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Abstract

Purpose of review—The aim of this review is to summarize recent advances on development of 

in vivo preclinical models of adrenocortical carcinoma (ACC).

Recent findings—Significant progress has been achieved in the underlying molecular 

mechanisms of adrenocortical tumorigenesis over the last decade, and recent comprehensive 

profiling analysis of ACC tumors identified several genetic and molecular drivers of this disease. 

Therapeutic breakthroughs, however, have been limited because of the lack of preclinical models 

recapitulating the molecular features and heterogeneity of the tumors. Recent publications on 

genetically engineered mouse models and development of patient-derived ACC xenografts in both 

nude mice and humanized mice now provide researchers with novel tools to explore therapeutic 

targets in the context of heterogeneity and tumor microenvironment in human ACC.

Summary—We review current in-vivo models of ACC and discuss potential therapeutic 

opportunities that have emerged from these studies.
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INTRODUCTION

Adrenocortical tumors present with the spectrum of cell growth, transformation, and 

tumorigenesis ranging from benign disease including adrenocortical hyperplasia and 

adenoma (ACA) to malignant tumors such as adrenocortical carcinoma (ACC) [1,2]. 

Although ACAs are common (up to 4% of the population with age) [3], ACCs are rare and 

aggressive tumors with an estimated incidence of 0.5–2 cases/million per year [4]. Surgery is 
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the first-line therapy for patients with ACC; however, relapse or persistent disease are 

frequent as the majority of patients present with locally invasive or metastatic disease. 

Patients with advanced disease are treated with cytotoxic etoposide, doxorubicin, and 

cisplatin (EDP) chemotherapy in combination with mitotane, an adrenolytic, with limited 

responses [5]. There are no targeted therapeutic alternatives for patients with ACC and given 

the dismal 5 years survival rate of ~35%, management of patients with ACC remains a 

significant challenge [5,6▪▪].

In other types of human malignancies, preclinical research models, including in vitro cell 

lines and in vivo mouse models, have allowed researchers to examine the molecular and 

cellular underpinnings of a disease. Although appropriate to dissect the signaling pathways 

and molecular mechanisms of particular driver mutations or gene targets, in vitro cell line 

models often fail to fully recapitulate patient tumor characteristics and tumor 

microenvironment, which can lead to discordance between laboratory results and clinical 

outcomes. Similar to in vitro models, cell line-derived xenograft mouse models (Fig. 1A), 

which have been the workhorse of tumor biology research, are characterized by a lack of 

tumor heterogeneity and patient-specific genetic alternations to fully recapitulate the primary 

tumor. In recent years, patient-derived xenograft (PDX; Fig. 1B) and genetically engineered 

mouse models (GEMM; Fig. 2) have gained popularity because of their retention of tumor 

heterogeneity, microenvironment and many genetic, molecular, and histopathological traits. 

To date, several mouse models of benign adrenocortical tumors (hyperplasias or adenomas) 

have been generated, which partly recapitulate characteristics of human adrenocortical 

tumors [1,2]. Development of mouse models of ACC have been even more challenging 

given the rarity of the disease and heterogeneity of the tumors.

Pan-genomic The Cancer Genome Atlas (TCGA) characterization of ACCs reported three 

ACC tumor subtypes with distinct transcriptomic profiles, somatic alterations, whole 

genome doubling (WGD) and CpG island methylator signatures (CIMP), corresponding to 

different clinical phenotypes [7,8]. The most common somatic variants reported in ACCs 

involved gene alterations in CTNNB1, TP53, and CDKN2A, followed by RB1, MEN1, 
ZNRF3, and TERT. At the transcript level, nearly all ACC tumors have overexpression of 

IGF2 [6▪▪,8,9]. Considering the genetic variability, no single model can replicate the 

molecular heterogeneity of ACC; thus, multiple models will need to be developed and 

applied to gain comprehensive understanding of the disease.

Over the last decade several genetically engineered mouse models of p53 pathway 

inactivation and Wnt/β catenin signaling activation have been generated but few simulate 

human ACC tumorigenesis [10]. Alternatively, xenograft models using H295R cells have 

been used to test novel therapeutics with modest success.

In this review, we will briefly discuss the previously genetically engineered mouse models 

and xenograft models of ACC and provide an update on the most recent model 

developments in the ACC field.

