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Summary

Despite considerable efforts, the mechanisms linking genomic alterations to the transcriptional 

identity of cancer cells remain elusive. Integrative genomic analysis, using a network-based 

approach, identified 407 Master Regulator (MR) proteins responsible for canalizing the genetics of 

individual samples from 20 TCGA cohorts into 112 transcriptionally-distinct tumor subtypes. MR 

proteins could be further organized into 24 pan-cancer modules (MRBs), each regulating key 

cancer hallmarks and predictive of patient outcome in multiple cohorts. Of all somatic alterations 

detected in each individual sample, >50% were predicted to induce aberrant MR activity, yielding 

insight into mechanisms linking tumor genetics and transcriptional identity and establishing non-

oncogene dependencies. Genetic and pharmacological validation assays confirmed the predicted 

effect of upstream mutations and MR activity on downstream cellular identity and phenotype. 

Thus, co-analysis of mutational and gene expression profiles identified elusive subtypes and 

provided testable hypothesis for mechanisms mediating the effect of genetic alterations.

In brief

A network-based integrative genomic analysis of 20 The Cancer Genome Atlas cohorts 

characterizes conserved master regulator blocks underlying cancer hallmarks across different 

tumor types, providing insights into the connection between genetic alterations and tumor 

transcriptional identity.

Graphical Abstract
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Introduction

Our understanding of cancer as a complex system is constantly evolving: in particular, it is 

increasingly appreciated that the steady-state transcriptional identity (see glossary) of a 

cancer cell is tightly regulated—akin to homeostatic regulation in their physiologic 

counterparts—albeit via distinct and aberrant (i.e., dystatic) regulatory mechanisms 

(Califano and Alvarez, 2017). These mechanisms play a key role in determining which 

transcriptional identities may be compatible with the specific set of somatic and germline 

variants harbored by each cell, as well as their likelihood to plastically reprogram across 

molecularly-distinct identities.

While some mutations effectively restrict the transcriptional identity repertoire accessible to 

a cancer cell—for instance, activating mutations in ESR1, FOXA1, and GATA3 are observed 

almost exclusively in the luminal subtype of breast cancer (Curtis et al., 2012)—many are 

far less deterministic. In GBM, for instance, there is only weak association between 

mutational and transcriptional states (Neftel et al., 2019). Despite a number of insightful 

studies, the molecular logic that determines the cancer cell identity as a function of its 

mutational and exogenous signal landscape remains elusive and largely based on statistical 

associations.

The Oncotecture hypothesis (Califano and Alvarez, 2017)—an earlier, cancer-specific 

equivalent of the Omnigene Hypothesis (Boyle et al., 2017)—proposes the existence of 
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tumor-specific Master Regulator (MR) modules (Tumor Checkpoints) responsible for 

integrating the effect of mutations and aberrant signals in upstream pathways thus 

determining a tumor’s transcriptional identity, see (Califano and Alvarez, 2017) for a recent 

perspective. Thus, MR analysis may help elucidate mechanisms responsible for 

implementing and maintaining the transcriptional identity of cancer cells, as a function of 

their mutational landscape, and for plastically reprogramming across distinct identities.

To study MR modularity and genetic drivers in 9,738 TCGA samples (Cancer Genome Atlas 

Research et al., 2013), on a sample-by-sample basis, we developed MOMA (Multi-Omics 

Master-Regulator Analysis). MOMA integrates gene expression and genomic alterations 

profiles to identify MR-proteins and MR-modules representing the key effectors of a tumors 

mutational landscape and thus responsible for implementing the cancer cell identity.

MOMA (Paull et al., 2020b) can be accessed on Bioconductor (Gentleman et al., 2004), thus 

allowing analysis of virtually any cancer cohort of interest, for which patient-matched 

transcriptional and mutational profiles are available. In addition, the MOMA Web 

Application (Paull et al., 2020a) provides interactive access to all results reported by this 

manuscript.

Results

The MOMA framework is shown in both a simplified (Figure 1A-C) and a detailed (Figure 

S1A-E) conceptual workflow. Briefly, gene expression profiles from 20 TCGA cohorts 

(Table S1) were first transformed to protein activity profiles using the VIPER algorithm 

(Alvarez et al., 2016) (Step 1, Figure S1B). Candidate MR proteins were then identified by 

Fisher’s integration of p-values for (a) their VIPER-measured activity, (b) functional genetic 

alterations in their upstream pathways, by DIGGIT analysis (Chen et al., 2014), and (c) 

additional structure and literature-based evidence supporting direct protein-protein 

interactions between MRs and proteins harboring genetic alterations, via the PrePPI 

algorithm (Zhang et al., 2012) (Step 2,3, Figure S1C). The vector of integrated -Log10 p 
values (MOMA Scores) were used to weight each MR’s contribution in a tumor subtype 

clustering step (Step 4, Figure S1D). Finally, genomic saturation analysis upstream of top 

candidate MRs identified those most likely to control the subtype transcriptional identity 

(Step 5, Figure S1D). This was followed by identification and functional characterization of 

MR sub-modules recurring across multiple subtypes (MRBs) (Step 6, Figure S1E). See 

STAR Methods for a detailed description of each step.

Somatic genomic alterations considered by the analysis include single nucleotide variants/

small indels (SNVs) and somatic copy number alterations (SCNAs) from the Broad TCGA 

Firehose pipeline, as well as fusion events (FUS) reported by PRADA (Torres-Garcia et al., 

2014)(STAR Methods). Alternative or complementary algorithms can be easily incorporated 

into MOMA, for instance to integrate the effect of germline variants, epigenetic alterations, 

or extracellular signals.

VIPER has been extensively validated as an accurate methodology to measure a protein’s 

activity, based on the enrichment of its tissue-specific activated and repressed transcriptional 
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targets (regulon) in over and under-expressed genes (Alvarez et al., 2016)—i.e., akin to a 

highly-multiplexed gene-reporter assay. To generate accurate regulons for 2,506 regulatory 

proteins annotated as transcription factors (TFs) and co-factors (co-TFs) in Gene Ontology 

(Ashburner et al., 2000; The Gene Ontology Consortium, 2018), we used the ARACNe 

algorithm (Basso et al., 2005), see STAR Methods for ARACNe and VIPER accuracy.

For each candidate MR we first identified candidate upstream modulator proteins using the 

CINDy algorithm (Giorgi et al., 2014) and then assessed whether the presence of genomic 

alterations in their encoding genes was associated with differential MR activity (activity 
quantitative trait locus analysis, aQTL). These two steps comprise the DIGGIT algorithm, 

which was highly effective in elucidating key driver mutations missed by prior analyses in 

GBM (Chen et al., 2014).

Tumor Subtype identification:

MOMA was used to analyze 9,738 primary samples, from 20 TCGA tumor cohorts (with n 
≥ 100 samples) (Table S1). Minimum cohort size reflected the need to generate accurate 

regulatory network models using the ARACNe algorithm (Basso et al., 2005). To identify 

tumor subtypes representing distinct transcriptional tumor identities regulated by the same 

MR proteins, we performed partitioning around medioids clustering (PAM) (Park and Jun, 

2009), based on protein activity profile similarity, with each protein weighted by its cohort-

specific, integrated MOMA Score (STAR Methods). Proteins with more functional 

mutations in their upstream pathways were deemed more likely determinants of tumor 

subtype identity and provided greater weight to the clustering solution. Within each cohort, 

the optimal number of clusters was determined using a Cluster Reliability Score (CRS) 

(Figure 2A; STAR Methods). Using identical approaches, MR-based clustering 

outperformed expression-based clustering in all 20 cohorts (p < 2.2×10−16 in all but one 

cohort, SKCM, p ≤ 1.8×10−8), by 1-tail Wilcoxon rank sum test of sample Silhouette Scores 

(SS) (Rousseeuw, 1987) (Figure 2B). Indeed, a majority of samples clustered by expression-

based analysis had SS ≤ 0.25—a value generally used as a threshold for statistical 

significance (Rousseeuw, 1987). In contrast, the vast majority of samples clustered by MR-

based analysis had SS ≥ 0.25 (Figure 2B).

Solutions ranged from k = 2 to 8 clusters/cohort. Whenever multiple statistically-equivalent 

solutions were identified, the one yielding the best survival stratification was selected (Table 

S1). The 5-cluster solution for Kidney Renal Clear Cell Carcinoma (KIRC) is shown as an 

illustrative example (Figure 2C), including differential outcome for Cluster 5 (worst) vs. 

Cluster 3 (best) (Figure 2D) (p = 1.1×10−16). Equivalent analyses for all cohorts can be 

accessed via the MOMA Web App, see also Figure S2A and Table S1. MOMA identified 

112 subtypes, representing the stratification of cancer into transcriptional identities regulated 

by distinct Tumor Checkpoints (Figures 2A, S1D; Table S1, Table S2, and Table S6).

MOMA identified subtypes and differential outcome in cohorts that had been previously 

challenging from a gene-expression analysis perspective. For example, except for the 

neuroendocrine subtype, expression-based stratification of prostate cancer outcome has been 

elusive, requiring additional metrics (e.g. Gleason Score) or assessment of spatial tumor 

heterogeneity from multiple biopsies (Berglund et al., 2018), which may not be available for 
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all tumors. In contrast, MOMA identified transcriptional clusters presenting statistically 

significant outcome differences in 19 out of 20 cohorts (Figures 2A, S2A). Even in COAD a 

clear trend was detected (p = 0.07). Considering the significant improvement in cluster 

statistics (Figure 2B), this suggests that MOMA significantly outperforms expression-based 

subtype analysis leading to a more granular subtype structure that improves outcome 

stratification.

Despite its unsupervised nature, MR-based clustering recapitulated established molecular 

subtypes and outcome differences. In breast cancer, concordance with Luminal A, Luminal 

B and triple-negative subtypes was highly significant (p = 2.2×10−16 by χ2 test, Figure 

S2B). Similarly, in GBM, MOMA subtypes recapitulated previously published subtypes (p = 

2.2×10−16) (Brennan et al., 2013), with similar outcome stratification based on activity of 

established MR proteins, CEBPβ, CEBPδ, and STAT3 (Carro et al., 2010) (Figure S2B, 

S2C). Best and worst survival were associated with proneural (p = 3.0×10−6, by Fisher’s 

Exact Test, FET) and mesenchymal (p = 1.3×10−3) tumors, consistent with prior literature 

(Brennan et al., 2013; Carro et al., 2010; Chen et al., 2014). Virtually identical results 

emerged for FOXM1 and CENPF in prostate cancer, previously validated as synergistic 

Master Regulators of aggressive disease (Aytes et al., 2014). Prior analyses were performed 

by pre-selecting genes, for instance by differential expression in best vs. worst survival 

samples (supervised analysis), while MOMA is completely unsupervised. Notably, subtype 

S6 (poorest outcome), in PRAD, comprises only nine samples—since TCGA is restricted to 

primary samples at diagnosis—and was thus missed by prior studies.

Tumor Checkpoint MRs:

A Tumor Checkpoint is defined as a module with the minimum MR repertoire necessary to 

implement a tumor’s transcriptional identity by canalizing genomic events in its upstream 

pathways. We thus used saturation analysis to refine the initial ranked-list of subtype-

specific proteins produced by MOMA analysis to a small set of candidate MRs that 

optimally account for the subtype’s genetic landscape (STAR Methods). By “accounting for 
an alteration” we mean that it is either harbored by the MR or by the MR’s upstream 

modulators.

