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Abstract

Cell division and organismal development are exquisitely orchestrated and regulated processes. 

The dysregulation of the molecular mechanisms underlying these processes may cause cancer, a 

consequence of cell-intrinsic and/or cell-extrinsic events. Cellular DNA can be damaged by 

spontaneous hydrolysis, reactive oxygen species, aberrant cellular metabolism, or other 

perturbations that cause DNA damage. Moreover, several environmental factors may damage the 

DNA, alter cellular metabolism, or affect the ability of cells to interact with their 

microenvironment. While some environmental factors are well established as carcinogens, there 

remains a large knowledge gap of others owing to the difficulty in identifying them because of the 

typically long interval between carcinogen exposure and cancer diagnosis. DNA damage increases 

in cells harboring mutations that impair their ability to correctly repair the DNA. Tumor 

predisposition syndromes in which cancers arise at an accelerated rate and in different organs - the 

equivalent of a sensitized background - provide a unique opportunity to examine how gene–

environment interactions (GxE) influence cancer risk when the initiating genetic defect 

responsible for malignancy is known. Understanding the molecular processes that are altered by 

specific germline mutations, environmental exposures and related mechanisms that promote 

cancer, will allow the design of novel and effective preventive and therapeutic strategies.

Subject categories

Biological sciences/Cancer/Cancer genetics [URI/631/67/68]; Biological sciences/Genetics/
Mutation [URI /631/208/737]; Biological sciences/Cancer/Cancer prevention [URI /631/67/2195]; 
Biological sciences/Cancer/cancer screening [URI /631/67/2322]

Introduction

Whether two-thirds of all cancers are caused by the inevitable spontaneous accumulation of 

somatic (acquired) genetic mutations as a consequence of aging1,2, or whether 

environmental carcinogens are responsible for most mutations and cause 70–90% of human 

cancers has been debated recently3,4. However, it is difficult to determine the relative 

contribution of endogenous (spontaneous) mutations and those caused by exposure to 

environmental carcinogens in different patients. Similarly it is difficult to distinguish 

association from causation5, and thus to define which of the thousands of mutations detected 

in a tumor biopsy or even in non-malignant or pre-malignant tissue are functioning as cancer 

‘driver’ mutations6,7.

To overcome these challenges, we recommend the study of gene–environment interactions 

(GxE) in causing cancer in carriers of germline mutations that cause well defined tumor 

predisposition syndromes [G] (TPSs) and cancer syndromes [G]. In these individuals the 

underlying genetic alterations that initiate carcinogenesis are well defined and are present in 

every cell. Therefore, TPSs offer a uniquely powerful opportunity to investigate GxE 
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interactions that contribute to human cancer risk. They provide a ‘sensitized’ genetic 

background against which to identify agents in the environment, and mechanistic insight 

into how exposure to these agents promotes cancer type-specific risk. Thus, TPSs resemble 

and complement the unusual environmental exposures, documented over the past century in 

occupational or geographic settings that clearly identified high-level exposure to specific 

environmental agents as strong drivers of cancer risk and incidence3–5.

The recent realization of the much more widespread impact of inherited pathogenic 

mutations in many cancers reflects the development of next-generation sequencing [G] 

(NGS), targeted NGS [G] (t-NGS), whole exome sequencing [G] (WES), whole genome 

sequencing [G] (WGS) and multiplex ligation-dependent probe amplification [G] (MLPA) 

assays that enable the simultaneous analyses of multiple genes in germline and tumor 

DNAs8. Several genes have been identified, that when mutated in the germline or in somatic 

cells confer a higher cancer risk9–11. The current ‘cancer gene census’ of these genes 

(https://cancer.sanger.ac.uk/census) includes > 1% of all human genes, with ~90% 

implicated in cancer by somatic mutations, another 20% implicated by germline mutations, 

often in association with a TPS, and 10% displaying both cancer-associated somatic and 

germline mutations.

Over 100 TPS have been described9,10. Most are caused by heterozygous germline 

mutations. Loss of heterozygosity (LOH), e.g. loss of the remaining wild-type allele, is 

usually observed in the tumors that arise in individuals affected by these syndromes: this is 

considered further proof of causality9,10. This article focuses on a small number of TPSs that 

involve different but mechanistically overlapping processes – DNA repair, microRNA 

processing, genome integrity, cell signaling, and mitochondrial regulated cellular processes 

(Table 1). As many of these TPSs also have known environmental components, they provide 

both distinct and interrelated new opportunities to explore GxE in cancer type-specific risk.

Herein, we outline several TPSs, their underlying genetics and the evidence for 

environmental contributions to cancer risk in order to highlight their potential relevance for 

understanding how and why cancer develops in the general population. Lastly, we discuss 

opportunities for prevention in light of our knowledge of GxE.

