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BACKGROUND: Genetic variant landscape of coronary artery disease 
is dominated by noncoding variants among which many occur within 
putative enhancers regulating the expression levels of relevant genes. It is 
crucial to assign the genetic variants to their correct genes both to gain 
insights into perturbed functions and better assess the risk of disease.

METHODS: In this study, we generated high-resolution genomic 
interaction maps (≈750 bases) in aortic endothelial, smooth muscle 
cells and THP-1 (human leukemia monocytic cell line) macrophages 
stimulated with lipopolysaccharide using Hi-C coupled with sequence 
capture targeting 25 429 features, including variants associated with 
coronary artery disease. We also sequenced their transcriptomes and 
mapped putative enhancers using chromatin immunoprecipitation with an 
antibody against H3K27Ac.

RESULTS: The regions interacting with promoters showed strong 
enrichment for enhancer elements and validated several previously known 
interactions and enhancers. We detected interactions for 727 risk variants 
obtained by genome-wide association studies and identified novel, as 
well as established genes and functions associated with cardiovascular 
diseases. We were able to assign potential target genes for additional 398 
genome-wide association studies variants using haplotype information, 
thereby identifying additional relevant genes and functions. Importantly, 
we discovered that a subset of risk variants interact with multiple 
promoters and their expression levels were strongly correlated.

CONCLUSIONS: In summary, we present a catalog of candidate genes 
regulated by coronary artery disease–related variants and think that it will 
be an invaluable resource to further the investigation of cardiovascular 
pathologies and disease.
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Coronary artery disease (CAD) labels medical prob-
lems of the circulatory system (heart, blood ves-
sels, and arteries) often because of build-up of 

fatty cell debris (plaques) deposited inside the blood ves-
sels. It is the leading cause of disability and death glob-
ally.1 Atherosclerosis, the main underlying mechanism 
leading to the acute events of CAD, is characterized by a 
lipid driven chronic inflammation of the arterial intima, a 
process that includes all major cells in the vascular wall, 
that is, endothelial, smooth muscle, and inflammatory 
cells. The acute complication of atherosclerosis, such as 
myocardial infarction and stroke is because of rupture 
of the fibrous cap with subsequent thrombus formation 
that totally or partially occludes the vessel and thereby 
stops the nutrient-rich blood flow. Traditional risk as-
sessment methods based on age, sex, smoking, diabe-
tes mellitus, hypertension, and dyslipidemia tracks the 
disease incidence well but underestimates its occurrence 
because almost half the population classified as low or 
intermediate risk end up developing cardiovascular dis-
ease2–4 as these methods fail to inform on the underly-
ing pathological processes that may have been going on 
for years.5 In addition, ethnic differences in cholesterol 
and blood lipid levels complicate the assessment of the 
individual risk of disease.6 Heritability for CAD is estimat-
ed between 40% and 60% based on twin and family 
studies; therefore, genetic risk contributors at play can 
be utilized in its early diagnosis and treatment.7

Genome-wide association studies (GWAS) have 
emerged as an important tool in the search for disease-
causing genomic variants.8 CAD-specific and other 
atherosclerosis-related indications have been addressed 
by large GWAS meta-analyses enabled by consortia, 
such as the CARDIoGRAMplusC4D (Coronary Artery 
Disease Genome wide Replication and Meta-analysis 
[CARDIoGRAM] plus The Coronary Artery Disease [C4D] 
Genetics)9 and the MEGASTROKE (International Stroke 
Genetics Consortium) consortium.10 At its current state, 
just over 300 independent variants explain 21% of CAD 
heritability.11 According to GWAS, a locus on chromo-
some 9p21 has the strongest association signal.12,13 
Although it is established that the risk allele is associ-
ated with formation and progression of plaques but not 
with their rupture,14,15 the mechanistic understanding of 
the conferred risk by these loci remains elusive.16–18 Path-
ways such as cholesterol and triglyceride metabolism, 
blood pressure, inflammation, vascular proliferation and 
remodeling, nitric oxide signaling, vascular tone, extra-
cellular matrix integrity, and axon guidance and signaling 
are also enriched for target genes of GWAS variants.17–20