If driver mutations occurred mostly upstream of Tumor Checkpoint MRs, saturation should 

be achieved rapidly, with only few MRs. In contrast, if mutations were randomly distributed, 

saturation should be very gradual. To test this hypothesis, we considered all previously 

described genomic events (SNV, SCNA and FUS). To avoid over counting, we consolidated 

same-amplicon SCNAs upstream of MRs into single regional events, and further refined 

these by selecting genomic events identified by GISTIC 2.0. We then plotted the fraction of 

all such events predicted to be in or upstream of the top N candidate MRs, on a sample by 

sample basis—averaged over all samples in the same subtype (Figure 3A)—and defined the 

Tumor Checkpoint as the MRs needed to achieve a predefined saturation threshold in each 

subtype (STAR methods). Finally, we identified 407 recurrent MRs (Table S2) occurring in 

n ≥ 4 subtypes, a statistical threshold determined by a null hypothesis model (Figure S3A; 

STAR methods). Of these, 37 were highly recurrent, occurring in n ≥ 15 subtypes (Figure 

3B). The H3/H4 histone chaperone ASF1B emerged as the most pleiotropic MR (n = 31 
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subtypes), followed by MYBL2 (n = 30), JUP (n = 29), TOP2A (n = 25) and TRIP13 (n = 

25).

Consistent with the Tumor Checkpoint hypothesis, we observed rapid genomic event 

saturation in all but 3 subtypes (ovarian cancer subtype S1, S3, and S4). For the vast majority, 

saturation was achieved with very few MRs, starting at n = 4 for THCA subtype S6. Overall, 

between 14 and 52 MRs (i.e., 0.6% to 2% of 2,506 transcriptional regulators, respectively) 

were sufficient to account for the first and third quantile of each sample’s mutational burden, 

with a median of 33 MRs (1.3% of regulatory proteins). Ovarian cancer was an outlier with 

170, 140, and 140 MRs needed to account for the mutations in subtypes S1, S3 and S4, 

respectively, likely due to the very large number of likely passenger structural events in this 

cohort. In contrast, when MRs were chosen at random from all transcriptional regulators, 

saturation increased very gradually with only 0.4% of the events found upstream of 100 

randomly selected MRs (Figure 3A).

At the saturation point, ~50% of all genomic events were accounted for, with a ratio of 

genomic events/MRs ranging from r = 0.02 (i.e., one event affecting 50 MRs) to r = 32 (i.e., 

32 events affecting a single MR) and an average of 5 events/MR. This supports the role of 

Tumor Checkpoints as regulatory bottlenecks responsible for canalizing upstream mutations 

and suggests that <50% of all genomic events may be actual passengers.

To further assess MOMA’s ability to differentiate between driver and passenger events, we 

assessed the differential enrichment of mutations upstream of MRs in either GISTIC2.0/

CHASM-predicted driver events or all genomic events reported by the TCGA Firehose 

pipeline. When averaged across all MOMA-inferred subtypes of a specific TCGA cancer 

cohort, differential enrichment of the former was highly statistically significant across all but 

one tumor cohort (LAML), with p-values ranging from p = 10−7 to p = 10−156 and 

significant fold-ratio with respect to the latter (Figure S3B, S3C; STAR Methods). This 

suggests that low SNV and high fusion-event rates, may have contributed to the LAML 

discrepancy, since CHASM only assesses candidate SNVs. Even though a majority of 

inferred events were previously unreported, MOMA effectively recovered all but one 

(RQCD1) of the 200 high-confidence pancancer driver genes reported in (Bailey et al., 

2018), as well as 82.3% of the high-confidence, tumor-specific driver genes, averaged across 

all subtypes (min:50%, max:100%, Table S3).

In colon adenocarcinoma (COAD), for instance, 8 subtypes were identified, including 4 

enriched in MSIHigh samples (S2, S3, S7, and S8), two dominated by single nucleotide 

variants but not enriched in MSIHigh samples (S1 and S4), and two dominated by focal 

SCNA events (S5 and S6). The mutational landscape of these subtypes was highly distinct. 

For instance, the classic tumor suppressor APC was frequently mutated in all subtypes (S2 = 

39% to S5 = 93%) except S8. Similarly, taken together, mismatch repair genes (MSH2, 

MSH6, and MLH1) were mutated in ~50% of S2 but not S3 samples, while BRCA2 was 

disproportionally mutated in S3 and several other genes were uniquely or disproportionally 

mutated in either subtype (Figures 4A, 4B). Finally, PI3K pathway mutations were frequent 

in S2 and S3, yet rarely mutated in other subtypes. In contrast S5 and S6 were dominated by 

focal SCNA events, with several genes mutated exclusively or disproportionately in S5, 
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while virtually all S6 mutations were also detected in S5 (Figure 4D). Similar mutational co-

segregation differences were detected across virtually all cohort subtypes.

Regional (i.e., non-focal) SCNAs have been largely ignored by previous analyses, due to 

their high gene content. However, MOMA is effective at removing regional SCNA genes 

that are unlikely to modulate MR activity, by DIGGIT analysis. When regional SCNAs were 

included, subtypes became highly homogeneous in terms of their mutational repertoire 

across patients. Consider, for instance, COAD subtype S5 where, except for APCMut/Del, 

already present in 98% of samples, the top 10 regional events increased in frequency from 

12.5% to 84%, when focal and regional SCNAs were analyzed together (bold red, Figure 

4E).

Tumor Checkpoints are Hyperconnected and Modular:

Analysis of existing molecular interaction networks confirmed that Tumor Checkpoints 

represent hyperconnected modules, compared to equisized protein sets chosen at random 

from 2,506 regulatory proteins, as a null model. Networks include HumanNet 2.0 (Hwang et 

al., 2018) (p < 5.0×10−42, by Kolmogorov-Smirnov, Figure S4A), Multinet (Khurana et al., 

2013) (p < 2.0×10−37, Figure S4B), and PrePPI (Zhang et al., 2012) (p = 9.0×10−44, Figure 

S4C).

We then tested whether subtype-specific Tumor Checkpoints may be decomposed into finer-

grain MR sub-modules—recurrent across multiple subtypes—representing pancancer core-

regulatory structures. Clustering of 407 MRs identified by saturation and recurrence analysis 

yielded 24 MR-Blocks (MRBs) as an optimal solution (Figure S5A), with each MR assigned 

to a single MRB (core-set). Since individual TFs may perform different functions, 

depending on interacting co-partners (e.g., MYC/MAX vs. MYC/MIZ-1), we used a “fuzzy” 

clustering algorithm to refine core-sets with additional non-unique MRs (Miyamoto et al., 

2008)(Figures S5B, S5C;Table S4; STAR Methods).

Each Tumor Checkpoint is thus deconstructed into a specific combination of activated or 

inactivated MRBs (Figure 5A), with MRB activity computed as the average activity of all of 

its MRs. Transcriptional targets of individual MRB MRs were enriched in Cancer Hallmarks 

(Drake et al., 2016; Liberzon et al., 2015) and KEGG/Reactome categories (Figures 5B, 

S5D; Table S4; STAR Methods). For instance, MRB:7 and 24 regulate proliferation/DNA 

repair and inflammation/immune response programs, respectively, and are differentially 

active across subtypes (Figures 5A, 5B). Consistently, MRB activity effectively stratified 

outcome in multiple datasets, see METABRIC BRCA and TCGA SKCM, for instance 

(Figures 5C, 5D). Enrichment of Tumor Hallmarks, KEGG, and Reactome categories in 

genes altered upstream of each MRB was generic and sparser (Table S4), suggesting that 

functional specificity is manifested after MRB integration, rather than in the upstream 

genetics.

Tumor Checkpoint MRs are Enriched in Essential Proteins:

We further assessed whether the inferred Tumor Checkpoint MRs were enriched in essential 

proteins, based on Achilles Project data (Cowley et al., 2014), see Figure S5E for a 

conceptual workflow. Specifically, cell lines optimally matching MOMA-inferred subtypes 
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were identified by protein activity analysis (STAR Methods). Essentiality was then assessed 

based on Achilles’ score in matched cell lines. Overall, MRs were highly enriched in 

essential genes (n = 141, p = 7.1×10−6; Figure S5F), based on 106 random selections of the 

same number of regulatory proteins for each subtype.

We then tested MRB-specific essentiality. As expected, those most enriched for cell viability 

hallmarks, such as MRB:2, 3, and 7 (Figure 5B) were most enriched in essential MRs (50%, 

43.8%, and 30.4%, respectively), including proteins such as E2F1, E2F2, E2F7, TOP2A, 

PTTG1, FOXM1, MYBL2, UHRF1, DNMT3B, ZNF695, TCF19, RBL1, and ZNF367. 

Interestingly, essentiality was also prominent in other MRBs, including 31% of MRs in 

MRB:6 (ZNF436, HES1, HOXB7, TP63, TRIM29, GRHL1, PBX4, IKZF2, RARG, IRX5, 

HHEX, RUNX2, STAT5A, HDAC1, HOXC6) and 19% of those in MRB:14 (GRHL2, 

OVOL1, ZBTB7B), for instance. As expected, no essential MRS were found in immune-

related MRBs (MRB:10, 19, 22, 23, and 24)—consistent with lack of immune function in 

cell lines. However, the role of many of these MRs in pancancer inflammation was 

previously reported (Thorsson et al., 2018). This suggests that MOMA can identify MRs that 

are relevant in a human tumor context but may be missed in viability assays in vitro.

MRBs Improve Outcome Analysis:

To assess whether MRBs could stratify patient outcome, we used a sparse Lasso COX 

proportional hazards regression model (Tibshirani, 1997), with MRB activities as predictors. 

Of the 20 TCGA cohorts, 16 could be effectively stratified, often with highly-improved p-

values compared to Tumor Checkpoint stratification (Figures S6A and S6B vs. S2A; Table 

S4). For instance, in melanoma we observed striking survival separation (p < 1.6×10−7), 

using a 6 MRB model—including MRB:10, controlling inflammatory/immune programs 

(Figure 5B). Tumor Checkpoint-based analysis was much less significant (p = 9.4×10−3). 

Similarly, in colorectal cancer, significant outcome separation was achieved using a 3 MRB 

model (p = 3.5×10−3)—with MRB:6 providing the greatest contribution—while Tumor 

Checkpoint stratification was not significant (Figure S2A). Finally, some MRBs provide 

complementary stratification. For instance, MRB:6—controlling EMT, KRAS signals, and 

immune evasion programs—effectively stratified HNSC, GBM, COAD, BRCA, and BLCA, 

but not UCEC, STAD, SKCM, SARC, LUAD, LIHC, while the opposite was true for 

MRB:3—controlling proliferation and DNA repair programs.

To assess whether TCGA-inferred MRBs generalize to other cohorts, we analyzed the 

METABRIC breast cancer cohort, including metastatic samples, with long-term survival 

data (Curtis et al., 2012). Considering the 7 MRBs with highest differential activity in 

TCGA BRCA (MRB:2, 3, 7,0 11, 14, 16, and 21), all of them, but MRB:11, provided 

significant survival stratification in METABRIC, 5 of 6 with p < 9.1×10−7 (Bonferroni 

corrected) (Figure S6C).

MRB:2 Canalizes Driver Mutations in Prostate Cancer:

To validate the effect of genetic alterations affecting MRB activity, we selected MRB:2, the 

most recurrently activated across all subtypes (40/112, Figure 5A). By regularized COX 

regression, MRB:2 produced some of the largest outcome regression coefficients across 
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TCGA (Table S4), emerging as one of the most significant predictors of poor outcome 

(Figure S6A). 11 of its 14 proteins had been previously reported as MRs of malignant 

prostate cancer (FOXM1 CENPF UHRF1 TIMELESS CENPK TRIP13 ASF1B E2F7 

PTTG1 MYBL2 ASF1B TRIP13), including 7 out of 8 in its core-set. FOXM1 and CENPF

—the 6th and 13th most recurrent MRs (Figure 3B)—were validated as synergistic MRs 

(Aytes et al., 2014). Yet, the mutations inducing MRB:2 aberrant activity were not 

previously elucidated.