Kar et al. Page 2

Curr Opin Endocrinol Diabetes Obes. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PREVIOUS GENETICALLY ENGINEERED MOUSE MODELS AND 

XENOGRAFTS USED IN MODELING ADRENOCORTICAL CARCINOMA

Because overexpression of IGF2 and activation of Wnt/β catenin signaling pathway are the 

most frequent alternations in ACC tumors [9,11], many of the early genetically engineered 

mouse models (GEMM) were focused on these changes [7–9,12]. Despite creation of 

models with high basal levels of IGF2 and mildly increased proliferation, neither mice 

models with IGF2 overexpression under the phosphoenol pyruvate carboxykinase (PEPCK) 

promoter or adrenal cortex-specific (Adigf2) mice developed adrenocortical carcinomas 

[13,14]. These data demonstrated that IGF2 is less likely an oncogenic driver of ACC tumors 

and may instead be required for tumor maintenance and/or progression. To model initiation 

events of ACC, mouse models were generated with either alteration in the β-catenin gene 

itself or one of its negative regulators, such as APC [15,16]. The ΔCat mice were generated 

by floxing out the third exon of the β-catenin gene via steroidogenic cell-specific expression 

of Cre recombinase in the adrenal cortex [15–17]. Excising the third exon prevented β-

catenin degradation and led to constitutive activation of β-catenin target genes mimicking 

Wnt signaling. Most of ΔCat mice developed adrenal hyperplasia and dysplasia with older 

mice developing benign aldosterone secreting tumors with certain malignant characteristics 

such as neovascularization and regional invasion [15]. Another approach to target Wnt 

activation utilized APC knockout mouse models, where exon 14 of APC was deleted and 

targeted with the steroidogenic specific Sf-1 Cre recombinase resulting in β-catenin 

stabilization in the adrenal cortex [12]. These mice, similar to the ΔCat model, developed 

hyperplasia and microscopic adenomas, but no malignant transformation. Additional 

GEMM models where ΔCat was crossed with IGF2 overexpressing mice [14] or where APC 
knockout mice were crossed with animals bearing a loss of imprinting at the Igf2/H19 locus 

to cause IGF2 overexpression [12] developed severe adrenocortical hyperplasia or 

adenomas, with the latter producing one ACC.

Several ACC cell line xenografts and PDX have also been developed to study ACC [18,19]. 

Historically, most utilized the ACC cell line NCI-H295R (Fig. 1A) [19]. Such xenografts, 

displayed clone-dependent heterogeneity [18]. In contrast to cell line-derived xenografts, 

most PDX in other malignancies retain patient tumor characteristics and would have 

advantages for our goal to understand ACC pathophysiology. The first PDX of pediatric 

ACC (SJACC3) was developed by implantation of an adrenal mass collected from a 11-year-

old patient bearing a germline TP53 mutation (G245C) [20]. The first adult ACC PDX 

model MUC-1 was established, along with a corresponding cell line, derived from a 

metastatic ACC neck lesion [18]. In the initial reports, these models were used to evaluate 

the effectiveness of several cytotoxic chemotherapies as proof-of concept studies [18,20,21].

RECENT UPDATES IN GENETICALLY ENGINEERED MICE MODELS OF 

ADRENOCORTICAL CARCINOMA

In addition to mutations in the Wnt signaling pathway, ACCs are characterized by frequent 

alterations in the TP53 gene/pathway [7,8,22]. About 25–30% of sporadic ACCs in adults 

carry somatic mutation or loss of heterozygosity at the TP53 locus [23,24]. To date, no 
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adrenal-specific models of TP53 loss has been published and no ACC tumor formation has 

been reported in any other mouse models of TP53 dysfunction. The relevance of loss of 

TP53-dependent checkpoint control in ACC development was first studied in adrenal 

insufficient Acd (mutation in adrenal dysplasia gene) mice model with a TP53 null 

background [25,26]. In a more relevant transgenic mouse model, p53 ablation was modeled 

by adrenal targeting of the Simian virus 40 (SV40) large T antigen (TAg) expressed under 

the control of the adrenal cortex-specific Akr1b7 promoter [27]. In this model, 100% of 

founder males developed bilateral adrenal tumors at the age of 8 months that displayed 

stage-specific malignant characteristics from 2 to 8 months. High-grade malignancy was 

observed after 6 months of age and was characterized by a high Ki-67 index, overexpression 

of cyclin E, and histone methyl transferase EZH2 with loss of paternally imprinted H19 and 

evidence of distant metastasis to lung and liver. These tumors also demonstrated evidence 

for spontaneous Wnt/β catenin pathway activation [27]. Activation of the mTOR pathway 

was confirmed as an early step in the tumorigenic process, a pathway often found activated 

in a cohort of patients with ACC. At 8 months of age, all tumors were functional and 

secreted excess corticosterone [27]. Recently, a mouse model targeting ZNRF3, a negative 

regulator of the Wnt signaling, has been reported [28▪▪]. Large-scale ACC genomic studies 

have identified as much as 20% genetic alterations in ZNRF3 [7,22]. ZNRF3 has been 