GWAS studies do not in themselves provide functional 
insight for the large subset of hits that are noncoding21,22: 
only one-third of the time a variant affects the expres-
sion level of its nearest gene, highlighting the limitations 
of the nearest gene assignment approach.23,24 The target 
gene mappings can be refined using various layers of 

genome annotation information as well as gene expres-
sion profiles. To alleviate the problem of complex linkage 
structures between variants, vast amounts of public data-
sets of epigenetic marks and transcription factor binding 
profiles used to help prioritize the causal/functional vari-
ant.25–27 Expression quantitative trait loci analyses based 
on gene expression and genotype datasets are also used 
to locate potentially functional variants that are in linkage 
disequilibrium (LD) with top association variants.28–30

Pathway or gene set–based approaches using canon-
ical pathways and gene ontology (GO) terms goes 
beyond single variant-based analyses and investigate 
the combined effect of multiple disease/trait variants 
on biological functions in terms of the perturbations 
on pathways or cellular processes.31–35 Such pathway-
based analyses revealed the functional GWAS variants 
in cases, such as Crohn disease,36 multiple sclerosis,37 
schizophrenia,38 and breast cancer.39 Functional gene 
sets built using coexpression, and protein-protein inter-
action datasets are also used successfully to interpret 
the GWAS variants.40–42

Many promoters require regulatory elements called 
enhancers to drive and regulate gene expression. 
Enhancers can be located at long distances from their 
cognate promoters and brought into contact via chro-
matin looping. Many enhancers carry tissue-specific 
epigenetic marks such as H3K4me1 or H3K27Ac, facili-
tating their discovery, however, not providing informa-
tion on gene(s) they act on. Studies of the chromatin 
interaction landscape were revolutionized by the inven-
tion of chromosome conformation capture coupled 
with next-generation sequencing (Hi-C) enabling the 
study of genome structure and folding. Combining 
Hi-C with sequence capture (HiCap), the improvement 
in resolution required to study individual promoter-
enhancer interactions can be obtained.43 A recent study 
also used high-resolution chromatin conformation cap-
ture to obtain promoter-anchored regulatory landscape 
of induced pluripotent stem cells and induced plurip-
otent stem cell–derived cardiomyocytes, providing a 
valuable resource for the cardiovascular biology.44

In this study, we used HiCap on 3 cell types relevant 
for vascular diseases, particularly atherosclerosis and 
aortic diseases, to discover novel biological processes 
and pathways related to onset and pathology of the 
disease. We utilized chromatin contacts of promoters to 
GWAS variants or those that are in LD to assign poten-
tial target genes.

METHODS
The authors declare that all supporting process data are 
available within its Data Supplement. The raw data files 
(fastq and bam files) that support the findings of this study 
are available from the corresponding author on reasonable 
request. This study does not involve animal studies. The study 
was approved by the Human Research Ethics Committee at 
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Karolinska Institutet (application number 2006/784-31/1 and 
2012/1633-31/4), Stockholm, Sweden; written informed 
consent was obtained from all the patients according to 
the Declaration of Helsinki, and methods were performed 
in accordance with relevant guidelines. Please see Data 
Supplement for detailed method descriptions.

RESULTS
Using high-resolution chromatin interactions, we 
mapped genomic interaction of promoters and variants 
associated with traits and conditions related to cardio-
vascular diseases in particular coronary artery and aortic 
diseases. Three cell types for the investigation are human 
aortic endothelial cells (AEC), human aortic smooth mus-
cle cells (ASMC) and macrophage–THP-1 cells (mTHP-
1–lipopolysaccharide) stimulated with lipopolysaccharide 
for 2 hours. For AEC, we obtained 2 technical replicates 
from 2 individuals; the technical replicates were pooled, 
and the 2 individuals were held separate and constituted 
biological replicates. For ASMC and mTHP-1–lipopoly-
saccharide cells, 2 technical replicates were obtained. 
We used HiCap using a probe set targeting 21 479 pro-
moters and 3950 variants (Table I in the Data Supple-
ment). There were 199, 300, and 289 million read pairs 
uniquely mapped to probes in AEC, ASMC, and mTHP-
1–lipopolysaccharide experiments, respectively (Table II in 
the Data Supplement). We made a distinction between 
interactions between promoters (promoter-promoter 
or Prom-Prom) and those between promoters and else-
where in the genome (promoter-distal or Prom-Dist). For 
the sake of clarity, we also defined interactions between 
disease/trait associated variants and promoters (GWAS-
Promoter or GWAS-Prom; Figure 1A).