Environment, genetics and/or GxE.

Environment and GxE

The most devastating localized cancer epidemic ever described occurred in 3 villages in 

Cappadocia in Turkey where over 50% of the population died of mesothelioma12,13. By 

comparison, the infamous Spanish influenza killed ‘only’ ~20% of the exposed population. 

Mesothelioma has been used for decades as the example of an environmentally-induced 

malignancy because its incidence rose exponentially following the massive use of asbestos 

fibers [G]14 during and after World War II15,16. Nevertheless, only a fraction of heavily 

exposed workers developed mesothelioma: for example, among asbestos miners who had 

worked for over 10 consecutive years in South African amphibole-asbestos mines, only 

~4.6% developed mesothelioma17.
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In Cappadocia, erionite, a fiber similar to asbestos, has been linked to the mesothelioma 

epidemic12,13. In these villages, erionite present in the material used to build homes and dirt 

roads is inhaled and causes mesothelioma18. These findings were puzzling: why was the 

incidence of mesothelioma in Cappadocia so high? Was it because erionite is a much more 

potent carcinogen than asbestos? If so, why was there an excess of mesothelioma and not 

lung and laryngeal cancers - also caused by asbestos - especially since most of the male 

villagers were smokers?12,13. Moreover, most villagers were born, raised and died in these 

villages, so all of them were exposed for decades to the carcinogenic erionite, yet only 50% 

of them died of mesothelioma. Why then did the other 50% of the population not develop 

mesothelioma? And why did the incidence of mesothelioma remain at ~50% among 

villagers who emigrated abroad in their childhood?12,13

Studies of the epidemic in Cappadocia led to the discovery that susceptibility to 

mesothelioma was transmitted in a Mendelian fashion across multiple generations19 and to 

the proposal that it was caused by a GxE interaction12,13. In subsequent investigations in US 

families with a similarly high incidence of mesothelioma but no detectable exposure to 

asbestos, it was discovered that heterozygous pathogenic germline mutations in the BRCA1-

associated protein 1 (BAP1) tumor suppressor gene caused the ‘BAP1 cancer syndrome’ 

(Table 1) characterized by familial clustering of mesothelioma and uveal melanoma 

(UVM)20–23, including bilateral UVM24, and, although less frequently, by other 

malignancies16,21,25–27,28,29.

In vitro experiments revealed that primary fibroblasts derived from carriers of heterozygous 

BAP1 mutations and primary human mesothelial cells from BAP1 wild-type donors with 

down-regulated BAP1 expression were more susceptible than control BAP1 wild-type cells 

to the carcinogenic effects of ionizing radiation (IR), ultraviolet (UV) light and asbestos30. 

Furthermore, 36% of heterozygous Bap1-mutant (Bap1+/−) mice when exposed to low doses 

(0.5 mg) of asbestos developed mesothelioma compared with 8.0% of wild-type 

littermates31. In parallel, in the control groups not exposed to asbestos, 3% of Bap1-mutant 

mice developed spontaneous mesothelioma but wild-type littermates did not32. Taken 

together these are clear indications of a GxE: the combined presence of a germline genetic 

variant and exposure to asbestos fibers together modulate a higher risk of disease than either 

component alone31,32.

Genetics and GxE

In other instances, the genetic component responsible for familial cancer epidemics has been 

discovered first. Individuals with inherited, biallelic BLM and WRN mutations have Bloom 

(BS) and Werner syndrome (WS), respectively, which are autosomal recessive disorders that 

predispose to many cancer types. The BLM and WRN genes encode different RECQ DNA 

helicases [G]. RECQ helicases are known as the ‘caretakers of the genome’ that ensure 

genomic stability by modulating DNA replication, recombination, repair, transcription, and 

telomere maintenance33,34. Increased breaks and gaps in DNA occur spontaneously in BS 

and WS cells, as well as telomeric associations (fusions) of homologous chromosomes. 

These mutations are associated with hypersensitivity to many different chemical classes of 
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common DNA damaging agents, such as DNA topoisomerase I inhibitors, DNA cross-

linking agents and radiation35,36.

WS and BS provided some of the first and strongest evidence to support Boveri’s hypothesis 

that cancer is a genetic disease37. Patients with WS, in addition to their characteristic 

prematurely aged appearance, have an elevated risk of cancer with 22% developing multiple 

malignancies38. A study of the first 100 cancers observed in individuals in the BS registry 

showed that 71 of 168 affected individuals developed cancer at a mean age of 24. Several of 

them developed as many as five independent cancer types; however, some did not develop 

cancer39. Moreover, heterozygosity for BLMASH, a founder mutation present in 1 in 100 

individuals with Ashkenazi Jewish ancestry, may mildly increase the risk of colorectal 

cancer40. Mouse models carrying heterozygous mutations of the adenomatous polyposis coli 

(Apc) tumor suppressor and Blm genes, develop an increased number of intestinal tumors 

compared with wild-type controls41. Together, these observations suggest that the interaction 

of exposure to environmental carcinogens and constitutional genetics modulate cancer risk.