MOMA identified 7 molecularly-distinct prostate adenocarcinoma subtypes, with significant 

survival separation (Figure 6A), including S6 (worse) and S1, S3 and S5 (best survival) (p = 

6×10−3), as confirmed by Gleason Score and biochemical recurrence analysis (Figures 6B, 

6C). Consistently, MRB:2 MRs are only activated in S6 samples (Figure 6A). In addition, 

the S6 vs. S1 differential expression signature (9 and 149 samples respectively) is enriched in 

tumor hallmarks associated with MRB:2 (Figure 6D). We ranked MOMA-inferred 

alterations upstream of MRB:2 based on their statistical significance across all TCGA 

cohorts and selected those with the strongest MRB:2 association (Figures 6E, 6F; STAR 

Methods), most of which were not identified as drivers by MutSig2.CV (Lawrence et al., 

2013) and Mutation Assessor (Reva et al., 2011) (Table S3).

We selected 6 loss-of-function MRB:2-associated events for experimental validation, 

including TP53Mut (top pancancer SNV), PTENDel and PTENMut (top pancancer SCNA), 

MAP3K7Del (top PRAD-specific deletion), SORBS3Del (top integrated pancancer/PRAD-

specific deletion) and BCAR1Del (top pancancer deletion supported by MR physical 

interaction, with FOXM1) (Figure 6E). Of these only PTEN, a classic prostate cancer 

mutation, and TP53, a hallmark of advanced, castration-resistant disease, were previously 

reported. We validated their functional role in 22Rv1 AR-sensitive prostate cancer cells with 

low MRB:2 activity, thus ideally suited to detecting activity increase in loss-of-function 

assays. Two shRNA hairpins/target were used. Functional and tumorigenic effects were 

assessed both in vitro and in vivo (Figure 7A; Table S5; STAR Methods).

VIPER analysis following shRNA-mediated silencing of 4 of the 5 candidate genes vs. 

negative controls, revealed statistically significant activity increase of MRB:2 activity, based 

on its 8 core-set MRs (Figure 7B). TP53 silencing, while not significant at the MRB level, 

induced FOXM1, PTTG1, and UHRF1 activity increase. Functionally, MAP3K7, SORB3, 

PTEN and TP53 showed significant increase in cell migration, as assessed by wound healing 

assays at the indicated time points relative to control cells infected with scramble shRNAs 

(Figures 7C, 7D, S7A) This was confirmed by Boyden chamber migration assays (Figures 

7E, S7B). Finally, 22Rv1 cells were engrafted in immune deficient mice, following target 

gene and negative control silencing. MAP3K7, TP53, and PTEN silencing produced 

significant growth increase compared to negative controls (p < 0.01, by two-way ANOVA) 

(Figure 7F).

Pharmacological MRB Modulation:

We then asked whether MRB activity and associated function may be pharmacologically 

modulated. We focused on MRB:14, whose activity emerged as critical in establishing and 

maintaining hormonally-mediated luminal epithelial identity and cell adhesion (i.e., anti-
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migratory) phenotypes. Several MRB:14 proteins (e.g., GRHL2 OVOL1 ZBTB7B) emerged 

as essential in MRB:14 active cell lines and in tissue-specific knockout mice studies (Dai et 

al., 1998; Gao et al., 2015; Kappes, 2010). Others—SDPEF GRHL2 JUP/γ-catenin 

CDH1/E-cadherin ZBTB7B OVOL1 OVOL2 ATP8B1/FIC1 PPP1R13L/iASPP—are 

established regulators of epithelial cell adhesion and anoikis, cellular apical-basal polarity, 

luminal epithelial structure maintenance, EMT, cell migration, and inflammation, as shown 

in prostate, breast, colon, and skin studies (Frisch et al., 2013; Jolly et al., 2016), see Table 

S5 additional references. MOMA analysis recapitulated these roles in terms of hallmark 

enrichments, including androgen and estrogen response, EMT, apical surface and apical 

junction, and inflammatory response.

Consistent with our analysis, SPDEF, GRHL2, γ-catenin, and CDH1 protein expression was 

lost or significantly reduced in AR-insensitive (DU145 and PC-3) vs. AR-sensitive (LNCaP) 

cell lines (Figure S7C). LNCaP cells treated with the AR antagonist enzalutamide or DMSO 

(Handle et al., 2019) confirmed that MRB:14 genes have AR-dependent expression (Figure 

S7D). Furthermore, their role in luminal epithelial identity maintenance was supported by 

luminal and basal prostate epithelial cell analysis (Zhang et al., 2016) (Figure S7E). Indeed, 

MRB:14 activity effectively stratified luminal vs. basal samples in BRCA and BLCA TCGA 

cohorts, by PAM50 classification (Figure S7F), further supporting MRB:14’s role as a 

positive determinant of hormone-signal-mediated luminal state across tissues and loss of 

luminal identity when inactivated.

VIPER analysis of patient-matched biopsies pre and post androgen deprivation therapy 

(ADT) (Rajan et al., 2014) showed pronounced MRB:14 MR activity suppression (Figure 

S7G). Indeed, metastatic, post-ADT tumors are generally basal-like having undergone EMT, 

raising the question of whether prolonged ADT may induce loss of adhesion and metastatic 

progression (Sun et al., 2012; Tsai et al., 2018). Intermittent testosterone replacement 

therapy reduced appearance of aggressive tumors (Chuu et al., 2011; Loeb et al., 2017), 

reflecting potential benefit of periodic, AR-mediated cell adhesion reinforcement.

To test whether pharmacological activation of MRB:14 MRs may reduce the migratory, 

EMT-related potential of aggressive prostate cancer, we used the OncoTreat algorithm 

(Alvarez et al., 2018) to prioritize 120 FDA-approved and 217 late-stage (phase-II and -III) 

experimental drugs, based on their overall ability to activate MRB:14 MRs, using RNASeq 

profiles of AR-resistant DU145 cells at 24h after treatment (STAR Methods). Four MRB:14-

activating drugs were inferred at physiologically-realistic concentrations (<10μM), including 

fedratinib, pevonedistat, ENMD-2076 and lexibulin (Figure 7G), and their effect was 

assessed in wound healing assays. All 4 drugs but none of the negative controls significantly 

inhibited DU145 cell migration at 24h (Figures 7H, 7I). The latter—triapine, raltitrexed, and 

dorsomorphin—were randomly selected among drugs with no significant MRB:14 activity 

effect (Figure 7G).

Discussion

The repertoire of transcriptional identities accessible to a cancer cell, which ultimately 

determine its plasticity potential, is constrained by its mutational and paracrine/endocrine 
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signal landscape, as well as its cell-of-origin epigenetics. Yet, the specific mechanisms by 

which these constraints are implemented are still poorly understood. We thus attempted to 

establish a more direct link between the proteins that regulate a tumor’s identity and the 

genomic alterations that induce their aberrant activity using an algorithm, MOMA, that 

integrates multiple omics data.

The fine-grain subtype-structure emerging from the analysis revealed a highly modular and 

recurrent regulatory architecture, implemented by subtype-specific, combinatorial activation 

or inactivation of 24 Master Regulator modules (MRBs), each regulating specific tumor 

hallmarks. It also highlights highly-recurrent and distinct mutational patterns within each 

subtype that had been missed by gene expression-based clustering. This suggests a 

“mutational field effect”—a term borrowed from Ising Spin Fields in ferromagnetism 

(Baxter, 1982)—where many “weak” events that would be unable to dysregulate MR 

proteins on an individual basis—such as those in regional SCNAs—may cooperate to create 

a “strong” effect, as discussed for COAD. Weak event cooperativity may have been 

previously missed because regional SCNA contains dozen to hundreds of potential 

contributing genes, most of which are efficiently removed by MOMA’s CINDy and aQTL 

analyses.

While most samples lacked a driver event quorum by conventional analyses, MOMA 

inferred a large number of functionally-relevant events contributing to MR dysregulation in 

most samples, consistent with other complex diseases (Boyle et al., 2017). Despite the 

remarkable complexity of these mutational patterns, our study suggests that their effect is 

canalized by only 112 distinct regulatory modules (Tumor Checkpoints), each representing a 

combination of only 24 primary MRBs. Consistent with the notion that transcriptional cell 

states have emerged as more accurate predictors of drug-sensitivity, compared to genetics 

(Rydenfelt et al., 2019), this suggests that MR-based analyses may produce a more tractable 

landscape of potential therapeutic targets than could be achieved by genetic-based 

approaches, especially as great strides are being made to target transcriptional regulators 

using E3-ligases, covalent binding molecules, or antisense agents. To further support this 

observation, we show that MRB activity and associated phenotypes can be effectively 

modulated by drugs predicted to invert the activity of their MRs, suggesting that a relatively 

small repertoire of MRB-targeting drugs could be developed to support precision 

combination therapy, as determined by MRB activity on an individual patient basis.

Over the last 50 years, a number of cancer hallmarks, representing programs necessary for 

cancer cell survival and proliferation, have emerged (Hanahan and Weinberg, 2011), thus 

spurring research aimed at identifying the specific proteins and protein-modules that 

comprise them. This has led to development of several methods to ‘decompose’ the 20,000+ 

dimensional gene-expression data space into orthogonal programs, either using 2-

dimentional matrices (Kim et al., 2017) or higher dimensional tensors (Sankaranarayanan et 

al., 2015), thus creating a simplified representation of the underlying cellular states and 

shared oncogenic alterations (Kim et al., 2017; Malta et al., 2018). These studies are 

encouraging and confirm that cancer hallmarks may be indeed implemented by coordinated 

activity of specific gene modules. However, current hallmark representations are basically 

tumor-independent gene sets that lack information on what regulates or dysregulates them. 
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MRBs provide a complementary, subtype specific representation of the proteins that causally 

regulate cancer hallmark gene sets and, thus, a potential way to modulate them on an 

individual tumor basis, as confirmed by validation of OncoTreat-predicted drugs.

MRB:2 was selected for experimental validation as the most recurrently activated across 

clustering solutions, mostly in poor outcome subtypes (Figures 5A, S5C). While 11 of its 14 

proteins, which regulate cell growth, DNA repair, and mitotic programs (Table S4), were 

previously inferred as MRs of the most aggressive subtype of prostate cancer, including 

FOXM1 and CENPF validated as synergistic MRs (Aytes et al., 2014), their concerted, 

pancancer role had been missed. Among them, TRIP13 also plays a critical role in 

chromosomal structure maintenance during meiosis (Roig et al., 2010), facilitated by the 

DNA topoisomerase 2-alpha subunit TOP2A, a well-established therapeutic target (Jain et 

al., 2013) enabling chromosomal condensation and chromatid separation. FOXM1, CENPF, 

MYBL2, and TRIP13 were implicated as part of a core “proliferation cluster,” associated 

with poor outcome, whose activity is dependent on p53 inactivation (Brosh and Rotter, 

2010). Indeed, TP53 mutations emerged as the most significant event upstream of MRB:2. 