We called interactions using HiCapTools requir-
ing each interaction present in both replicates, and P 
value cutoffs deployed yielded interaction sets of sizes 
69,753 (AEC Prom-Dist), 38 759 (ASMC Prom-Dist), 
19 920 (mTHP-1–lipopolysaccharide Prom-Distal), and 
5671 (AEC Prom-Prom) and 4293 (ASMC Prom-Prom), 
and 1698 (mTHP-1–lipopolysaccharide Prom-Prom), 
respectively (Table IIIA, IIIB, and IIIC and Methods in 
the Data Supplement).45 Importantly, we were able to 
detect many long-range (>500 kb) interactions across 
the 3 cell types (Figure I in the Data Supplement). Equal-
ly important, the distal elements (DEs), as well as the 
interacting promoters were short; average length being 
749 and 776 bases, respectively. In total, the interac-
tion datasets covered around 3.4% of the genome. 
Most promoters (65%) were found to interact with 
<5 distal regions, whereas the interactome of extreme 
hub-promoters contain several hundred DEs (Figure IB 
through ID in the Data Supplement). We identified sev-
eral interconnected units of promoters and enhancers; 
Figure 1B displays the largest connected subsection of 
chromosome 9 (ie, giant component). Interestingly, 2 

cardiovascular disease (CVD) associated GWAS single 
nucleotide polymorphisms (SNPs) in chr9p21 region 
(rs1333042 and rs944797) were part of this network.

We profiled expression levels of genes in AEC, 
ASMC, and mTHP-1–lipopolysaccharide cell lines using 
RNA sequencing (Table IV in the Data Supplement). Uti-
lizing principal component analysis, we show that the 
promoter-interaction profiles of individual cell types are 
specific and can separate individual cell types indepen-
dent of gene expression information (Figure 1C, Figure 
III in the Data Supplement).

Promoter-Interacting Distal Elements 
Were Enriched for Functional Elements
Promoter-interacting DEs were previously shown to be 
highly enriched for enhancer marking features. To con-
firm that is also the case for this study, we overlapped 
DEs with H3K27ac enriched regions obtained through 
chromatin immunoprecipitation-seq in the same cells, 
as well as relevant DNaseI and transcription factor bind-
ing datasets from the ChipAtlas (list of public datasets 
can be found in Table V in the Data Supplement and 
www.chip-atlas.org). Our interactor sets were indeed 
enriched relative to size-controlled and genomic con-
text–controlled random sets, and the enrichment was 
stronger for the better matching cell types (Figure 1D, 
Figure IVA through IVD and Feature Enrichment Analysis 
in the Data Supplement). Interestingly, enrichment levels 
for the GWAS-Prom set were much higher in AECs and 
ASMCs (Figure 1D, Figure IVA through IVD in the Data 
Supplement). Furthermore, promoters interacting with 
DEs carrying H3K27ac marks were expressed at higher 
levels as expected (Figure IVE in the Data Supplement).

Figure 1E and 1F show 2 examples of promoter inter-
actions (MTAP-rs944797 and BMP6-rs9328448) where 
the interactor overlaps with both CVD GWAS variants 
and cell-specific H3K27Ac enhancer marks.

Promoter Interacting GWAS Variants 
Were Often Contained Within Regulatory 
Elements
We next turned our attention to variants associated 
with vascular disease phenotypes according to GWA 
studies and asked if any variants or in LD with those 
are contained within DEs found in this study. First, 
we took all single nucleotide variants associated with 
cardiovascular disease resulting in 3814 SNPs (mini-
mum P value for association is 10 6− ), which we called 
CVD_GWAS (cardiovascular disease GWAS; Table 
VIA in the Data Supplement). As previously shown, 
a substantial portion of GWAS variants are them-
selves located within potential regulatory regions. 
We, therefore, targeted a subset (723, 19%) of 
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these variants using probes to increase the probabil-
ity of obtaining a signal without the need for deep 
sequencing (Table IVB in the Data Supplement). Of 
those 723 targeted GWAS variants, 295 (41%) inter-
acted with at least 1 promoter in at least 1 cell type, 
constituting the GWAS-Prom dataset. We assigned 
423 target genes to 295 variants (54% interacting 
with only one promoter). To rule out the possibility 
that GWAS-Prom hits occur merely a result of the 
probing of variants, we investigated the correspond-
ing Prom-Dist set, that is, we studied the same pro-
moters and their interactions with nonprobed distal 
regions. There should be vastly more Prom-Dist hits 
close to the variant site, than to a site on the same 
distance from the promoter but at the other side of it 
(hence keeping the distance from the probed feature 
the same). This is indeed the case as shown in Fig-
ure 2A (Interaction Density Comparison of Promoter-
GWAS Hits in the Data Supplement).