Table 1 includes examples of recessive TPSs in which genomic instability and the rate of 

stochastic events – mutagenesis – can be driven by environmental exposure-dependent DNA 

damage that, when un- or mis-repaired, may lead to mutations.

Key mechanisms

The existence of several TPSs that are caused by germline defects in DNA damage response 

(DDR) genes highlights the critical role of DNA repair in cancer42 (Figure 1). Cancer 

incidence in carriers of pathogenic DDR mutations can be exacerbated by exposure to 

environmental carcinogens that induce genomic instability directly, for example, IR and UV 

light30, or indirectly via chronic inflammation, for example, asbestos and chronic 

infections16,43–46. These same carcinogens can induce cell death, a physiological 

mechanism that eliminates the risk that cells that have accumulated DNA damage propagate 

and give rise to cancer30,31. The importance of cell death in cancer is underscored by the 

observation that cancer cells are more resistant than normal cells to regulated cell death 

often owing to alterations in the mitochondrial control of this process47. Mitochondrial 

alterations may also induce a metabolic switch from mitochondrial respiration [G] to aerobic 

glycolysis (Warburg effect; Box 1). Cancer growth is facilitated by aerobic glycolysis that 

provides the building blocks required for rapid cell proliferation and allows tumor cell 

growth in a hypoxic environment48,49, (Figure 2). Accordingly, mutations in genes that 

regulate either the DDR, cell death or cell metabolism account for most TPSs.

Highly penetrant germline mutations

Mutations in the genes encoding p5350 and BAP122,31,32 are powerful inducers of cancer in 

humans and mouse models largely because they simultaneously impair DNA repair by 

homologous recombination [G] (HR)50,51, cell death30,52,53 and mitochondrial 

respiration54–56 (Box 1). Heterozygous dominant mutations of TP53 and BAP1, cause the 

Li-Fraumeni syndrome (LFS)57–59 (Table 1), and the BAP1 cancer syndrome20,21 (Figure 

2), respectively. TP53 and BAP1 heterozygous mutations appear to facilitate LOH, since 

tumor cells characteristically show bi-allelic inactivating mutations that in the case of TP53, 
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may include dominant-negative mutations60,61. Because TP53 and BAP1 heterozygous 

germline mutations cause cancer in close to 100% of mutation carriers, they are usually 

referred to as cancer syndromes. TP53-mutation carriers exhibit an ~85-fold risk of 

developing multiple cancers57–59; multiple cancers are also frequent in BAP1-mutation 

carriers16,28,29. However, there are some notable differences. Breast cancer, brain tumors, 

sarcomas and adrenocortical carcinomas are the most common cancers in patients with 

LFS57–59, whereas mesothelioma, UVM, cutaneous melanoma, and clear cell renal cell 

carcinoma (ccRCC) are most common in BAP1 mutation-carriers16,28,29. Most cases of LFS 

are inherited, although 20% are caused by de novo mutations present in the patient’s 

germline but not detected in their parents62. In contrast, all cases of BAP1 cancer syndrome 

defined to date reported high cancer incidence through multiple generations, some dating 

back to the 16th century26. Inactivating, somatic (acquired) TP53 mutations are common in 

most carcinomas, while biallelic somatic BAP1 mutations are frequent only in the same 

tumor types found in individuals affected by the BAP1 cancer syndrome, including ~90% of 

metastatic UVMs63, >60 of mesotheliomas64,65, and ~11% of ccRCCs66,67.

The different tumor phenotypes caused by TP53 and BAP1 mutations underscore that the 

effects of many mutations are influenced by tissue type and species (e.g. human versus 

mice). Moreover, intragenic polymorphisms, mutations, polymorphisms of genes in the p53 

regulatory pathway, DNA methylation, altered expression of microRNAs, copy number 

variation, telomere attrition, and exposure to environmental carcinogens, can all modify the 

LFS phenotype68. The BAP1-mutant phenotype is simpler, as nearly all pathogenic BAP1 
mutations are either truncating mutations28,29 with loss of the nuclear localization signal 

situated near the carboxy-terminus of BAP1 or, less frequently, are mutations in the catalytic 

domain that impair the ability of BAP1 to auto-deubiquitylate itself, a process required for 

BAP1 nuclear translocation28,29,69. Therefore, BAP1 mutations redirect mutant BAP1 

proteins to the cytoplasm where they are degraded16,70.