Additional proliferation-related proteins, such as E2F2, E2F7, and TIMELESS, contribute to 

MRB:2’s strong association with proliferative hallmarks such as E2F Targets (p = 

8.1×10−76), Mitotic Spindle (p = 2.6×10−2) and G2/M Checkpoint (p = 3.5×10−45), as well 

as MTORC1 (p = 1.7×10−5) and V1 and V2 MYC programs (p = 1.2×10−28 and 3.7×10−10, 

respectively) (Table S8). Finally, UHRF1, also a candidate therapeutic target, is 

overexpressed in many cancers (Unoki et al., 2009), where it regulates gene expression and 

peaks in G1 phase, continuing through G2 and M, while ASF1B—a core member of the 

histone chaperone proteins, responsible for providing a constant supply of histones at the 

site of nucleosome assembly and the most recurrent activated MR—is predictive of outcome 

in several tumors (Corpet et al., 2011). Thus, while the role of these proteins may have been 

individually established in some cancers, our study identifies them as a hyper-connected, 

synergistic core module activated in the most aggressive cancer subtypes, from melanoma 

and GBM, to colorectal, prostate, and ovarian cancer (Figure 5A).

Activity of MRB:3 and MRB:7 was also associated with proliferation, yet via 

complementary MRs such as E2F1/2/7/8 and chromatin remodeling enzymes involved in 

mitotic progression (SUV39H1), assembly (CHAF1B), and mini-chromosome maintenance 

(MCM2/3/6/7).

At the other end of the functional spectrum, MRB:24—significantly associated with 

inflammatory response and immune related hallmarks, including via the immune-regulator 

MR STAT1 (Figure 5B)—was activated in 20 subtypes (Figure 5A) and highly predictive of 

outcome (e.g. in SKCM, Figure 5C). MRB:19 was also enriched in immune related 

hallmarks (Figure 5B),via alternative MRs, including CIITA, an MHC transactivator, whose 

inactivation abrogates HLA-DR presentation and promotes immune-evasion (Yazawa et al., 

1999), CD86, the canonical CTLA-4 ligand involved in immune checkpoint activation, and 

additional proteins (e.g., NOTCH4, MITF, etc.) associated with an immune-evasive 

microenvironment (Thorsson et al., 2018).
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Taken together, these data suggest that MRBs may provide complementary “molecular 

recipes” for implementing the same cancer hallmarks in different tumor contexts.

Obviously, there are several limitations to the MOMA analyses, providing options for 

potential future improvements. Consistent with other high-throughput methods, both 

experimental and computational, it is reasonable to expect that MOMA will also produce 

false positive and negative predictions. Moreover, MOMA was not optimized on an 

individual cohort basis but rather to identify commonalities across different tumor subtypes. 

As such, it is not intended as a replacement but rather as a complement to existing analyses, 

specifically to identify proteins that canalize cancer alterations towards subtype 

implementation. For instance, TP53 mutations, are ubiquitous in ovarian cancer, thus 

providing minimal contribution to its subtypes and failing detection by MOMA. Similarly, 

the proposed clustering strategy may over- or under-stratify some cohorts, in order to avoid 

missing rare subtypes across most cohorts. For instance, S6, the most aggressive PRAD 

subtype (Figure 6A), would have been missed by a more conservative clustering strategy. 

Yet, tuning the algorithm for rare subtypes may cause over-stratification of others. Indeed, 

while most subtypes are molecularly distinct, PAAD subtypes S3, S4, and S5 were quite 

similar, both in terms of MRs and upstream genetics. Conversely, under-stratification was 

evident in breast cancer, where MOMA identified only four subtypes, a basal-like one (S4), a 

Luminal-B one (S2), and two molecularly-distinct Luminal-A ones (S1 and S3). Forcing a 

more granular 8-cluster solution split the basal subtype into Claudinlow and Claudinhigh 

subtypes (Figures S2D, S2E), HER2 positive tumors, however, still failed to form a separate 

cluster and were enriched in either the Luminal B or Basal subtypes (Figure S2B), 

suggesting that, while HER2+ tumors may present a distinct oncogene dependency, due to 

their hallmark mutation, their transcriptional identity may be more consistent Basal (HR-

negative) and Luminal B (HR-positive) tumors.

Some key events may also be missed (false negatives) due to the highly conservative nature 

of the DIGGIT analysis. Indeed, BRAF mutations, which are frequent in SKCM, were 

significantly associated with differential MR activity by aQTL analysis. Yet, they were not 

identified as upstream MR modulators by CINDy, because activity of this protein is not 

effectively tracked by VIPER, and were thus missed by MOMA. Indeed, previous validation 

(Alvarez et al., 2016; Califano and Alvarez, 2017) shows that ~20% of proteins harboring 

functional genetic alteration may be missed by VIPER analysis. We are currently developing 

approaches to further improve sensitivity, for instance by including DNA binding motifs, 

ATAC-Seq data, or other epigenetic data modalities. Similarly, as also reported, VIPER may 

invert the sign of differential activity due to autoregulatory loops. This does not compromise 

MR identification but may identify some activated MRs as inactivated and vice-versa. 

Further improvement to the algorithm may be possible by changing the integration logic or 

by using mutational or perturbational data to better infer the activity of mutation harboring 

proteins, as shown in (Broyde et al., 2020).

While the current version of MOMA identified a large repertoire of previously unreported 

mutations and subtypes, the algorithm may be tuned for improved stratification, on an 

individual tumor cohort basis, for instance by using the average of each cohort, rather than 
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the average of TCGA, as a control, as shown in several prior studies, e.g., (Carro et al., 2010; 

Rajbhandari et al., 2018), thus further highlighting subtle subtype differences.

To make MOMA broadly available to the research community, we deposited the related 

software in Bioconductor (Paull et al., 2020b), allowing its application to any cohort for 

which matched gene expression and mutational data is available. We also developed a 

public-access Web Application that allows biologists to easily query and visualize the ~2 

million tumor-specific molecular interactions emerging from the analysis (Paull et al., 

2020a).

STAR Methods

Resource Availability

Lead Contact—Further information and requests for resources, reagents and code should 

be directed to and will be fulfilled by the Lead Contact, Andrea Califano 

(ac2248@columbia.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability

Primary Dataset Information: Source data for the analyses done in the paper is available 

from the TCGA Firehose Repository (gdac.broadinstitute.org, 2016–01-28 release). Full 

description of data types per sample (RNA sequencing, SNV and SCNA) acquired from 

TCGA firehose available in Supplemental Table 1. All samples with RNA sequencing data 

available were used in the analysis. Cohorts with fewer than 100 samples were not used. 

Further information about sample acquisition and relevant clinical annotations are available 

on the TCGA website. Fusion data was acquired from the Tumor Fusions Gene Data Portal, 

which is based on the TCGA data (www.tumorfusions.org, 2017–10-01 release) (Hu et al., 

2018; Torres-Garcia et al., 2014).

Validation Datasets: Various datasets were used for validation of different components of 

the analysis. Unless otherwise stated all available data was used from the respective dataset. 

All accession information for the respective external data is available in the Key Resources 

Table.

Results Data: The results of the analysis can be interactively accessed on our MOMA web 

application (http://www.mr-graph.org/). Code used to analyze the data has been compiled 

into a Bioconductor R package, MOMA, that can be downloaded here (https://

bioconductor.org/packages/release/bioc/html/MOMA.html).

Experimental Model and Subject Details

Animals—The immunodeficient NCr nude Spontaneous mutant model (Envigo; Product 

model: Mutant mice - Hsd:Athymic Nude-Foxn1nu - 069) was used for the MRB:2 xenograft 

validation experiments. All experimental procedures were approved by the Ethical 

Committee on Animal Research at IDIBELL, and have been authorized by the responsible 
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Department of the Catalan Autonomous Government (File Number: FUE-2016–00307059; 

Project Number: 9025, Project coordinator: Alvaro Aytés). The barrier facility at IDIBELL 

is an AAALAC-certified facility. Maximum cage density was 5 mice/cage and cages were 

placed in ventilated racks with water ad libitum and chow replenished weekly as well as 

clean new bedding. All animals used in this study were 6 weeks old male athymic Nude-

Foxn1nu (Envigo). Mice were monitored daily for signs of distress throughout the course of 

the experiment.

Cell lines—All cell lines were acquired from ATCC, as authenticated by them. Growth 

medium for cells is as follows: LNCaP cells and 22Rv1 cells were grown in RPMI-1640 

medium (Gibco) supplemented with 10% Fetal Bovine Serum (FBS; Sigma-Aldrich) and 

antibiotics (penicillin/streptomycin, P/S; = 100 units of penicillin and 100 μg of 

streptomycin per ml of medium); DU145 cells were grown in Eagle’s Minimal Essential 

Medium (Gibco) supplemented with 10 % FBS and P/S; PC3 cells were grown in Ham’s 

F-12K (Kaighn’s) Medium (Gibco) supplemented with 10 % FBS and P/S; HEK-293 were 

grown in DMEM supplemented with 10 % FBS and P/S. All cell lines were grown at 5% 

CO2 and 37C.

Method Details

Sequencing Data and Activity inference: RNA-Seq raw gene counts were 

downloaded from the TCGA firehose web site (gdac.broadinstitute.org, 2016–01-28 

release), transformed to Reads Per Kilobase of transcript, per Million mapped reads 

(RPKM), using the average transcript length for each gene and log2 transformed. 

Transcriptome-wide expression signatures were computed by two non-parametric 

transformations. First, each column (tumor sample) was rank transformed and scaled 

between 0 and 1. Then each row (gene) was rank transformed and scaled between 0 and 1. 

Finally, regulatory protein activity was measured by the VIPER algorithm (Alvarez et al., 

2016), using tissue-matched ARACNE regulons (Giorgi et al., 2016; Lachmann et al., 2016) 

(See Figure S1B).

Systematic experimental validation has confirmed that VIPER can accurately measure 

differential activity for >80% of transcriptional regulator proteins, when ≥ 40% of the genes 

in a regulon represent bona fide targets of the protein (Alvarez et al., 2016). In addition, 

multiple studies have experimentally validated that >70% of ARACNe-inferred targets 

represent bona fide, physical transcriptional targets—e.g., by Chromatin 

Immunoprecipitation (ChIP) and RNAi-mediated silencing, followed by gene expression 

profiling (Alvarez et al., 2016; (Basso et al., 2005; Carro et al., 2010; Lefebvre et al., 2010)

—thus fulfilling the VIPER requirements for accurate protein measurement. The results of 

the VIPER analysis are reported as a Normalized Enrichment Scores (NES) values of a 

protein targets in differentially expressed genes with respect to the centroid of TCGA, as 

assessed by aREA (see below). This has been shown to accurately characterize differential 

protein activity. Positive NES values (shown as a red gradient) indicate increased protein 

activity while negative NES values (shown as a blue gradient) indicate decreased protein 

activity.
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Genomic events—Candidate genomic event data were downloaded from the TCGA 

firehose gdac.broadinstitute.org, 2016–01-28 release). For mutations and small indels, we 

downloaded Mutation Annotation Files (MAF) and selected all events annotated as non-

silent alterations. For SCNAs, we downloaded SNP6 copy number profiles and selected a 

threshold of +/−0.5 as the value that provides an optimal tradeoff between sensitivity and 

specificity in capturing copy number changes, as discussed in the literature (Jerby-Arnon et 

al., 2014).