A large fraction of GWAS-Prom interactions spanned 
distances above 500 kb (Figure I in the Data Supple-
ment). Consequently, many of the GWAS variants 
(68%) are found to interact with nonclosest genes 
thus jumped over by the interaction loop formed (Fig-
ure 2B). However, only 43% of the Prom-Dist interac-
tions involved nonclosest gene.

Whole groups of genes frequently interact with 
the same GWAS variant. Promoters of genes USP24 
(Ubiquitin Specific Peptidase 24), PLPP3 (Phospholipid 
Phosphatase 3), PRKAA2, and FYB2 (FYN Binding Pro-
tein 2) thus share a putative enhancer containing vari-
ant rs12239436. The rs12239436-PLPP3 interaction is 
particularly interesting because of its large 1.3 Mb dis-
tance, as well as the fact that PLPP3 was already identi-
fied as a CAD disease risk gene (Figure 2C).

The GWAS variant rs9349379, associated with 5 vas-
cular diseases, was recently shown to regulate expres-
sion of the endothelin-1 gene. We see this interaction 

Figure 1. Promoter interacting regions were enriched for regulatory elements.  
A, Three types of Hi-C with sequence capture-established interactions; promotor (P)-distal (D), P-P and genome-wide association studies (GWAS)-P (G-P), 
respectively; for the Gene A promoter. In P-D is analyzed probed promoters’ interaction with D element (DEs); the latter separated by restriction sites. In P-P and G-P 
both ends of the interaction are probed. B, The largest connected subgraph in chr9 in aortic endothelial cell (AEC). There are 22 promoters, 3 GWAS SNPs and 271 
DE (only those overlapping with H3K27ac marks are included). The blue track represents gene expression levels, gray boxes represent transcripts, and innermost lay-
ers represent H3K27Ac marks (2 replicates). Purple arcs represent G-P or P-P, and orange arcs represent P-D interactions respectively. C, Principal component analysis 
of P-D interaction of genes not expressed in none of the cell types D, Overlap enrichment relative to a segment-length and distance-from-P controlled random set. 
The AEC P-D and G-P datasets were overlapped with general cardiovascular, HUVEC, and HAEC transcription factor marker data from ChipAtlas. (Continued )
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in 1 of the 2 AEC investigated individuals. Interestingly, 
the individual with the stronger interaction is heterozy-
gous for rs9349379 (A/G), whereas the other individual 
is homozygous reference (A/A). In ASMC, where there 
is no interaction, rs9349379 variant is homozygous 
alternative (G/G; Figure 2D).

Discovery of Target Genes of GWAS 
Variants Using Shared Haplotype and 
Interaction Information
To detect further interactions of CVD_GWAS variants 
with promoters, we looked at the fraction of DEs con-
taining such variants. Of the 3814 associated variants 
in the CVD_GWAS, there were 216 (5.7%) variants 
within unique DEs. One complication of GWA studies 
is that the association signal many GWAS variants pos-
sess is because of their sharing of haplotype with the 
functional variants. If the functional variant can indeed 
modulate a distal promoter via looping, it should also 
be possible to locate it in our DE datasets. We, there-
fore, looked at the fraction of DEs that contain variants 
that are in LD with those in CVD_GWAS. Because of 
the sheer number of SNPs in LD, we devised a double 
randomization scheme to assign statistical significance 
to the observed overlap between LD SNPs and DE data-
sets using both size- and context-matched random 
interaction datasets and random SNP datasets matched 

with respect to allele frequencies and surrounding LD 
structure of the real set (Double Randomisation for LD 
SNP Overlap in the Data Supplement). We obtained LD 
and allele frequencies from 1000 Genomes (Phase 3 
v5) using European population and set LD threshold of 
0.8. Figure 2E shows that the DE dataset is enriched for 
SNPs in LD with CVD_GWAS that are within 80, 20, and 
30 kb in AEC, ASMC, and mTHP-1–lipopolysaccharide 
cells, respectively, beyond which no enrichment can 
be seen (Figure VA and VB in the Data Supplement). 
There were 559 SNPs in LD with variants in CVD_GWAS 
located within DE fragments (Prom-Dist_LD). DEs car-
rying either the GWAS variant themselves or those in 
LD showed higher enrichments for open chromatin, 
transcription factor binding sites and enhancer marks 
compared with the entire DE set, supporting their 
potential for expression modulation (Figure VI in the 
Data Supplement).

