Table 7.
Quantitative performance comparison of proposed network with the state-of-the-art deep learning methods. (#Par: Total number of parameters).
| Study | Method | #Par (Million) | Dataset 1: CT |
Dataset 2: X-ray |
||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ACC | F1 | AP | AR | AUC | ACC | F1 | AP | AR | AUC | |||
| Minaee et al. [16] | SqueezeNet | 1.24 | 89.84 | 89.48 | 89.91 | 89.06 | 93.86 | 93.51 | 93.56 | 93.43 | 93.70 | 97.03 |
| Brunese et al. [13] | VGG16 | 134.27 | 89.66 | 89.54 | 91.43 | 87.81 | 92.35 | 95.79 | 95.91 | 95.65 | 96.18 | 97.79 |
| Khan et al. [17] | VGG19 | 139.58 | 91.54 | 91.33 | 92.26 | 90.47 | 94.54 | 95.30 | 95.39 | 95.14 | 95.65 | 97.84 |
| Martínez et al. [25] | NASNet | 4.27 | 93.68 | 93.49 | 94.19 | 92.82 | 96.67 | 94.06 | 94.06 | 93.89 | 94.23 | 97.07 |
| Misra et al. [24] | ResNet18 | 11.18 | 92.96 | 92.76 | 93.41 | 92.14 | 95.06 | 95.59 | 95.69 | 95.44 | 95.95 | 97.79 |
| Farooq et al. [23] | ResNet50 | 23.54 | 90.30 | 90.22 | 92.17 | 88.53 | 92.79 | 94.73 | 94.77 | 94.62 | 94.92 | 97.66 |
| Ardakani et al. [20] | ResNet101 | 42.56 | 90.30 | 90.26 | 92.17 | 88.64 | 95.71 | 94.53 | 94.58 | 94.44 | 94.72 | 97.19 |
| Jaiswal et al. [19] | DenseNet201 | 18.11 | 94.17 | 94.03 | 94.63 | 93.46 | 97.36 | 93.41 | 93.39 | 93.38 | 93.39 | 97.31 |
| Hu et al. [22] | ShuffleNet | 0.86 | 91.65 | 91.52 | 92.69 | 90.44 | 95.61 | 94.97 | 95.03 | 94.81 | 95.25 | 97.53 |
| Apostolopoulos et al. [18] | MobileNetV2 | 2.24 | 92.95 | 92.85 | 93.81 | 91.94 | 96.51 | 94.65 | 94.68 | 94.51 | 94.85 | 97.51 |
| Tsiknakis et al. [21] | InceptionV3 | 21.81 | 94.57 | 94.41 | 94.89 | 93.94 | 97.93 | 95.44 | 95.53 | 95.29 | 95.78 | 97.52 |
| Proposed | Ensemble-Net | 3.16 | 94.72 | 94.60 | 95.22 | 94.00 | 97.50 | 95.83 | 95.94 | 95.68 | 96.20 | 97.99 |