To ensure that copy number changes are functionally relevant, we adopted the approach 

discussed in the DIGGIT manuscript (Chen et al., 2014). Specifically, only SCNA genes 

whose correlation between copy number and expression was statistically significant across a 

cohort were considered as functional candidates (Figure S1B). For the Genomic Saturation 

analysis, GISTIC2.0 results were downloaded from Firehose to better account for proximal 

copy number alteration events and to differentiate between focal (score of +/−2) and regional 

(score of +/−1) events. When multiple functional events were identified within the same 

amplicon, they were consolidated into a single event vector, thus preventing overcounting 

(Region Consolidation). However, for completeness, the MOMA Web App reports the 

identity of all events in an amplicon that pass the CINDy and aQTL analyses. Finally, gene-

fusion calls were called by the PRADA algorithm, and downloaded from the Tumor Fusions 

Gene Data Portal (www.tumorfusions.org, 2017–10-01 release) (Hu et al., 2018; Torres-

Garcia et al., 2014).

aREA Analysis—The analytic Rank-based Enrichment Analysis (aREA) was introduced 

in (Alvarez et al., 2016) as an analytical methodology to assess gene set enrichment analysis 

statistics, producing results that are virtually identical to GSEA (Subramanian et al., 2005) 

without the need for time-consuming sample or gene shuffling.

DIGGIT Analysis—We implemented a slightly improved version of the DIGGIT 

algorithm. The original DIGGIT combined (a) a MINDy analysis step (Wang et al., 2009) to 

identify proteins representing candidate upstream modulators of a MR protein (b) an aQTL 

analysis step to identify genomic events in candidate upstream modulators associated with 

statistically significant differential MR activity, and (c) a conditional association analysis 

step to eliminate genomic events that were no longer significant given another genomic 

event. The analysis was improved as follows: (a) rather than using mutual information, 

aQTL statistical significance is assessed by aREA-based enrichment analysis of samples, 

ranked by differential activity of the specific MR, in samples harboring a specific SNV or 

SCNA events, (b) the MINDy algorithm was replaced by CINDy (Giorgi et al., 2014), 

providing a more accurate implementation of the conditional mutual information foundation 

of the algorithm, and (c) the conditional association analysis step was eliminated because it 

produced too many statistical ties when applied to pancancer cohorts; note that aQTL 

analysis was performed only for events occurring in ≥ 4 samples since fewer events are 

highly unlikely to achieve statistical significance (Figure S1C Step 2). The individual steps 

are described in the following.
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CINDy Score: Step 1: Proteins were first ranked by their VIPER statistical significance, 

integrated across all cohort samples using the Stouffer’s method for p-value integration 

(Stouffer et al., 1949).

Step 2 For each statistically significant differentially active protein (i.e. candidate MR) the 

conditional mutual information CMI = I[MR,{Ti}|M], between the expression of the MR 

and of its regulon genes, given the expression of any gene harboring a somatic event, was 

computed. Thus, CINDy identified mutation-harboring genes encoding for proteins that 

affect the ability of a MR to regulate its targets (Figure S1B).

Step 3: For each event type (i.e. SNV, amplified SCNA, or deleted SCNA) all statistically 

significant CINDy scores for a given MR were integrated using Stouffer’s method to 

produce three global CINDy scores SC
SNV = − Log10(pC

SNV), SC
Amp = − Log10(pC

Amp), and 

SC
Del = − Log10(pC

Del). Fusion events were not analyzed in this fashion since ARACNe is not 

designed to identify targets of fusion proteins. Thus, for fusion events, only the aQTL 

analysis step was applied.

aQTL Score: Step 1: Proteins were ranked by their VIPER statistical significance, 

integrated across all cohort samples using Stouffer’s method. This could be further improved 

in the future by integrating across individual subtypes rather than entire cohorts.

Step 2: For each statistically significant differentially active protein (i.e. candidate MR) and 

somatic event (SNV, SCNA, or FUS), the statistical significance of the aQTL event was 

assessed by computing the enrichment of all cohort samples, ranked by the MR’s differential 

activity, in samples harboring the event, using aREA.

Step 3: For each event type, a global aQTL score (SaQTL) was computed as the 

−Log10(PaQTL), with PaQTL representing the integration of all statistically significant MR-

event aQTL p-values (p ≤ 0.05) per MR for that event type, using Stouffer’s method. This 

produced three global aQTL scores SaQTL
SNV , for SNVs, small indels, and fusion events, 

SaQTL
Del , for SCNA deletion, and SaQTL

Amp  for SCNA amplifications. If ≥ 100 CINDy-inferred 

MR modulators were identified in a given cohort (see CINDy Score), then only aQTLs for 

somatic events harbored by genes with a statistically significant CINDy p-value were 

integrated. Otherwise, the p-values of all statistically significant aQTLs were integrated 

independent of CINDy results. This is because fewer than 100 statistically significant 

CINDy modulators indicates that the dataset is too small for a properly powered CINDy 

analysis.

PrePPI Score: PrePPI (Zhang et al., 2012) is used to identify structure-based protein-

protein interactions between proteins encoded by genes harboring a somatic event and each 

MR protein.

Step 1: Proteins were first ranked by their VIPER statistical significance, integrated across 

all cohort samples using Stouffer’s method.
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Step 2: High-confidence interactions in the PrePPI database 1.2.0 (Zhang et al., 2013) 

(likelihood > 0.5) were assigned an empirical p-value as follows: first they are ranked based 

on their likelihood scores; then p-values were computed as the fraction of interactions with 

equal or better rank, normalized by the total number of PrePPI interactions in the database.

Step 3: For each event type, a global PrePPI score (SP) was computed as the –

Log10(PPrePPI), with PPrePPI generated by integrating the individual p-values of all 

statistically significant PrePPI interactions (p ≤ 0.05) for that event type, using Fisher’s 

method (Jerby-Arnon et al., 2014). This produced three global PrePPI scores SPrePPI
SNV , 

SPrePPI
Del  and SPrePPI

Amp .

Integrated rankings and MOMA Scores—Step 1: For each candidate MR, the p-values 

corresponding to same-type events (e.g., all SCNA deletions) as assessed by aQTL, PrePPI, 

and CINDy, were integrated using Stouffer’s method. For fusion events, CINDy and PrePPI 

scores cannot be computed and are thus not integrated. For the aQTL analysis, fusion events 

were considered equivalent to SNVs. This produced 9 integrated p-values for each 

statistically significant, candidate MR protein: paQTL
SNV , paQTL

Amp , paQTL
Del , pPrePPI

SNV , pPrePPI
Amp , 

pPrePPI
Del , pCINDy

SNV , pCINDy
Amp , and pCINDy

Del .

Step 2: After ranking all proteins in a cohort based on their VIPER score, we used Stouffer’s 

method to integrate the 9 p-values for each statistically significant protein (i.e., candidate 

MR) with its VIPER p-value, thus creating a global MOMA p-value (pM(MR)). The latter 

representing the probability that a protein may be a bona fide MR by chance. A global 

MOMA score was then computed as SM(MR) = −Log10(pM(MR)) squared (Figure S1C).

Cluster Reliability Score (CRS)—The CRS was introduced in (Alvarez et al., 2018) as a 

statistically sound way to assess the fit of each sample within a cluster. For each sample, a 

distance vector V1, representing its distance from all other samples in the same cluster and a 

vector V2, representing its distance from all other samples in the cohort are computed. The 

sample distance matrix was computed by taking the weighted VIPER scores for each sample 

(VIPER activity values multiplied by each MR’s MOMA Score) and calculating the 

pairwise Pearson correlations. The normalized enrichment score of V2 distances, ranked 

from the largest to the smallest one, in V1 distances, is then assessed using aREA. This 

produces a p-value that represents the tightness and separation of the cluster being 

considered in relation to all other samples. A cluster-wide reliability score for each cluster is 

assessed as the average cluster reliability (NES) of each sample in the cluster, scaled 

between 0 and 1. Finally, the reliability of the entire clustering solution (global cluster 
reliability score) is assessed as the average of the cluster-wide reliability score of all clusters 

in the solution.

Activity-based Clustering—Each tissue-specific VIPER activity matrix was clustered 

using k-medoids clustering, with k ranging from 2 to 10 clusters, using a distance matrix 

defined by the weighted Pearson correlation between VIPER-inferred protein activity 

vectors. Weights were defined as the square of the integrated MOMA scores (SM
2 (MRi)), 
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thus increasing the contribution of high-scoring MRs (Figure S1D). Cluster Reliability 

Scores (CRS) were calculated for each sample and for each k value and the optimal number 

of clusters was determined as the first local maximum for the Global Cluster Reliability 

Score. We used a Kolmogorov–Smirnov test between the CRS of the samples from the 

optimal k-cluster solution (i.e. the one with the highest global reliability score) and the CRS 

of the samples from every other k-cluster solution to identify solutions that were statistically 

indistinguishable. Among those, we selected the one producing the best survival separation, 

as described in Survival analysis.

Silhouette Scores—Silhouette Scores were computed as described in (Rousseeuw, 1987). 

They were used purely for visualization purposes, since they are well-established as metrics 

to assess cluster reliability.

Expression-based Clustering—Similar to Protein Activity-based clustering, each 

tissue-specific gene expression matrix was clustered using k-medoids clustering with k set as 

the same value chosen for the tissue-specific VIPER activity clustering. Distance between 

samples was defined using Pearson correlation between gene expression profiles. Cluster 

Reliability Scores and Silhouette scores were computed as described in above.

Survival analysis—Clinical data was downloaded from the Broad Institute GDAC 

website (gdac.broadinstitute.org). We used the ‘survival’ R/CRAN package version 2.41–3 

to fit a Cox proportional hazards model to each sample grouping defined by the initial 

clustering. We then defined the “best” survival clusters as the one with the lowest proportion 

of observed to expected death events, and the “worst” survival as the highest observed/

expected ratio. We then fit a second Cox model exclusively to samples from those two 

clusters and calculated the significance of survival differences between “best” and “worst” 

clusters in that model.

Saturation Analysis—Saturation curves were generated by ascertaining the number of 

functional somatic events upstream of the N most statistically significant candidate MR 

proteins, ranked by their global MOMA score. To assess an appropriate saturation threshold, 

we first assessed how many functional somatic events NE=1,253 were upstream of the first 

half (1,253) of all regulatory proteins in that subtype, thus conservatively excluding proteins 

with a non-statistically significant VIPER activity. The saturation threshold then was set at 

85% of that number N0 = 0.85 × NE=1,253. We then assessed how many of the N proteins 

with the highest VIPER activity were needed to identify N0 somatic events in their upstream 

pathways. For all subtypes—except for 3 Ovarian cancer subtypes (S1, S3 and S4)—

saturation increased so rapidly and significantly, compared to an identical number of 

randomly selected regulatory proteins (null hypothesis), that increases in event number for N 
> 100 MRs were not statistically significant. To avoid contaminating functional genomic 

events with passenger ones, by using non-significant MRs to assess saturation, we thus 

selected a more conservative saturation threshold N1 = 0.85 × NE=100. We used N1 for all 

subtypes except for the three ovarian cancer subtypes for which we used No.

Genomic Plots—To visually represent genomic events upstream of MR proteins in each 

sample, as identified by saturation analysis, we used cBioPortal OncoPrint (Cerami et al., 
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2012), with ComplexHeatmap (Gu et al., 2016). To avoid clutter, we restricted visualization 

to events previously reported as oncogenes and tumor suppressors (Bailey et al., 2018; 

Repana et al., 2019). However, all events can be downloaded from the MOMA Web App. 

For amplified or deleted SCNAs, we determined whether an oncogene or tumor suppressor 

had been identified by MOMA as functional in that region, before region consolidation (see 

Genomic Events). For regions with a single oncogene/tumor-suppressor its name is used as 

representative of the SCNA. When two were detected, their names separated by a semicolon 

were used. When three or more were detected, the SCNA locus is used followed by “-multi.” 

Due to size constraints for figure representation, a maximum of 50 most frequent events is 

shown. However, complete driver event lists are available on the MOMA Web App. The 

option to generate OncoPrint plots with all genes is prioritized for the next version of the 

application.