The expression quantitative trait loci technique was 
deployed to examine the expression modulation capac-
ity of variants contained in DEs. The GWAS-Prom set 
was extended with Prom-Dist hits and likewise selected 
hits in LD with those (Prom-Dist_LD). The comparison 
was performed relative to the aforementioned size- and 
distance-controlled random set and yielded the Q-Q 
plot presented in Figure 3B (merged set) and Figure VIIA 
through VIIC in the Data Supplement (GWAS-Prom, 
Prom-Dist, and Prom-Dist_LD separate). The deviation 

Figure 1 Continued. E, Three hundred and fifty-seven kilobase region containing MTAP-rs944797 interaction and (F) 393 kb region containing BMP6-rs9328448 
interaction visualized using Gviz package.46 Overlap with H3K27Ac marks are shown in the lower panes as well as the signal from the input chromatin. P-D (including 
P-G) and P-P interactions are colored as green and purple respectively. ASMC indicates aortic smooth muscle cells; BMP6, Bone Morphogenetic Protein 6; HAEC, human 
aortic endothelial cell line; HUVEC, Human umbilical vein endothelial cells; LPS, lipopolysaccharides; MTAP, Methylthioadenosine Phosphorylase; mTHP, macrophage–
THP-1; and SNP, single nucleotide polymorphism.
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from the diagonal is striking and concerns not only 
extreme cases but large fractions of the entire sets.

Only 30% of the DEs containing these variants 
interacted with the closest gene and the average inter-

action distance is 301 kb (Table VI in the Data Supple-
ment). In terms of trait categorization, variants for 167 
of the 247 traits (0.67) related to CVD in EBI GWAS 
catalog was found, Figure  3C lists overrepresented 

Figure 2. HiCap can inform on regulatory potential of variants in LD with risk variants.  
A, The aortic endothelial cell (AEC) Prom-Dist (PD) set was searched for interactions between the promoter and distal elements close to a variant interacting with 
the same promoter (green curve). The comparison was made relative to a site at the same distance from the promoter it but located at the other side of it (light 
blue curve). The latter is nearly a horizontal line as expected, whereas the blue curve strongly deviates from that at distances not too far from the variant site. 
The bin size used to count interactions is 5 kb. B, Variants in the AEC, aortic smooth muscle cell (ASMC) and macrophage–THP-1 (mTHP-1)-lipopolysaccharide 
(LPS) merged genome-wide association studies (GWAS)-Prom (GP) set and their interaction preferences with genes at distance 0 (no gene-jumping), 1 (near-
est gene is jumped over), etc. Distal regions in the corresponding PD set are shown for reference. The GP interaction set is further split in equal-sized halves 
depending on the variants’ distance to its nearest gene (GP without and with a nearby gene, respectively). C, The coronary artery disease (CAD)–related variant 
rs12239436 (red box) interacts with 62 kb distant gene USP24 (gray box) in AEC (dotted line), ASMC (dashed,) and mTHP-1–LPS (solid). (Continued ) 

https://www.ahajournals.org/doi/suppl/10.1161/CIRCGEN.118.002353
https://www.ahajournals.org/doi/suppl/10.1161/CIRCGEN.118.002353


Åkerborg et al; Assigning Target Genes to Cardiovascular Risk SNPs

Circ Genom Precis Med. 2019;12:e002353. DOI: 10.1161/CIRCGEN.118.002353� March 2019 107

Figure 2 Continued. Strengths of interactions are represented with the P value recorded and indicated by arrow thickness. Our result set further include strong 
interactions with the 1.3 Mb distant previously CAD associated gene PLPP3 (also known as PPAP2B). Less significant interactions with nearby FYB2 (ASMC) and PRKAA2 
(mTHP-1–LPS) are potentially bystanders. D, Earlier reported interaction between variant rs934937 and the EDN1 gene is, to a varying degree, present in both AEC pa-
tients. Not so in less relevant tissues ASMC and mTHP-1–LPS. E, Comparison of overlaps between PD dataset (AEC) vs 100 matched random datasets and CVD_GWAS 
and matched SNP datasets (see methods) shows that there is an enrichment for variants in linkage disequilibrium (LD) with CVD_GWAS found in PD dataset when the 
genomic distance between SNP and its LD proxy is ≤80 kb. No such enrichment was seen for random PD datasets vs real or random SNP sets. chr indicates chromosome; 
CVD, cardiovascular disease; SMC, smooth muscle cells; SNP, single nucleotide polymorphism; and SP, supporting pair.
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traits in our dataset. We also compared enrichment 
of promoter-interacting GWAS variants for enhancer 
marks with respect to trait they belong. We chose a 
CVD-related trait (CAD) and compared with 5 vari-
ant size-matched non-CVD traits to demonstrate the 
specificity of such enrichments for the disease, and 
found that the enrichment for enhancer marks was 
significantly higher in CVD-related trait (Enrichment 
Comparison of CVD and Non-CVD Related Traits in 
the Data Supplement).