Humans or mice harboring TP53 or BAP1-mutations are extremely susceptible to the 

carcinogenic effects of IR30,71, UV radiation30,72, asbestos30,31,73, and patients with LFS to 

tobacco-related carcinogenesis74. Analysis of dermal-derived fibroblasts or lymphocytes 

from patients with LFS harboring TP53 heterozygous mutations revealed striking 

differences from normal cells in terms of chromosomal stability, apoptotic response to IR, 

G2 arrest after DNA damage, and gene expression profiles75. Similar to BAP1 mutations, 

analysis of TP53 mutations showed a connection between UV exposure, DNA damage, and 

skin carcinogenesis including melanoma76. Heterozygous Trp53-mutant mice have greatly 

increased susceptibility to UV-induced skin cancer, with homozygous Trp53 knockout mice 

even more susceptible77. Both p53 and BAP1 activity eliminate precancerous cells in 

response to DNA damage. When this response is reduced by a TP53 or BAP1 mutation, UV, 

IR and asbestos exposure can induce clonal expansion of the mutated cells with a higher risk 

of overt cancer formation30,72. Accordingly, Trp53-heterozygous mice77 and primary 

patient-derived LFS and BAP1-mutant cells exhibit reduced UV- and IR-induced 

cytotoxicity and apoptosis30,78. The frequency of spontaneous tumors is greatly enhanced by 

exposing p53-deficient mice to a single dose of IR79, and radiation-associated secondary 

cancers are common in patients with LFS71,80.
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Smokers with germline TP53 mutations are at higher risk of lung cancer81, and mice 

carrying a mutant Trp53 transgene become sensitive to cigarette smoke74. These mutant 

mice showed a significant age-related increase of unrepaired DNA adducts. Moreover, 

whereas wild-type mice exhibit a significant increase in apoptotic cells in the bronchial 

epithelium, the mutant mice did not undergo extensive cigarette smoke-induced apoptosis, 

indicating that the loss of p53 contributes to genomic instability by permitting inappropriate 

survival of cells that would normally undergo apoptosis following DNA damage74. Similar 

results were obtained in p53-mutant versus wild-type mice treated with the tobacco-related 

carcinogens benzo[a]pyrene or 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone82. 

Moreover, benzo[a]pyrene–DNA adducts were found at a higher frequency in the liver and 

kidneys of p53-null mice, indicating that xenobiotic metabolism might also be influencing 

GxE in other organs83. Further underscoring GxE, aflatoxin B1, a food contaminant and 

potent hepatocarcinogen, is capable of immortalizing skin fibroblasts from patients with LFS 

but not cells from TP53 wild-type individuals84.

Different DNA repair mechanism defects underscore GxE in carcinogenesis.

Nucleotide excision repair [G] (NER) includes several pathways by which cells repair or 

bypass large DNA adducts that distort the DNA backbone and block transcription85. The 

importance of NER damage recognition mechanisms is exemplified by two hereditary 

diseases: xeroderma pigmentosum (XP) and Cockayne syndrome (CS)86. XP individuals 

have a >10,000-fold risk of developing squamous cell carcinoma (SCC) and melanoma 

when exposed to sunlight87. Intriguingly, CS is not associated with cancer (Table 1).

The initial damage recognition proteins of global genome repair [G] (GGR), xeroderma 

pigmentosum complementation group C (XPC) and DNA damage binding protein 2 (DDB2 

also named XPE) bind to damage that disrupts base pairing within DNA (part of the GGR 

pathway). CS proteins (CSA & CSB) and UV-sensitive syndrome protein (UVSSA) relieve 

arrested RNA polymerase II at sites of damage as part of transcription-coupled repair [G] 

(TCR). Subsequently, the GGR and TCR pathways converge on a common pathway that 

involves incision with damage removal, re-synthesis and ligation to restore the DNA damage 

site. Mutations in genes encoding the components of this common downstream pathway, 

XPB, XPD, XPA, XPF, and XPG, are associated with diseases such as trichothiodystrophy 
86 (Figure 3). Only biallelic mutations in XPC and other genes encoding proteins involved in 

NER have disease consequences.

Patients with XP with mutations in the XPC or XPE genes retain active TCR but show 

elevated mutation frequencies that lead to SCC and melanomas following sun exposure88. 

The UV-specific mutations in SCCs originate from unrepaired UV photoproducts in non-

transcribed genome regions and the non-transcribed strands of expressed genes88. However, 

SCCs from patients carrying mutations in XPC show no increased mutations in transcribed 

strands. Therefore, efficient TCR does not protect against SCC formation in patients with 

mutated XPC.