Driver Mutation Enrichment—To assess the statistical significance of somatic event 

enrichment, upstream of checkpoint MRs, we performed a sample-specific analysis in each 

cohort. For each sample we identified activated MRs and their upstream somatic events 

using the same methodology described in the Saturation Analysis section. Then, for each 

sample, we computed the ratio of all validated CHASM (Carter et al., 2009) and GISTIC2.0 

(Mermel et al., 2011) putative driver events vs. the total number of events (Figure S3C). To 

assess the cohort-level significance, we compared the number of samples with a ratio > 1 

against a one-tailed binomial null distribution (p = 0.5). This showed that every cohort but 

one (LAML) showed significant enrichment in putative driver genes (Figure S3B).

MRB Analysis—The 407 MRs identified by saturation analysis that were also statistically 

significant in ≥ 4 subtypes (recurrence analysis) were clustered based on their VIPER-

inferred activity, using a Euclidean distance metric and partitioning around medoids (PAM) 

for k = 2 to 100 clusters (Figure S1E). To compute the Euclidean distance, each MR was 

associated with a 112-dimensional vector representing its VIPER-inferred activity in each 

subtype. A Cluster Fitness score was defined as the Average Cluster Reliability Score for all 

MRs in a cluster. The analysis identified k = 24 as the optimal clustering solution (Figure 

S5A). Each “core-set” cluster identified by this analysis was then expanded by the m MRs 
with the best average Euclidean distance to those in the core-set, for m = 0, … 100. For each 

m additional MRs in each MRB, the trace of the covariance matrix of the Tumor Hallmark 

enrichment across the 24 MRBs was calculated to assess the total variance of the solution. 

This variance showed optimal increase for m = 6 (Figure S5B). These optimization steps to 

ensured uniqueness, specificity, and robustness of the MRB solution.

Jaccard concordance index—Each MRB is represented as a 112-dimensional vector 

representing its statistically significant activation (1), inactivation (−1) or neutral (0). The 

Jaccard concordance index between two MRBs is the scalar product of their associated 

vectors, such that co-activation or co-inactivation of the MRB in the same subtype increases 

the score by 1 while non-concordant activity in a subtype does not increase the score.

MRB Enrichment Analysis—Cancer Hallmarks include 50 gene-sets defined by the 

Broad Institute and refined/simplified by others (Drake et al., 2016; Liberzon et al., 2015). 
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To calculate downstream enrichment, we pooled genes from the regulons of each MR in 

each MR block that had a highly significantly likelihood of being a physical target (p < 0.05) 

and that were identified in at least 2 different tissues. We then assessed enrichment using the 

hypergeometric distribution between MR targets and each Hallmark’s gene set. The same 

approach was used to compute enrichment in KEGG and Reactome gene sets. Significance 

was assessed by Benjamini-Hochberg False Discovery Rate (FDR) to account for multiple 

hypothesis testing. Only significant enrichments (FDR < 0.05) are shown. To calculate 

enrichment of genomic events upstream of MR blocks, we selected the top 100 most 

significant predicted upstream genomic events, for both SNVs and functional SCNA genes, 

in subtypes with significant MRB activity (p < 10−3) (See Supplemental Data SD6). The 

hypergeometric overlap between these gene sets and the Hallmark, KEGG and Reactome 

gene sets was performed as described above. A fixed event number was chosen to avoid 

biasing the statistical analysis for MRBs with a greater number of upstream events. All 

enrichment analyses were done using the enricher function from the R clusterProfiler 

package (Yu et al., 2012).

Achilles Essentiality—Achilles shRNA DEMETER knockout scores were downloaded 

from The Broad Institute for all cell lines in CCLE for all TFs and co-TFs analyzed by 

MOMA. To identify a natural threshold to assess essentiality, Achilles dependency scores 

were re-normalized by fitting a bimodal normal mixture models using the R package 

‘mixtools’ (Benaglia et al., 2009). The normal probability density with the most positive 

(i.e., least essential) mean was set as the null-hypothesis (essentiality null hypothesis 
probability density) to assess essentiality as a z-score. This allows setting an appropriate null 

hypothesis to assess essentiality on a gene by gene basis.

For each of the 112 MOMA subtypes, we matched the MR activity vector, weighted by the 

cohort-specific MOMA score of each MR, to the protein activity profile of each CCLE cell 

line, using the ‘viperSimilarity’ algorithm included in the VIPER algorithm (Alvarez et al., 

2016), thus identifying the cell lines that best recapitulates subtype-specific MRs as possible 

dependencies. We then assessed the essentiality of each MR in cell lines that were 

significant matches (p < 0.01; Bonferroni correction) vs. those providing clear non-matches 

(p = 1) using a non-parametric rank-based Mann-Whitney-Wilcox test based on the null 

hypothesis probability density defined in the previous paragraph; significant FDRs after 

multiple hypothesis correction (Benjamini-Hochberg FDR < 0.05) were considered essential 

subtype-specific MRs. Essentiality was then stratified for each MR across the subtypes 

where that MR was statistically significantly active. To calculate statistical significance of 

the enrichment of essential genes, a null model was built by taking 106 random selections of 

MRs equivalent to the number of MRs in each tumor checkpoint and then counting the 

number of essential MRs across all subtypes. These permutations were then fitted to a 

normal distribution (Figure S5F).

METABRIC Breast cancer analysis—ARACNE was run with 100 bootstrap iterations 

and a mutual information significance threshold of p = 10−8, separately for candidate TF and 

coTF regulators, using METABRIC gene expression profile data. For each sample, protein 

activity was inferred using VIPER. Survival analysis was performed by first calculating the 
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mean VIPER activity across checkpoint proteins and binning samples into “high” and “low” 

quantiles, for each checkpoint. Clinical data was downloaded from the cBioPortal. We used 

the ‘survival’ R/CRAN package version 2.41–3 to fit a Cox proportional hazards model to 

each sample grouping, using the last known follow-up date, and testing for significant 

survival differences with that model.

MRB:2 Analysis—For each of the candidate Master Regulator proteins in MRB:2 we 

computed the rankings based on the integrated p-value of each MR-event in prostate cancer, 

as well as the cross-pancancer rankings for the same interactions. For each MR and each 

somatic event, p-values were generated as discussed in the DIGGIT methods section. A joint 

rank from these two lists was then created using an additive mean and the top 20 interactions 

were retained for each MR. These Interactions were visualized as a network graph (Figure 

6F) with the Cytoscape software package (Shannon et al., 2003). Network edges between 

MRB:2 proteins and mutation events identified in Figure 6F were included in the sample/

event plot (Figure 6E). Events with significant copy number associations were also included 

if they contained one or more samples with a mutation in that same protein. Additionally, for 

interactions with only copy number events (deletion, amplification) we computed the aREA 

association score with the average activity of MRB:2, and selected the top 10 most 

significant deleted and amplified genes, respectively, to include on the plots.

MRB:2 Validation

Lentiviral-mediated gene silencing: Silencing of SORBS3, BCAR1, MAP3K7, PTEN, 

Tp53 was achieved by lentiviral delivery of validated shRNAs. Two target-specific shRNAs 

in the pLKO.1 lentiviral vector were co-transfected in HEK-293 cells together with the 

pMD2.G and psPAX2 envelope and packaging plasmids in 1% FBS. pMD2.G and psPAX2 

were gifts from the laboratory of Didier Trono (Addgene plasmid # 12259; http://n2t.net/

addgene:12259; RRID:Addgene_12259 and Addgene plasmid # 12260; http://n2t.net/

addgene:12260; RRID:Addgene_12260) Supernatants were recovered at 24 and 48 hours 

and were later concentrated using the Lenti-X concentrator reagent (Takara #631231). The 

22Rv1 human prostate cancer cell line was spin-infected at multiplicities of infection (MOI) 

of approximately 1 in the presence of 8 μg/mL polybrene (hexadimethrine bromide), then 

incubated with virus for approximately 18 hours in a 37°C, 5% CO2 incubator. At 48h post-

infection, cells were selected with 2 μg/mL puromycin and at 96h post-transduction medium 

was changed to fresh complete medium. Efficiency of gene silencing was assessed by qPCR 

using primers for each of the targets and comparing target expression against cells 

transduced with the MISSION® Non-Target shRNA Control Transduction Particles.

Perturbation dataset VIPER analysis: To assess the effect of selected gene silencing on 

MRB:2 MRs, we generated a signature for count data from each experimental condition, 

using the control condition as a reference, and performing a t test, using 100 permutations of 

the samples (columns) as a null model. This signature and null model were inputted to the 

‘msviper’ function in the VIPER Bioconductor package, along with the TCGA Prostate 

cancer regulon. A second null model was constructed by re-running this same analysis on 

100 permutations of the column labels, and a t-test was performed between the VIPER 
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scores from each condition and this null, to assess the overall ability in reverting the 

signature for checkpoint 2 proteins.

Wound Healing Assays: Control and silenced cells where seeded at high concentration in 6 

well plates in triplicate using a silicone insert. At day 1 the silicone insert was removed and 

cell migration into the gap was monitored at 24h, 48h and 72h hours. The percent of 

migrating cells was quantified, relative to non-targeting controls, by measuring the cell-free 

area with ImageJ software. A Mann–Whitney U test was used to calculate the significance 

(P value) of the difference between the control (n=3 replicates) and knockdown cells (n= 6 

replicates; 3 for shRNA shRNA#1 and 3 for shRNA#2)

Matrigel invasion assays: 5 × 104 cells were seeded in the BD FluoroBlok inserts (BD 

Biosciences) in FBS-free media. Inserts were placed in 24-well plates containing RPMI 

supplemented with 10% FBS as chemoattractant. Invasion was monitored using a bottom-

reading fluorescence plate reader and invading cells detected using calcein AM fluorescent 

labeling. The fluorescence signal was quantified with ImageJ, and a Mann–Whitney U test 

was used to calculate the significance (p-value) of the difference between the control (n=3 

replicates) and gene-silenced cells (n= 6 replicates; 3 for shRNA shRNA#1 and 3 for 

shRNA#2).

Xenograft assays: IDIBELĹs Institutional Animal Care and Use Committee (IACUC) had 

approved all animal procedures. For analyses in vivo, 5 × 106 22Rv1 cells expressing the 

control or target shRNA lentivirus were mixed with Matrigel (1:1 vol/vol) and injected into 

the right flank of immunodeficient nude mice (Envigo, Nude-Foxn1nu); tumor growth was 

monitored with calipers until one of the experimental groups reached the maximum 1.5 cm3 

tumor volume. One-way analysis of variance (ANOVA) was used to calculate statistical 

significance (p-value) of the difference between control and silenced groups.

MRB:14 Validation

Analysis of Enzalutamide-treated LNCaP cells: Gene counts for this dataset were 

downloaded from Gene Expression Ominibus, (GEO), accession GSE130534 (Handle et al., 

2019). Analysis of the counts were performed using the DEbrowser tool (Kucukural et al., 

2019).

MRB:14 Drug Prioritization: We used a dataset of protein activity profiles of drug 

response, as inferred from a screening of 120 FDA-approved drugs and 217 late-stage 

experimental compounds (in Phase 2 and 3 trials) in the DU145 prostate cancer cell line 

(Vasciaveo et al.). Profiles were generated at 24h following perturbation with the 

compound’s IC20 concentration determined at 48h by 7-point dose response curves. This 

concentration was selected to represent the highest sub-lethal concentration that would help 

elucidate the compound mechanism of action without significantly triggering additional cell 

response mechanisms, e.g., associated with drug stress response or cell death, that would 

confound the analysis.

