Skip to main content
. 2021 May 7;108:107490. doi: 10.1016/j.asoc.2021.107490

Table 1.

Comparative summary of the proposed and the existing state-of-the-art methods for automatic diagnosis of COVID19 pneumonia. (V.C: Varicella, S.T: Streptococcus, P.M: Pneumocystis, T.B: Tuberculosis, M.R: MERS, S.R: SARS, P.N: Pneumonia, B.P: Bacterial pneumonia, V.P: Viral pneumonia, ACC: Accuracy, F1: F1 score, AP: Average precision, AR: Average recall, Spec: Specificity, Kap: Kappa statistics, Others: Combination of different diseased and normal classes beside COVID19).

Literature Method Class name (No. of classes) Dataset (No. of images)
Imaging modality Result (%) Strength Limitation
COVID19+ COVID19
Ghoshal et al. [6] Bayesian CNN COVID19/B.P/V.P/
Normal
(4)
68 5873 X-ray ACC: 89.82 Enhanced detection performance compared to Standard ResNet Limited COVID19 data samples

Oh et al.
 [7]
FC-DenseNet+ResNet18 COVID19/B.P/V.P/T.B/ Normal
(5)
180 322 X-ray ACC: 88.9, F1: 84.4, AP: 83.4, AR: 85.9, Spec: 96.4 Provides clinically interpretable saliency maps - Limited COVID19 data samples
- Patch processing required high computational cost

Das et al.
 [8]
Truncated InceptionNet COVID19/P.N/T.B/
Normal
(4)
162 6683 X-ray ACC: 98.7, F1: 97, AP: 99, AR: 95, Spec: 99, AUC: 99 Enhanced computational performance compared to Standard InceptionNet Limited COVID19 data samples

Singh et al. [9] MODE-based CNN COVID19/Others
(2)
69 63 CT ACC: 93.5, F1: 89.9, AR: 90.75, Spec: 90.8, Kap: 90.5 Applicable in real-time screening - Limited dataset
- Lack of ablation study

Pereira et al. [10] Texture Descriptors and InceptionNet COVID19/M.R/S.R/ V.C/S.T/P.M/Normal
(7)
180 2108 X-ray F1: 89 High COVID19 recognition rate - Limited COVID19 data samples
- Required high computational power

Khan et al.
 [11]
CoroNet COVID19/B.P/V.P/ Normal
(4)
284 967 X-ray ACC: 89.6, F1: 89.8, AP: 90, AR: 89.92, Spec: 96.4 High COVID19 detection rate compared to other classes - Limited COVID19 data samples
- Lack of ablation study

Asnaoui et al. [12] InceptionResNet COVID19/B.P/Normal
(3)
231 5856 X-ray F1: 92.08, AP: 92.38, AR: 92.11, Spec: 96.06 Detailed performance analysis under the same experimental protocol - Low COVID19 detection rate compared to other classes
- Limited COVID19 data samples

Brunese et al.
 [13]
VGG16 COVID19/P.N/Normal
(3)
250 6273 X-ray ACC: 97 High COVID19 detection rate compared to other classes - Lack of ablation study
- Limited COVID19 data samples

Han et al. [14] AD3D-MIL COVID19/P.N/Normal
(3)
230 230 CT ACC: 94.3, F1: 92.3, AP: 95.9, AR: 90.5, AUC: 98.8, Kap: 91.1 Provides clinically interpretable saliency maps - Required high computational power

Mahmud et al. [15] CovXNet COVID19/B.P/V.P/ Normal
(4)
305 915 X-ray ACC: 90.2, F1: 90.4, AP: 90.8, AR: 89.9, Spec: 89.1, AUC: 91 Generate clinically interpretable activation maps - Limited dataset
- Low COVID19 detection rate

Proposed Ensemble-Net COVID19/Others (2) 3296 4143 X-ray ACC: 95.83, F1: 95.94, AP: 95.68, AR: 96.20, AUC: 97.99 - Reduced number of trainable parameters - Visualize clinically interpretable ML-CAMs - Training time is longer than the conventional end-to-end training method
3254 2217 CT ACC: 94.72, F1: 94.60, AP: 95.22, AR: 94.00, AUC: 97.5