Patients with CS with mutations in the Cockayne syndrome-type A (CSA; also known as 

ERCC8) or CSB (also known as ERCC6) genes have reduced TCR and display a wide range 

of developmental and neurological symptoms, though do not develop cancer despite severe 
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photosensitivity89. Cells from patients with CS in vitro show no elevation of UV-induced 

mutagenesis90. A related, mildly photosensitive disease, ultraviolet sensitive syndrome 

(UVS), also characterized by a deficiency in TCR, is associated with mutations in the gene 

UV-stimulated scaffold protein A (UVSSA) or occasionally CSA or CSB, but has no 

developmental or neurological symptoms. Patients homozygous for this mutation do not 

develop skin cancers91. In vitro analysis of primary cells with mutations in CSA, CSB or 

UVSSA revealed that they are essentially identical in sensitivity to most transcription-

blocking DNA damage, but differ in their response to reactive oxygen species (ROS)92,93. 

Whereas cells mutant in CSA or CSB are sensitive to ROS, cells with mutations in UVSSA 
are not, suggesting that the development and neurological pathologies have their origins in 

an altered response to ROS.

Mutation avoidance in CS is postulated to occur through arrested transcription that generates 

an R-loop, consisting of separated DNA strands and a nascent mRNA strand hybridized to 

the template strand94,95. R-loops lead to S phase arrest with activation of ataxia 

telangiectasia mutated (ATM), the DNA damage transducing kinase that causes a delay in 

DNA replication until damage is removed from the template strand and transcription 

resumes96,97; if the damage is not repaired, cell death is triggered. Resumption of replication 

signals that DNA repair was successful with no concomitant mutagenesis94,95. The delay in 

replication in cells from patients with CS prevents replication with the creation of mutations, 

explaining the absence of tumors in UV-damaged skin from patients with CS.

The involvement of an ATM-dependent signaling pathway in CS is likely to cause variations 

in signaling according to cell type and species that confer different levels of avoidance of 

mutagenesis and carcinogenesis. For example, transfection of plasmids that contain DNA 

damage into cells from patients with XP or CS results in elevated mutations in the plasmids, 

suggesting that the damaged plasmid does not induce an ATM-dependent replication delay 

in either cell type98. In contrast, rodent cells and mice with CS-type mutations exhibit 

increased mutagenesis and increased cancer incidence99,100. Since rodent cells naturally 

have much reduced GGR, mutation of the rodent Csa or Csb genes effectively creates 

rodents with defects in both GGR and TCR leading to greater mutagenesis and cancer 

incidence after UV irradiation100. These data underscore how differences in DNA repair 

mechanisms among species can significantly influence environmental carcinogenesis.

Mutations of different genes along the same pathway can lead to the same TPS

Lynch syndrome (LS) is the most common autosomal dominant TPS. It is caused by 

germline mutations of several DNA mismatch repair (MMR) genes101 (Table 1). The role of 

MMR is to repair base misincorporation errors made during DNA replication by the 

replicative DNA polymerases, thus preventing these errors from becoming fixed as 

mutations. Therefore, LS is characterized by high mutation rates leading to cancer102. The 

mutS homolog 2 (MSH2)–MSH6 complex primarily recognizes base–base mispairs and 

small insertion or deletion mispairs, whereas the MSH2–MSH3 complex more broadly 

recognizes insertion or deletion mispairs as well as some single base mispairs103,104. The 

two heterodimers, MSH2–MSH6 and MSH2–MSH3, in the presence of ATP and a mispair, 

recruit MutLα a third heterodimer of the mutL homologue 1 (MLH1) and postmeiotic 
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segregation increased 2 (PMS2) proteins with activation of an intrinsic endonuclease that 

makes a strand-specific, single strand break in DNA. Mispair excision can then be initiated 

by exonuclease 1 (exo1), although exo1-independent mispair excision mechanisms exist105. 

Mutations in the MMR genes (MLH1, MSH2, MSH6 and PMS2) impair the function of 

their encoded proteins, altering their recognition and repair of mismatched nucleotides and 

of insertion or deletion loops101.

Patients affected by LS account for about 3%−5% of all colorectal cancers106. In addition, 

LS carriers have a higher risk of developing many other different cancer types. Their lifetime 

risk of developing endometrial cancer is estimated at 27%−71%, cancers of the stomach and 

ovary at 2%−13%, and lower frequencies for other cancer types but still elevated above the 

risk for normal individuals107. The clinical expression of LS is geographically variable: LS 

families in Asia develop stomach cancer more frequently than families in Western countries, 

pointing to differences in GxE in determining the tumor phenotype108,109. The penetrance 

[G] of LS varies substantially depending on the person’s gender, which MMR gene is 

mutated, and is highly variable across carriers with mutations in the same MMR gene101. 