The aREA function from the R VIPER package 1.20.0 was used to compute a Normalized 

Enrichment Score (NES) for each drug, based on the enrichment of differentially activated 
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proteins, as inferred by VIPER, in MRB:14 MRs. NES values were converted to p-values 

and corrected for multiple hypothesis testing, using the Bonferroni method. Finally, -Log10 p 
was used as a score to prioritize drugs and statistically significant drugs, with scores greater 

than two, were considered as potential candidates to elicit MRB:14 activation.

Analysis of prostate cells and tumor biopsies: Gene expression data (counts) from two 

studies (Rajan et al., 2014; Zhang et al., 2016) were collected. Both studies were analyzed in 

the same way as follows. Counts downloaded from the GEO portal (GEO accession 

GSE48403, Rajan et al., 2014; and GSE067070, Zhang et al., 2016) were normalized using 

the variance stabilizing transformation function available from the DESeq2 package 1.26.0 

in R. The metaVIPER approach (Ding et al., 2018), available from the R VIPER package, 

was then used to generate two interactomes from the TCGA PRAD cohort (this manuscript) 

and the 2015 SU2C metastatic Castration Resistant Prostate Cancer (mCRPC) cohort 

(Robinson et al., 2015). Regulons were pruned to the top 100 targets with the highest 

likelihood using the pruneRegulon function of the VIPER package. Gene expression 

signatures for each individual sample were computed using the method ttest available from 

the viper function. Enrichment analysis on VIPER-inferred protein activity signatures was 

computed and resultant NES scores used. Clustering of labeled samples due to similar 

activation profiles of MRB:14 on patient samples was performed using the hierarchical 

clustering algorithm available from the ComplexHeatmap package.

BRCA and BLCA enrichment in MRB:14 activity: Data for PAM50 annotation and 

luminal/basal subtyping from two studies on TCGA BRCA (Ciriello et al., 2015) and BLCA 

(Robertson et al., 2017) were downloaded. Protein activity profiles for the TCGA BRCA 

and BLCA cohorts were computed and enrichment scores for MRB:2 and MRB:14 derived. 

MRB:2, which is a proliferation-associated block (described above), was used as a control. 

Patients were sorted based on activity NES scores to show correlation between high 

MRB:14 activity and luminal subtypes as determined by published PAM50 classifiers.

Additional reagents: Small molecule compounds were purchased from Selleck Chemicals 

(Houston, TX). Culture inserts for migration studies were from iBidi (Gräfelfing, Germany, 

#80209).

Western Blotting: Cell pellets were lysed in buffer composed as follows: 50mM Tris-HCl, 

pH 7.5; 250 mM NaCl; 50 mM NaF; 10 mM Na-pyrophosphate; 2.5mM EDTA; 2.5 mM 

EGTA; 2 mM sodium orthovanadate; 2% CHAPS; 0.5% Triton-X100; Phosphatase cocktail 

3 from Sigma at 1:15 dilution; Protease cocktail (Pierce) 1:15 dilution. After SDS-PAGE 

separation of equal amounts (~30 ug) of protein lysate from each sample, proteins were 

transferred to PVDF membranes and then probed with antibodies using standard procedures. 

Primary antibodies were as follows: AR (Cell Signaling Technology, # 5153S); GRHL2 

(Millipore Sigma, #HPA004820); SPDEF (Proteintech, #11467–1-AP); γ-catenin/JUP (BD 

Biosciences, #610253); CDH1 (BD Biosciences, #610404), diluted 1:1000 each.

Wound Healing Assays: These assays were performed using manufactured cell culture 

inserts with a defined cell-free gap (iBidi) in 6-well plates. DU145 cells were plated in the 

inserts at 4 × 105 cells per ml (70 uL per channel). At 24 hrs after plating cells images of the 
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gap were taken (T = 0) and medium was replaced with medium containing the drugs, or 

DMSO as vehicle control. All drugs were tested at their EC50 concentration, 7.2 μM, 1.2 

μM, 44 nM, and 8.77 μM for fedratinib, pevonedistat, lexibulin, and ENMD-2076, 

respectively. Negative control drugs were also tested at their EC50 concentration, 1.65 μM, 

3.5 μM, and 28nM for triapine, dorsomorphin, and raltitrexed, respectively. After 24 hrs (T = 

24), additional images (n ≥ 3) were taken along the full length of the gap for each treatment. 

Images were analyzed using the MRI Wound Healing Tool macro (http://dev.mri.cnrs.fr/

projects/imagej-macros/wiki/Wound_Healing_Tool) installed in ImageJ. Total gap area was 

calculated per image and averaged across images for a given sample and converted to % gap 

remaining (see Figure 7H, I legends).

Quantification and Statistical Analysis—Analysis was conducted in R (R-Core-Team, 

2020) and figures were produced using the ggplot2 and Complex Heatmap packages (Gu et 

al., 2016; Wickham, 2016). Graphical abstract was created using BioRender.com. Statistical 

parameters and tests are reported in the main text, Figures, Figure legends and Tables. 

Whenever appropriate, p values were adjusted for multiple comparisons using qvalue 

package in R (Storey et al., 2020). The section entitled “Method Details” describes the 

statistical analyses performed in conjunction with each step. Data are judged to be 

statistically significant when p < 0.05 in applied statistical analyses unless otherwise noted 

that a higher threshold was used.

Additional Resources—Interactive MOMA web application: http://www.mr-graph.org/ 

MOMA R package: https://bioconductor.org/packages/release/bioc/html/MOMA.html

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Glossary

Transcriptional State
A gene expression vector describing the position of a cancer cell in the N-dimensional space 

(transcriptional state space) representing all the possible implementation of the cell 

transcriptome

Transcriptional Identity
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Transcriptional states can be highly transient. We thus use the term transcriptional identity to 

indicate high probability density regions in the transcriptional state space where cells persist 

over a long time period and are characterized by similar phenotypic properties. This 

terminology encompasses in a more precise way the notion of “cell type,” while providing 

finer granularity in the context of what may have been considered the same cell type. Tumor 

subtypes, in particular, represent relevant tumor cell identity implementations in the context 

of cancer

ADT
Androgen Deprivation Therapy

aQTL
activity Quantitative Trait Locus

ChIP
Chromatin Immunoprecipitation

Co-TF
co-Transcription Factor

CCLE
Cancer Cell Line Encyclopedia

CRS
Cluster Reliability Score

EMT
Epithelial Mesenchymal Transition

FDA
Food and Drug Administration

FDR
False Discovery Rate computed by the Benjamini-Hochberg method

FET
Fisher’s Exact Test

FUS
Gene Fusion Event

GO
Gene Ontology

GS
Gleason Score

METABRIC
Molecular Taxonomy of Breast Cancer International Consortium
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MR
Master Regulator

MRB
Master Regulator Block

MSI
Microsatellite Instability

NES
Normalized Enrichment Score

PAM
Partitioning Around Medioids

PAM50
Prediction Analysis of Microarray 50

RNAi
RNA interference

SCNA
Somatic Copy Number Alteration

SNV
Single Nucleotide Variant

SS
Silhouette Score

TCGA
The Cancer Genome Atlas

TF
Transcription Factor

ANOVA
Analysis of Variance

ARACNe
Algorithm for the Reconstruction of Accurate Cellular Networks

CHASM
Cancer-specific High-throughput Annotation of Somatic Mutations

CINDy
Conditional Inference of Network Dynamics

GISTIC
Genomic Identification of Significant Targets in Cancer
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DIGGIT
Driver-gene Inference by Genetical-Genomic Information Theory

MINDy
Modulator Inference by Network Dynamics

MOMA
Multi-Omics Master-Regulator Analysis

PRADA
Pipeline for RNA-Sequencing Data Analysis

PrePPI
Predicting Protein-Protein Interactions

VIPER
Virtual Proteomics by Enriched Regulon analysis
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Highlights

• Integrative genomic analysis of 20 TCGA Cohorts identifies 112 distinct 

tumor subtypes

• 407 Master Regulators canalize the effects of mutations to implement cancer 

states

• 24 conserved Master Regulator blocks regulate cancer hallmarks across 

tumors
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Figure 1. Conceptual overview of the algorithm to find sample “checkpoints” and checkpoint 
blocks.
(A) Conceptual diagram illustrating the “bottleneck hypothesis”. Master regulator (MR) 

proteins (e.g., MR1 – MR12) integrate the effect of genomic alterations (small red spheres) 

and aberrant paracrine and endocrine signals (small blue sphere), in upstream pathway 

proteins (e.g., P1 – P5). Furthermore, they regulate the “downstream” transcriptional identity 

of the cell—shown as a gene expression signature with genes ranked from lowest (blue) to 

highest (red) expression—via their activated and repressed targets (red and blue edges, 

respectively). Passenger alterations (small black sphere) and alterations not affecting the 
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cell’s transcriptional identity occur in proteins (e.g., P6) whose downstream effectors (e.g., 

P7) do not affect MR activity. MR proteins form tightly autoregulated, modular structures 

(Tumor Checkpoints) responsible for homeostatic control of the cancer cell’s transcriptional 

identity. (B) Tumor checkpoints comprise multiple sub-modular structures, termed MR-

Blocks (MRBs), which regulate specific tumor hallmarks and are recurrently detected across 

different subtypes. As an illustrative example a tumor checkpoint comprising three different 

MRBs is shown. (C) Conceptual workflow diagram of the MOMA algorithm.

See also Figure S1.
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Figure 2. Subtypes inference by network-based integration of gene expression and mutational 
profile data.
(A) Cohort subtypes identified by MOMA, ranked from the lowest (UCEC) to the highest 

(COAD) number of optimal subtypes (x-axis). Solution optimality is shown by size and 

color of the dots, with larger, redder dots representing higher average CRS. The selected 

solution is marked by a black cross (see STAR Methods for handling ties). Statistical 

significance of survival separation between the best and worst clusters, by Kaplan Meier 

analysis, is shown next to the blue bars that represent the -Log10 p. The dashed line 

represents p = 0.05. (B) Violin plots representing the Silhouette Score probability density (y-

axis) for each of the 20 TCGA tissue types (x-axis) for the optimal clustering solution, as 

inferred by either MR-based (blue) or expression-based (red) cluster analysis. A dotted red 

line indicates the standard statistical significance threshold (SS = 0.25). (C) MR-based 

clustering heatmap for the TCGA kidney clear cell carcinoma cohort (KIRC). Rows 

represent Tumor Checkpoint MR proteins, while columns represent individual samples. 

Color scale is proportional to protein activity (red activated; blue inactivated). (D) Cox-

proportional hazard analysis of patient survival in subtype S5 (red line) vs. S3 (green line) (p 

= 1.1×10−16).