Gene Enrichment Analysis of Target 
Genes of GWAS Variants for Discovery of 
Disease Associated Cellular Processes
We next asked if genes interacting with fragments 
carrying disease-associated variants are enriched 
for particular functions or pathways. To discover cell 
context–dependent signal, we performed a gene set 
enrichment analysis using genes interacting with GWAS 
variants themselves and those in LD for each cell type. 
We only included LD SNPs up to 80, 20, and 30 kb to 

Figure 3. Assigned target genes of CVD variants were enriched for pathways relevant for vascular pathologies.  
A, Expression quantitative trait loci contained in the merged CVD genome-wide association studies (GWAS)-Promotor (prom), Prom- distal (Dist) and Prom-Dist_ 
linkage disequilibrium (LD) datasets plotted vs a size and distance-corrected random set. Deviation from diagonal is present among approximately 30% of the 
data. B, GWAS traits that are overrepresented in the interaction datasets. Only traits containing at least 14 variants were taken forward. Fold enrichment is 
calculated by dividing the actual number of trait variants in the interaction dataset to that of expected (fraction of trait variants in the full trait set). The bar labels 
denote the fraction of variants found in the interaction datasets. C, Gene ontology (GO) term enrichment analysis of genes interacting with variants or those in LD 
with CVD_GWAS set using TopGO package. GO terms enriched using only nearest genes to the variants are not reported. Terms with >5 genes and enrichment 
score >0.05 were not included. ASAP_H indicates The Advanced Study of Aortic Pathology, heart tissue; HiCap, Hi-C with sequence capture; MI, myocardial infarc-
tion; PR interval, the period, measured in milliseconds, that extends from the beginning of the P wave (the onset of atrial depolarization) until the beginning of the 
QRS complex; and Pri-miRNA, primary transcript of micro RNA.
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the proxy SNP in AEC, ASMC, and mTHP-1–lipopoly-
saccharide cells. To assess the success of discovering 
novel processes or functions, we input the DEs con-
taining these variants to Genomic Regions Enrichment 
of Annotations Tool software package to retrieve the 
gene sets independent of interaction information to 
perform the same enrichment analysis for comparison 
(Gene Enrichment Analysis Using topGO Package in the 
Data Supplement). We performed enrichment analysis 
separately for each cell and also combined to assess 
the specific contribution of each cell type. Comparison 
of the enriched terms by interacting or closest gene 
information (Genomic Regions Enrichment of Annota-
tions Tool package) using a GO term semantic similarity 
measure revealed little overlap in between (Methods 
Gene Enrichment Analysis Using topGO Package and 
Table VIII in the Data Supplement). Figure  3D shows 
enriched biological processes when target genes from 
all cell types are merged. We located novel genes 
associated with known CVD complications, including 
response to lipopolysaccharide (GO:0032496, in AEC 
and mTHP1–lipopolysaccharide), phosphatidylinositol-
3-kinase signaling (GO:0014065, in AEC), andSMAD 
protein signal transduction (GO:0060395, in AEC and 
ASMC). Moreover, we discovered genes and functions 
not previously associated with CVD onset and or prog-
ress, such as cilium assembly (GO:0060271, in AEC, 
14 genes).