identified as a transmembrane E3 ubiquitin ligase responsible for degradation of the frizzled 

receptor (FZD) and therefore subsequent brake in Wnt signaling [29,30]. With an aim to 

elucidate the effect of loss of ZNRF3 on adrenal cortex homoeostasis, Basham et al. [28▪▪] 

developed ZNRF3 knockout mice by crossing a SF1-Cre mice with Znrf3-floxed mice, 

resulting in a mice lacking functional ZNRF3 protein in the adrenal cortex. These mice 

showed marked adrenal hyperplasia at 6 weeks of age because of proliferative expansion of 

the zona fasciculata and a loss of the normal Wnt/β-catenin gradient. Although these mice 

did not demonstrate progression from hyperplasia to adrenocortical carcinoma, this is 

clinically relevant model recapitulating loss of ZNNRF3 as one of the most common genetic 

alterations in ACC. Future characterization of this model is likely to give us a better 

understanding of the disease pathophysiology.

UPDATE ON PATIENT-DERIVED XENOGRAFT MODEL OF 

ADRENOCORTICAL CARCINOMA

Since the initial studies to establish PDX models of human tumorigenesis [31], the 

development and application of PDX models in cancer research continue to grow [32–36]. 

Given the sporadic nature of ACC, PDX mice provide a unique opportunity to understand 

molecular heterogeneity underlying the disease. We have recently characterized two new 

PDX models, CU-ACC1 and CU-ACC2, via subcutaneous implantation of patient tumor 

tissues in athymic nu/nu mice models (Fig. 1B) [37▪]. CU-ACC1 was derived from a 

sporadic ACC metastasis to the perinephric region and CU-ACC2 was derived from an ACC 

liver metastasis in a patient with Lynch syndrome characterized by the germline deletion of 

exons 1–6 in the mismatch repair gene MSH2. The PDXs were extensively characterized 

and adrenocortical origin was confirmed with expression adrenocortical markers including 

inhibin alpha and steroidogenic factor 1 (SF-1). Immunohistological analysis of the PDXs 

tumor tissue was similar to the matching patients’ tumor characteristics. 
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Immunohistochemistry revealed loss of MSH2 in the CU-ACC2 PDX tissues consistent with 

patient tumor characteristic. Whole exomic sequencing of the patient tumors and the PDX 

models identified a known ACC-associated mutation in CTNNB1 (p.G34R) in CU-ACC1 

and a TP53 (G245S) mutation in CU-ACC2. In-silico predictions for both mutations were 

damaging and have been reported in other human cancers [38,39]. Global transcriptome 

profiling was performed in both PDXs and matching human tumors and revealed clustering 

of matching tissues and transcriptome expression characteristic for ACC. Corresponding cell 

lines from the PDX models were developed, and have been utilized by ourselves and others 

to explore novel therapeutic targeted therapy in ACC [37▪,40▪,41▪].

DEVELOPMENT OF HUMANIZED MICE MODEL OF ADRENOCORTICAL 

CARCINOMA

With the current advances in immunotherapeutic modalities and their effectiveness in several 

malignancies, studying unique human responses to anti-bodies targeted against tumor-

associated proteins or immune checkpoint inhibitors have become critical [42]. Humanized 

mice models with immune-deficient mice engrafted with human cells or tissues have served 

as a preclinical conduit for several of these research areas. Although most ACCs are 

sporadic, a subset of ACC tumors harbor either germline or somatic mutations in DNA 

mismatch repair genes, or mismatch repair components [43]. Recent approval of the anti-

PD1 inhibitor, pembrolizumab, for mismatch repair deficient or high microsatellite 

instability solid tumors [44], has advanced therapeutic possibilities for subset of patients 

with ACC. We recently reported the development of the first humanized ACC PDX mouse 

model, and analyzed the effects of pembrolizumab on tumor growth and changes in 

infiltrating lymphocytes and immune cells in the peripheral lymph organs in comparison to 

changes in immune markers of the matching patient with advanced ACC [45▪].

The humanized mouse model was created by intravenous or intrahepatic injection of CD34+ 

human umbilical chord blood cells into sublethally irradiated newborn BRGs (BALB/c-

Rag2null Il2rγnull SirpaNOD) pups [45▪]. The human chimerism was confirmed at week 19 

and a previously established PDX from a liver metastasis of a Lynch patient (CU-ACC2-

M2B PDX) was implanted in the humanized mice to develop the humanized CU-ACC2-

M2B PDX (Fig. 1C). Although this model is specific to the T-cell population with an overall 

low abundancy of human myeloid, monocytes, or dendritic cells, it provided an 

comprehensive analyses of the human immune system activating and inhibitory proteins, and 

expression of inflammatory factors with establishing a first ACC humanized model. These 

type of models can now be used for evaluating response to immunotherapy alone or in 

combination with mitotane or novel therapeutics in different types of ACC tumors [45▪].