See also Figure S2 and Table S1.
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Figure 3. Genomic saturation analysis of candidate master regulators across all subtypes.
(A) Individual curves show the average fraction of functional genomic events in each sample 

identified upstream of the top n MOMA-inferred MR proteins for each subtype, as n 
increases from 1 to 100. Saturation curves produced by the null-hypothesis—i.e., n 
randomly selected MRs from 1,253 non-statistically significant regulatory proteins (i.e., the 

bottom half of all MOMA-ranked proteins)—are shown in gray. Cohorts are sorted in 

decreasing order of the fraction of genetic events accounted for by their Tumor Checkpoint 

MRs. For visual clarity, the last 5 cohorts are shown on an expanded y-axis scale (0–50%). 
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(B) This panel shows the 37 most recurrently activated MR proteins, which canalize genetic 

alteration effects in n ≥ 15 MOMA-inferred subtypes (black cells), based on saturation 

analysis. Rows represent MR proteins clustered by their subtype-specific activity, to 

highlight MRs co-activated in the same clusters (e.g. FOXM1 and CENPF), while MOMA-

inferred subtypes are shown in the columns, grouped by tumor type. The recurrence rank of 

each MR, based on the number of subtypes in which it is aberrantly activated, is shown to 

the left of the matrix while the number of subtypes is shown on the right as a bar chart. See 

also Figure S3, Tables S2 and S6.
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Figure 4. Genomic Alterations Dysregulating COAD Tumor Checkpoints.
(A – D) OncoPrint plots (Gu et al., 2016) showing genomic alterations in pathways upstream 

of subtypes S2/S3 (MSIHigh) and S5/S6 (MSS) in COAD. Only focal SCNA events are 

shown. Horizontal histograms and percent numbers show the fraction of samples harboring 

the specific event type. Vertical histograms show the number of events detected in each 

sample. For SCNAs, each row corresponds to an independent cytoband, identified by a 

functionally established oncoprotein/tumor suppressor (STAR methods). Blue labels 

represent genetic alterations detected only in one subtype but not the other (i.e., S2 vs. S3 or 
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S5 vs. S6), orange labels show alterations disproportionately represented across subtypes, 

while red ones show mismatch repair genes in S2. (E) OncoPrint plot of S5 alterations, 

including those in Regional (i.e., non-focal) SCNA, with most affected events shown with a 

red label. (F) Legend for genomic event types. (G – L) Genomic saturation curves for 

COAD subtypes S2, S3, S5, and S6. Vertical dashed line indicates the saturation threshold, 

see Figure 3A for detailed description.

See also Table S6.

Paull et al. Page 41

Cell. Author manuscript; available in PMC 2022 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. MRBs are recurrently activated in cancer and regulate established tumor hallmarks.
(A) Heatmap showing statistically significantly activated (ON) and inactivated (OFF) MRBs 

for each MOMA-inferred transcriptional subtype (p < 10−3), grouped by tumor type. Color 

saturation is proportional to statistical significance (Average protein activity of MRB MRs), 

see color-scale legend. Breast cancer (BRCA) and melanoma (SKCM) subtypes are marked 

to highlight differential activation of MRB:7 and 24, respectively, also highlighted. 

Horizontal histograms show total number of subtypes with significantly activated (red) and 

inactivated (blue) blocks, numerical values are also shown for clarity. (B) Enrichment of 

Tumor Hallmarks in MRB MRs and their transcriptional targets (False Discovery Rate, FDR 

< 0.05, by Benjamini-Hochberg) identifies hallmarks significantly associated with each 

MRB. Order is based on co-clustering across both rows and columns to highlight related 

hallmarks and MRB co-activation. Horizontal histograms summarize the total number of 

enriched hallmarks per block. (C) MRB:7 activity stratifies survival in the Metabric breast 

cancer cohort (p = 3.5×10−8; by Kaplan Meier). (D) MRB:24 activity significantly stratifies 

survival in the TCGA melanoma cohort (p < 1.9×10−5). In contrast to MRB:7, higher 

activity of MRB:24 is associated with better outcome, consistent with its role as a marker of 

inflammation and immune sensing (Figure 5B).

See also Figures S4, S5, S6 and Table S4.
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Figure 6. MRB 2 and its upstream genetic alterations drive the most aggressive PRAD subtype.
(A) Heatmap showing MR-based clustering of the TCGA prostate cancer cohort (PRAD) 

into 7 molecularly-distinct subtypes, as described in Figure 2C. (B) Gleason Score 

frequency stratification by subtype. (C) Biochemical recurrence status by subtype. (D) 
Enrichment of genes in MRB:2 hallmark categories in genes differentially expressed 

between S1 and S6 subtypes, sorted by Student’s t-test analysis. Genes in each hallmark are 

shown as black ticks and statistical significance is computed by GSEA analysis (p < 

2.2×10−16, i.e., below minimum computable significance). (E) Genomic events significantly 

associated with MRB:2 activity. Samples (columns) are sorted by MRB:2 activity (bottom 

heatmap) and presence of a specific genomic event is shown as vertical tick-marks. 

Functional SCNA events for genes that also harbor mutations in the cohort are marked with 

a brown square. Those involved in protein-protein interactions with MR proteins, based on 

PrePPI analysis, are marked with a green square. Events are ranked based on their subtype 

frequency. The top integrated aQTL, CINDy and PrePPI association p-value (using Fisher’s 

method) for each event with a MRB:2 MR is shown on the right side. The five genes 

selected for experimental validation are highlighted in red. We also indicate the subtype 

designation per sample, as shown as tick marks above the heatmap. (F) Network diagram of 

MRB:2 proteins with edges representing a select set of DIGGIT-inferred alteration-MR 
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interactions—including for deletions (blue), mutations (green), and amplification events 

(red)—shown as bundled edges. Green-circled events were selected for experimental follow-

up.

See also Table S3.
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Figure 7. Functional validation of MRB:2 and 14.
(A) Conceptual diagram of the functional validation assays. Androgen independent 22Rv1 

prostate cancer cells were infected with lentiviral non-targeting control vectors and vectors 

containing shRNA hairpins to silence genes harboring predicted, recurrent genomic events 

upstream of MRB:2. Stably silenced clones were then used to perform both in vitro and in in 
vivo assays. (B) VIPER analysis of 8 MRB core-set proteins (rows) in each silencing 

condition (columns). Significance of overall MRB:2 differential activity is shown above. (C) 
Migration of 22Rv1 cells was assessed in wound healing assays at 24 (control), 48, and 72 
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hours after scratching a confluent culture of control and silenced 22Rv1, in triplicate. (D) 
Quantification of the migration assay. Bars indicate the migration percentage (gap area 

compared to T = 24h) ± standard error of the mean (SEM). P-values from the two hairpins 

were integrated by Fisher’s method (* p < 0.05, ** p < 0.001, by 1-tail Student’s t-test). (E) 
Quantification of Boyden chamber invasion assays in triplicate. Bars represent the 

proportion of invading cells ± SEM. P-values from the two hairpins were integrated by 

Fisher’s method (** p < 0.001, 1-tail t-test). (F) Functional, in vivo validation of 

tumorigenic effects. Tumor growth curves, up to 35 days, are shown for mice engrafted with 

control and silenced 22Rv1 cells. In vivo assays where performed in triplicate; * p < 0.05 

and ** p < 0.001, by 2-tail, two-way ANOVA. (G) Heatmap showing the effect of selected 

drug perturbations (columns) on the activity of MRB:14 MR proteins (rows) at 24h. Drug 

names are followed by their EC20 concentration, based on dose response curves. The color 

bar on top of the heatmap indicates the significance of the average MRB:14 differential 

activity. (H) Modified migration assay of DU145 cells after drug treatment to activate 

MRB:14, assessed at 24h after drug treatment. (I) Average gap area (gap remaining) 

quantitation by integrating measurements of ≥ 3 images along the gap, after subtracting any 

residual gap area in DMSO-treated cells. Percentage gap remaining is calculated with 

respect to images at 0h time.

See also Figure S7 and Table S5.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit Anti-GRHL2 Millipore Sigma Cat#HPA004820; RRID: AB_1857928

Rabbit Anti-SPDEF Proteintech Cat#11467–1-AP; RRID: AB_2877765

Rabbit-Anti AR Cell Signaling Tech. Cat#5153S; RRID: AB_10691711

Mouse Anti-g-catenin (JUP) BD Biosciences Cat#610253; RRID: AB_397648

Mouse Anti-E-Cadherin (CDH1) BD Biosciences Cat#610404; RRID: AB_397786

Chemicals, Peptides, and Recombinant Proteins

Fedratinib Selleck Chemicals Cat#S2736

Pevonedistat Selleck Chemicals Cat#S7109

Lexibulin Selleck Chemicals Cat#S2195

ENMD-2076 Selleck Chemicals Cat#S1181

Triapine Selleck Chemicals Cat#S7470

Dorsomorphin Selleck Chemicals Cat#S7306

Raltiterxed Selleck Chemicals Cat#S1192

Deposited Data

TCGA Sample Data Broad Institute https://gdac.broadinstitute.org/

PRADA Gene Fusion Data The Jackson Laboratory https://www.tumorfusions.org/

Achilles shRNA Essentiality Data DepMap; Broad Institute https://depmap.org/portal/achilles/

METABRIC Breast Cancer Patient Data cBioPortal; Curtis et al., 2012 https://www.cbioportal.org/study/summary?
id=brca_metabric

Pancancer Driver Genes Bailey et al., 2018 https://doi.org/10.1016/j.cell.2018.02.060

Network of Cancer Genes (NCG) Repana et al., 2019 http://ncg.kcl.ac.uk/

Molecular Signatures Database (MSigDB) UC San Diego; Broad Institute https://www.gsea-msigdb.org/gsea/msigdb/index.jsp

Gene Ontology Gene Ontology Consortium http://geneontology.org

Enzalutamide-treated LNCaP cells Handle et al., 2019 GEO: GSE130534

Analysis of prostate cells and tumor 
biopsies

Rajan et al., 2014 GEO: GSE48403

Analysis of prostate cells and tumor 
biopsies

Zhang et al., 2016 GEO: GSE67070

Experimental Models: Cell Lines

LNCap clone FGC ATCC Cat#ATCC® CRL-1740

DU 145 ATCC Cat#ATCC® HTB-81

22Rv1 ATCC Cat#ATCC® CRL-2505

PC-3 ATCC Cat#ATCC® CRL-1435

293 [HEK293] ATCC Cat#ATCC® CRL-1573

Experimental Models: Organisms/Strains
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REAGENT or RESOURCE SOURCE IDENTIFIER

Immunodeficient Athymic Nude mice - 
Foxn1nu

Envigo Model# Hsd:Athymic Nude-Foxn1nu-069

Oligonucleotides: shRNA Clones

See Table S5 for clones

Recombinant DNA

pMD2.G Laboratory of Didier Trono via 
Addgene

Addgene plasmid #12259

psPAX2 Laboratory of Didier Trono via 
Addgene

Addgene plasmid #12260

Software and Algorithms

MOMA Web application This paper http://www.mr-graph.org/

MOMA Bioconductor Package This paper https://bioconductor.org/packages/release/bioc/html/
MOMA.html

R for Statistical Programming R Core Team, 2020 https://www.R-project.org/

Complex Heatmap Gu etal., 2016 https://doi.org/10.1093/bioinformatics/btw313

Q-Value Estimation for FDR Storey et al., 2020 http://github.com/jdstorey/qvalue

ggplot2: Graphics for Data Analysis Wickham et al., 2016 https://ggplot2.tidyverse.org

VIPER R package Alvarez et al., 2016 https://doi.org/10.18129/B9.bioc.viper

mixtools R package Benaglia et al., 2009 https://www.jstatsoft.org/article/view/v032i06

survival R package Therneau and Grambsch, 2000 https://CRAN.R-project.org/package=survival

DEBrowser Kucukural et al., 2019 https://debrowser.umassmed.edu/

clusterProfiler R package Yu etal., 2012 http://yulab-smu.top/clusterProfiler-book/

MutSig2CV Lawrence et al., 2013 https://software.broadinstitute.org/cancer/cga/mutsig

Mutation Assessor Reva et al., 2011 http://mutationassessor.org/r3/

CHASM Carter et al., 2009 https://wiki.chasmsoftware.org

GISTIC 2.0 Mermel et al., 2011 https://doi.org/10.1186/gb-2011–12-4-r41

PrePPI Zhang et al., 2012 https://honiglab.c2b2.columbia.edu/PrePPI/index.html

HumanNet v2 Hwang et al., 2019 https://www.inetbio.org/humannet/

Multinet Khurana et al., 2013 https://doi.org/10.1371/journal.pcbi.1002886

Cytoscape Shannon et al., 2003 https://cytoscape.org/
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