Skip to main content
. 2021 May 7;108:107490. doi: 10.1016/j.asoc.2021.107490

Table 7.

Quantitative performance comparison of proposed network with the state-of-the-art deep learning methods. (#Par: Total number of parameters).

Study Method #Par (Million) Dataset 1: CT
Dataset 2: X-ray
ACC F1 AP AR AUC ACC F1 AP AR AUC
Minaee et al. [16] SqueezeNet 1.24 89.84 89.48 89.91 89.06 93.86 93.51 93.56 93.43 93.70 97.03
Brunese et al. [13] VGG16 134.27 89.66 89.54 91.43 87.81 92.35 95.79 95.91 95.65 96.18 97.79
Khan et al. [17] VGG19 139.58 91.54 91.33 92.26 90.47 94.54 95.30 95.39 95.14 95.65 97.84
Martínez et al. [25] NASNet 4.27 93.68 93.49 94.19 92.82 96.67 94.06 94.06 93.89 94.23 97.07
Misra et al. [24] ResNet18 11.18 92.96 92.76 93.41 92.14 95.06 95.59 95.69 95.44 95.95 97.79
Farooq et al. [23] ResNet50 23.54 90.30 90.22 92.17 88.53 92.79 94.73 94.77 94.62 94.92 97.66
Ardakani et al. [20] ResNet101 42.56 90.30 90.26 92.17 88.64 95.71 94.53 94.58 94.44 94.72 97.19
Jaiswal et al. [19] DenseNet201 18.11 94.17 94.03 94.63 93.46 97.36 93.41 93.39 93.38 93.39 97.31
Hu et al. [22] ShuffleNet 0.86 91.65 91.52 92.69 90.44 95.61 94.97 95.03 94.81 95.25 97.53
Apostolopoulos et al. [18] MobileNetV2 2.24 92.95 92.85 93.81 91.94 96.51 94.65 94.68 94.51 94.85 97.51
Tsiknakis et al. [21] InceptionV3 21.81 94.57 94.41 94.89 93.94 97.93 95.44 95.53 95.29 95.78 97.52
Proposed Ensemble-Net 3.16 94.72 94.60 95.22 94.00 97.50 95.83 95.94 95.68 96.20 97.99