for
these difficult to treat patients.
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