These variations suggest that environmental factors, or possibly additional genetic variants, 

play a critical role in tumor development in LS. Dietary and lifestyle factors that are known 

to be relevant in sporadic colorectal carcinogenesis influence the development of colorectal 

cancer in patients affected by LS110,111, since it is possible to reduce its incidence by 

reducing chronic inflammation112,113.

Fanconi anemia (FA) is an autosomal recessive (in rare instances X-linked recessive) DNA 

repair deficiency, characterized by hypersensitivity to DNA crosslinking agents114,115 (Table 

1). FA is linked to inherited biallelic inactivation of any one of 23 FA genes whose protein 

products are involved in DNA repair. The 23 FA proteins, along with FA-associated proteins 

(FAAPs), interact in a common cellular pathway to repair DNA interstrand cross-links [G] 

(ICLs) known as the FA pathway or the FA–BRCA pathway114. The pathway involves the 

detection of the DNA crosslink at the stalled replication fork, the excision of the crosslink, 

the local generation of a double strand break, and the use of HR proteins downstream to 

repair the break. Disruption of the FA pathway results in chromosome instability, sensitivity 

to DNA cross-linking agents, and the clinical features of FA. Cancer is linked to the 

increased susceptibility of patients with FA to the DNA-damaging action of environmental 

carcinogens, including IR, UV light and chemotherapeutic agents114,115. Based on mouse 

modeling, it can be predicted that patients with FA have an increased sensitivity to DNA 

damage generated by intrinsic and environmental aldehydes116,117. Aldehydes may have an 

intrinsic source, resulting from normal metabolism, or may have an extrinsic source, such as 

from the diet or from alcohol consumption. Formaldehyde, for example, is a naturally 

occurring compound, and humans produce it as part of normal metabolic pathways. Also, 

formaldehyde can be inhaled, rapidly metabolized, and exhaled as carbon dioxide114,115. 

Patients with FA are strongly predisposed to head and neck squamous cell cancers, many of 

which originate in the oral cavity and, accordingly, these patients are advised to limit their 

environmental aldehyde and alcohol exposure. However, the relative contribution of human 

papillomavirus (HPV) infection, another potential co-carcinogen versus these other 

environmental exposures remains to be defined118,119. Finally, patients with FA who carry 

the common dominant-negative allele of the aldehyde-catalyzing enzyme aldehyde 
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dehydrogenase 2 (ALDH2) (the ALDH2*2 or alcohol-induced flushing variant) have a 

deficiency in aldehyde clearance and a more severe and rapidly progressive disease course 

with an acceleration of bone marrow failure120. The clinical manifestations of these patients 

further underscore the importance of the FA pathway in repairing aldehyde-associated DNA 

damage.

Tumors in patients with tuberous sclerosis complex (TSC; an autosomal dominant disease) 

develop because of inactivation of both alleles of either TSC1 (also known as hamartin) or 

TSC2 (also known as tuberin)121,122, with the germline mutation inactivating one allele of 

TSC1 or TSC2 and a somatic event inactivating the remaining wild-type allele (Table 1). 

TSC1 and TSC2 form a complex that negatively regulates mTOR complex 1 (mTORC1), a 

master regulator of cellular growth and metabolism122,123. Loss of function of the TSC1–

TSC2 complex results in aberrant activation of mTORC1, which promotes the synthesis of 

lipids, nucleotides and proteins while inhibiting autophagy123. Facial angiofibromas in 

patients with TSC represent one of the most compelling examples of GxE in inherited TPSs. 

Tyburczy et al.121 found that of the somatic point mutations identified in fibroblasts from 

skin tumors from patients with TSC, 50% were CC>TT UV ‘signature’ mutations, which 

have never been observed as germline mutations in TSC. These results implicate UV-

induced DNA damage as a cause of second-hit mutations and the development of facial 

angiofibromas, and suggest that measures to limit UV exposure may reduce these often 

disfiguring tumors found in ~80% of patients121. The wide range of tumors in other organs 

suggests that environmental factors could play a broader role in TSC, but this is not yet 

proven. For example, the number of renal angiomyolipomas tends to be similar between the 

two kidneys of an individual patient, but varies widely between patients, even within family 

members carrying the same germline mutation (E.P.H., personal observation).

Eker rats carry a heterozygous Tsc2 germline mutation, and were the first instance of a 

dominantly-inherited cancer predisposing gene identified in a naturally occurring animal 

model. Eker rats develop renal preneoplastic and neoplastic lesions124, and are highly 

susceptible to renal carcinogens (such as dimethylnitrosamine). Eker rats were used to show 

that GxE during development can enhance the penetrance of a tumor suppressor gene defect 

in the adult. This is different from ‘traditional’ GxE that facilitate or inhibit the acquisition 

of additional somatic mutations required for tumorigenesis125.