Ectopic deposition of calcium in arterial vessel 
walls leading to vascular calcification is a main feature 
of atherosclerosis and similar to the ossification pro-
cess. Concordantly, terms, such as endochondral ossi-
fication, regulation of chondrocyte differentiation, 
regulation of osteoblast differentiation, positive regu-
lation of ossification, were among the enriched func-
tions. Eleven genes (BMP6, SMAD3, JAG1 [Jagged 1], 
PDLIM7 [PDZ And LIM Domain 7], SLC8A1, DLX5 [Dis-
tal-Less Homeobox 5], TEK, HOXA2 [Homeobox A2], 
EFEMP1 [EGF Containing Fibulin Extracellular Matrix 
Protein 1], RARB [Retinoic Acid Receptor Beta], and 
IL6 [Interleukin 6]) responsible for the above enrich-
ments and only 4 (BMP6, TEK [TEK Receptor Tyrosine 
Kinase], SMAD3 [SMAD Family Member 3], and JAG1) 
interacted with lead SNPs, whereas the rest interacted 
with variants in LD with lead SNPs.

Fourteen target genes were involved in cilium assem-
bly, including IFT74 (Intraflagellar Transport 74), a com-
ponent of endothelial intraflagellar transport, which 
interacts with a CVD associated variant in the chr9p21 
region (rs944797). It has been shown that endothelial 
cells can sense and respond to shear stress levels using 
their cilia and endothelial cilia were shown to deflect 
in response to blood flow rates. The deflection angle is 
regulated by calcium levels. Moreover, endothelial cilia 
inhibit onset of atherosclerosis in mouse models.

We identified several genes involved in leukocyte 
adhesion and vascular inflammation, key processes 
of atherosclerotic development. Examples of target 
genes include Cadherin 13 (CDH13 interacting with 
rs8055236) which has previously been shown to pro-
tect against atherosclerosis in experimental models, 
AMP-activated protein kinase (PRKAA2 [Protein Kinase 
AMP-Activated Catalytic Subunit Alpha 2] interacting 
with rs12239436) whose activity inhibits cell migration 
via phosphorylation of Pdlim5 (PDZ and LIM Domain 5) 
and BACH1 (BTB Domain And CNC Homolog 1; inter-
acting with rs2832227), a transcriptional regulator 
which has been shown to be involved in atherosclerosis 
development in apoE deficient mice.

Other examples of plausible candidate genes for 
inflammatory cardiovascular disease include CD86 
(CD86 Molecule; interacting with rs13083990), a recep-
tor involved in the costimulatory signal essential for 
T-lymphocyte proliferation and interleukin-2 production 
and AKIRIN2 (interacting with rs6900057) a gene that 
has been shown to stimulate a proinflammatory gene 
in macrophages during innate immune responses.

Expression Levels of Interacting 
Promoters Sharing Enhancers Are 
Correlated
Sometimes variants are contained within enhancers 
controlling multiple genes, suggesting such gene sets 
to be group- and pairwise coexpressed. Using data 
from the ASAP-Heart study (The Advanced Study of 
Aortic Pathology, heart tissue), we were able to test 75 
AEC gene pairs sharing enhancers and could conclude 
that 34 (45.3%) are coexpressed at P value level 10 3− ; 
18 of 75 (24.0%) also at P value level 10 10− , and there is 
a strong enrichment over random background of gene 
pairs where only 23% are coexpressed (P=9.6e-06 by χ2 
test). Excluding a large cluster of genes all interacted on 
by the same variant rs13083990, these percentages ris-
es to 64.1% (p<10 3− ) and 38.4% (P<10 10− ), respectively.

In Figure  4A, this is exemplified with coexpression 
plots for the MTAP and IFT74 genes; both interacted 
on by the chr9p21 locus variant rs944797 in AEC. 
The genomic distance between the 2 gene promot-
ers is in excess of 5 million bases. Even more extreme 
is the coexpression of genes SMARCAD1 and BMP2K 
both located on chromosome 4 >15 Mb apart in AEC 
(Figure 4B). Both genes also interact a GWAS variant 
associated with diastolic blood pressure (rs16998073, 
P value=10 21− ), which itself interacts 2 other genes 
(LINC01094 [Long Intergenic Non-Protein Coding RNA 
1094] and PAQR3 [Progestin And AdipoQ Receptor 
Family Member 3]) and 27 DEs (11 overlapping with 
H3K27ac marks; Figure 4C). Most of these interactions 
were specific to AEC (Figure 4D). LINC01094 is a non-
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coding RNA, and its expression levels are correlated 
with serum albumin (P value=10−9) and coexpressed 
with BMP2K (P value=1.26×10−93). Serum albumin lev-
els are positively correlated with blood pressure. More-
over, PAQR3 levels modulate leptin signaling in mouse 
models, and leptin is found to mediate the increase in 
blood pressure associated with obesity.