USING IN-VIVO RESPONSES TO MODEL THERAPEUTIC ALTERNATIVES IN 

ADRENOCORTICAL CARCINOMA

There are limited therapeutic options for patients with progressive ACC, with mitotane as 

the only FDA approved modality. The recent development of new in-vivo ACC models 

present opportunities for testing of potential therapeutic alternatives. Using the AdTAg 
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model of spontaneous ACC, the efficacy of rapamycin dependent mTORC1 inhibition was 

tested in a three week short-term or a 3 months long-term treatment. In line with effects on 

tumor response both with short-term and long-term treatment, significantly induced 

apoptosis in tumor cells, reduced their proliferation and normalized cortisol level [27]. The 

AdTAg model belongs to the more aggressive subclass of ACC tumors identified through 

transcriptional signatures. Incidentally this group is also marked by higher expression of 

mitotic cell-cycle genes and aneuploidy.

Given that gene expression analysis in recently developed CU-ACC1 and CU-ACC2 PDX 

models show similar upregulation of genes involved in cell-cycle pathway, several 

upregulated mitotic kinases were targeted using available small molecule inhibitors in this 

recently developed preclinical models of sporadic ACC [40▪,41▪]. Targeting the mitotic 

kinase PBK in in vitro and in vivo models of ACC inhibited many of the malignant 

properties, induced apoptosis and colony formation, and significantly reduced ACC 

tumorigenic growth [41▪]. Similarly, targeting MELK, another mitotic kinase, caused 

apoptosis and inhibited proliferation and clonogenicity in in vitro assays using multiple ACC 

cell lines, and in newly established PDX models [40▪,46▪]. More recently, testing the effects 

of pembrolizumab in humanized mice models have led to a prototype that can be effectively 

used to further future studies matching PDX response to that of patients with ACC with a 

similar molecular signature. Clinical observations suggest that mitotane treatment has 

variable outcomes in patients with ACC and possibly affects the tumor microenvironment. In 

our recently published clinical study, limited patient data suggest a benefit of 

pembrolizumab in combination with mitotane in patients with ACC irrespective of the 

microsatellite stability or mismatch repair status [47▪]. Further progress with humanized 

ACC PDX models will allow preclinical evaluation of such combinatorial therapies and 

enhance understanding of ACC pathophysiology and microenvironment.

CONCLUSION

In the field of preclinical and co-clinical studies, in vivo genetically engineered models and 

PDX models are commonly considered superior to cell line-derived xenograft, which lacks 

original tumor heterogeneity because of selective proliferation over numerous passages. 

Genetically engineered mouse models have been invaluable for the process of understanding 

tumor initiation and relapse but can be less predictable for studying drug efficacies. 

Cytogenetic profile of cancers derived from mouse cells cannot completely mimic human 

cancer genome instability, alterations in activating pathways, or the tumor microenvironment 

[48]. In comparison, PDX tumor models maintain patient tumor molecular signatures and 

tumor heterogeneity with minimal drift. It has been shown that PDX tumors show 

comparable treatment response to those performed clinically [48]. Given the rarity of ACC, 

patient recruitment is difficult and most clinical trials of ACC span several years limiting 

therapeutic advances for patients with ACC. Future developments of ACC PDX models and 

additional humanized mice PDX models with varied molecular signatures could provide a 

path towards more ‘avatar’ PDX models for patients with ACC [49–52]. In cases of 

recurrence and metastasis, these ‘avatar’ PDX models can be used to investigate sensitivity 

of all chemotherapy and possible targeted drugs alone or in combination and also can be 

used for drug biomarker screenings.
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KEY POINTS

• Genetically engineered mice models of ACC are able to recapitulate cohorts 

of human ACC tumors and help researchers to understand the 

pathophysiology of ACC development, maintenance, and metastasis.

• Patient-derived xenograft models of ACC represents diverse molecular 

signatures of ACC and can be used for therapeutic screening for a more 

concordant clinical outcomes.

• Humanized mice models of ACC PDXs provide new opportunities to test the 

effects of immunotherapy in conjunction with other established or novel 

treatment regimens.
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FIGURE 1. 
Development of xenograft models of adrenocortical carcinoma (ACC). (A) Generation of 

H295R cell-derived xenograft. (B) Development of ACC patient-derived xenograft (PDX) 

mouse model in nu/nu athymic mice. (C) Generation of humanized mice and development of 

humanized mouse ACC PDX models.
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FIGURE 2. 
Model of development of genetically engineered mouse model (GEMM).
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