The finding that mutations of different genes along a specific pathway produce the same 

TPS, as shown in the three examples reviewed above, underscore the importance of 

elucidating mechanisms to identify common preventive and therapeutic approaches to which 

carriers of these mutations may be most susceptible (see below).

Evidence of GxE in all TPSs

For several germline mutations associated with increased cancer risk, the possible role of 

GxE remains to be investigated. For example, patients with Birt-Hogg-Dubé syndrome 

(BHD) (Table 1), an autosomal dominant inherited disorder caused by germline mutations in 

the folliculin (FLCN) gene126, develop renal cancers subsequent to inactivation of the wild 

type allele in 12%−34% of affected patients at the early age of 46–52126,127. Individuals 
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within families who share the same FLCN alteration or between families who harbor the 

same FLCN mutation may or may not develop renal cancer, or the benign cutaneous and 

pulmonary manifestations associated with this syndrome. These observations suggest that 

environmental factors likely contribute to the phenotypic heterogeneity observed in BHD.

Similarly, individuals affected by the autosomal dominant hereditary ‘DICER1 syndrome’ 

(Table 1) can develop one or more tumor types, mostly rare cancers occurring in the 

pediatric and adolescent age ranges128. However, most mutation carriers never develop 

cancer. As some DICER1 syndrome-associated tumors arise in utero,129 post-natal 

environmental influences are likely minimal in these cases. However, factors that regulate 

DICER1 expression post-natally may influence the risk of lung cancer as well as other 

cancers associated with DICER1 syndrome130. For example, one study showed that 

macrophages from the lungs of smokers exhibited down-regulation of multiple miRNAs, 

which was mediated by SUMOylation [G] of DICER1131.

Studying GxE in cancer risk

The variable occurrence of cancer in TPS pedigrees provides the opportunity to use 

pathogenic TPS variants to anchor the search for additional genetic modifiers or 

environmental exposures that drive cancer risk132. The rapidly developing field of 

mutational signatures121,133 is one example of a powerful new approach to assess genetic 

and environmental contributors to cancer risk in TPSs, as well as in the general population. 

Specific mutational signatures (recurrent mutation types or patterns) have been strongly 

associated with germline variants in TPSs134–137 that modify DNA repair pathways and with 

the mutational consequences of exposure to DNA-damaging environmental agents such as 

UV light138, tobacco carcinogens139 and environmental toxins138. Additional approaches to 

characterize an individual’s ‘exposome’ - the diversity and amount of all exposures, from 

conception to death140–146 - should help better define individual cancer incidence or cancer 

type-specific risk as a function of genotype. Alterations in global and gene-specific 

methylation have also been linked to environmental exposures to carcinogens143–145. By 

modulating gene expression, alterations in gene methylation may contribute to 

carcinogenesis, especially those that occur during the prenatal period and childhood, because 

they appear more stable than those occurring later in life145. Therefore, the carcinogenic 

effects of environmental pollutants may be influenced by the age at which the exposure 

occurs. This may account, at least in part, for observations in which genetically predisposed 

individuals who were exposed to environmental carcinogens for a relatively brief period of 

time early in life, had the same incidence of cancer as those exposed for their entire life12,13.

Exposure and mechanism revealing assays of the types described above have the potential to 

better define the contribution of exposure-associated mutagenic and epigenomic 

contributions to population-level cancer risk, as well as cancer type- and tissue-specific 

risks134,138,147. These exciting possibility are being further enabled by the assembly of large, 

epidemiologically well-defined and characterized populations as part of the 100,000 

Genomes148, the UK Biobank149,150 and All of Us151 Projects, and the growing assemblies 

of large, well-documented cancer resources provided by TCGA, ICGC and related projects.
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Conventional wisdom states that gene mutations cause or predispose to cancer. What if some 

mutations are instead protective? One might imagine so, and conceivably, those genes might 

function not only in immunity but also in the development of tumor vasculature, the 

promotion of metastasis, and other known processes in the pathogenesis of cancer. Inbred 

mice allow us an opportunity to identify host factors that confer resistance, as well as 

susceptibility to cancer. Ninety-nine percent of human genes have homologs [G] in mice, 

and 80% have orthologs [G]; moreover, 90% percent of the mouse genome exists in 

segments in which the gene order has been conserved with that in the human genome152. 

Thus, many discoveries made using mice have had corresponding implications in humans. 

Using a mouse mutagenesis protocol in which germline mutations are randomly induced 

with a chemical mutagen (http://mutagenetix.utsouthwestern.edu), an unbiased forward 

genetic approach (from phenotype to gene) has been developed to facilitate the 

understanding of the genetic basis of human biology and disease, including cancer153. Using 

this approach, mice that show variant phenotypes are created by injecting animals of the 

initial G0 generation with the chemical N-ethyl-N-nitrosourea (also known as ENU), a 

powerful mutagen for mouse spermatogonial cells154. The mutational causes of phenotypes 

are determined computationally, by automated meiotic mapping performed concurrently 

with phenotypic screening (Figure 4). In this way, the molecular cause of a newly observed 

phenotype can be established in real time153,155.