DISCUSSION
Our aim in this study was to evaluate the contribu-
tion of high-resolution promoter-anchored regula-
tory interaction maps to locate the target genes of 
noncoding GWAS variants associated with vascular 
diseases. Although many GWAS variants are merely 
tags for the functional SNP within the same haplo-
type, some may still be or be close to the functional 

variant as suggested by their enrichment for enhancer 
marks and resequencing studies. Here, we show that 
targeting GWAS variants in capture Hi-C experiments 
can be a useful strategy in conquest for target gene 
associations because of lesser need for sequencing. 
We also uncover several enhancers regulating mul-
tiple genes and a strong correlation signal between 
such sharing enhancers, implying the underlying 
complexity of regulatory networks. A recent study 
showed the implicit wiring of enhancer redundancy 
in regulatory networks, where the system can tolerate 
loss of enhancers by connecting promoters to mul-
tiple enhancers.47 However, the case when multiple 
genes connected to the same enhancer could nega-
tively affect the resilience of the network in the case 
of enhancer malfunction, potentially disturbing the 
coregulation of multiple genes.

Figure 4. Expression levels of promoters interacting with the same variant were correlated.  
Expression correlation between (A) genes MTAP and IFT74 (P value 4.2×10−16) and (B) genes SMARCAD1 and BMP2K (P value 2.1×10−16) using aortic intima-media 
expression from 131 individuals. The values on axes are RPKM values, and each dot corresponds to each individual where both expression information are obtained 
from. C and D, Circos plot representation of interactions between rs16998073 and rest of the genome in C aortic endothelial cell (AEC) and D aortic smooth muscle 
cell for comparison. The plot spans chr4:73000000-103000000. The blue track represents gene expression levels, gray boxes represent transcripts, and innermost 
layers represent H3K27Ac marks in AEC cells (2 replicates). Purple arcs represent genome-wide association studies-promotor (Prom) or Prom-Prom, and orange 
arcs represent Prom-Distal interactions. BMP2K indicates BMP2 Inducible Kinase; BMP6,  Bone Morphogenetic Protein; IFT74, Intraflagellar Transport 74;  6 MTAP, 
Methylthioadenosine Phosphorylase; RPKM, read counts per kilobase million; and SMARCAD1, SWI/SNF-Related, Matrix-Associated Actin-Dependent Regulator Of 
Chromatin, Subfamily A, Containing DEAD/H Box 1.
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We tackle the difficulty of locating the functional 
variant using LD information. When a GWAS SNP is 
associated with a trait, essentially any other variant on 
the same haplotype could be responsible for the asso-
ciation. However, because of sheer number of variants 
in LD, it is not straightforward to locate the functional 
one. The resolution in this study was around 750 bases, 
which allowed us to locate DEs containing variants in 
LD with CVD GWAS variants. Extending the genomic 
window around the DEs to 250 kb, we found that, it is 
possible to discriminate between functional and tagged 
variants using a double randomization procedure. DEs 
containing variants in LD with CVD GWAS variants 
showed better enrichment for histone enhancer marks 
and TF binding sites. We found that HiCap-identified 
loci are strongly enriched for genes identified by expres-
sion quantitative trait loci–based investigations of 
GWAS hits. Although the 2 methods are conceptually 
different, this overlap supports the idea that a diverse 
set of methods for functional genetics is advantageous 
when identifying causal genes from GWAS disease loci.

We confirm that it is only one-third of the time the 
enhancer is connected to the promoters of its near-
est gene. We take on the challenge of assigning the 
correct genes to GWAS variants using promoter- and 
variant-anchored regulatory maps produced in 3 cell 
types. Indeed, we discover multiple biological processes 
and cellular structures that are associated with vascu-
lar disease pathology not by genomic but by functional 
studies. We were able to suggest variants that could 
be responsible for the perturbations of such processes 
or structures. Here, it is important to note that by only 
mining the variants associated with vascular disease 
traits, we will be able to discover the genes that are per-
turbed in a given pathway, process or structure. Discov-
ery of the full network of genes within such processes 
or structure is beyond the scope of this study.

In summary, we provide high-resolution promoter-
anchored regulatory networks of three cell types and 
list novel genes, processes, and cellular structures rel-
evant for vascular disease pathologies, in particular, cor-
onary artery and aortic diseases. We hope that the data 
and the methodologies in this study will aid us in our 
mission to further understand the contribution of non-
coding genomic variation to complex disease biology.
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