This provides the stage for the more demanding task of using forward genetics to identify 

genes and mutations that suppress disease phenotypes (Figure 4). Proteins encoded by genes 

that harbor suppressive alleles once identified, might then be pursued as drug targets153. For 

example, the central role of interleukin-33 (IL-33) signaling in the pathogenesis of 

myeloproliferative neoplasms (MPNs) was discovered because the genetic ablation of the 

IL-33 signaling pathway was sufficient and necessary to restore normal hematopoiesis and 

abrogate MPN-like disease in mice lacking SH2 domain-containing inositol 5’-phosphatase 

(SHIP)156. Additionally, in the transgenic Janus kinase 2 (JAK2)V617F (a mutation often 

found in BCR–ABL1–negative MPNs) mouse model, the onset of MPN was delayed in 

animals lacking IL-33 in radiation-resistant cells156. The identification of cancer resistance 

genes in this way is likely just a beginning, as saturation of the germline genome remains at 

less than 5% (B.B. personal observation).

Taken together, GxE seen in TPSs are much easier to study in mice than in humans. In mice, 

environmental and genetic variables are largely controllable. This includes control of the 

microbiome if necessary, through generation of gnotobiotic mice. Nonetheless, some tumors 

and some environmental conditions exist only in humans. A unified approach may be the 

best, wherein TPSs detected in mice are actively sought in human populations, and mouse 

models of human TPSs are actively created to study mechanisms and for preclinical studies.

Opportunities for prevention and therapy

Mechanistic insight into the contributions of individual genetic and environmental 

components is providing vital information to design preventive and targeted therapeutic 

approaches at the individual and at population-level.
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The increased susceptibility of TP53+/−, BAP1+/− and XPC−/− mutation carriers to 

environmental carcinogens justifies measures to eliminate or reduce known, cancer-

associated exposures in order to prevent or delay cancer onset. This may include avoiding 

certain jobs and living in geographical areas that are likely to be associated with low 

asbestos exposure or less intense sun exposure. Radical measures to prevent mesothelioma 

in genetically predisposed individuals were taken in Cappadocia, where two new erionite-

free villages were built and villagers relocated12,13.

Moreover, enrollment in early detection cancer screening programs and the parallel 

implementation of preventive measures, such as screening with ultrasound and magnetic 

resonance imaging (MRI), rather than computed tomography (CT) imaging to diminish the 

risk of cancer caused by diagnostic IR, together with surgical removal of pre-malignant 

lesions and of early-stage tumors, has significantly increased survival in for example, 

patients with LS157–159, BRCA1 or BRCA2 mutations160, or LFS58,161,162. Thus, patients 

with LS or LFS and BRCA1 or BRCA2 carriers, once identified, can begin these potentially 

life-saving procedures. Similar data for other syndromes are becoming available and support 

the widespread value of preventive or early detection programs16. For example, several 

patients with BAP1-mutations enrolled in screening programs were diagnosed with 

melanoma and cured by surgical excision, and others diagnosed with very early-stage 

mesothelioma exhibited long-term survival16,163. Although the prolonged survival - 5–10+ 

years for mesotheliomas occurring in carriers of germline BAP1 mutations, versus 1 year in 

sporadic mesothelioma16 - may be partly related to screening and early detection, better 

survival in patients carrying germline BAP1 mutations predates the discovery of the BAP1 
cancer syndrome, pointing to differences in tumor biology and/or the 

microenvironment164,165.

Individuals with germline TP53 mutations have increased oxidative metabolism55 (Box 2). 

Amongst its various metabolic effects, metformin inhibits mitochondrial respiration [G]. The 

pharmacological attenuation of mitochondrial function in a mouse model of LFS using 

metformin at a therapeutic dose equivalent to that used in humans resulted in a 22% increase 

in cancer-free survival (n=21 mice), suggesting that external modulation of mitochondrial 

metabolism in LFS could be beneficial for cancer prevention166. In a proof-of-concept 

clinical study, treating patients with LFS with metformin decreased mitochondrial function 

in their blood and muscle cells and induced biomarkers similar to those associated with 

increased survival in the mouse model of LFS166. Furthermore, it would be worthwhile to 

investigate whether patients with LFS benefit from metformin and mild hypoxia that 

concomitantly decreases respiration and oxygen toxicity.

The TP53R337H mutation present in ~0.3% of the population of Southern Brazil167,168, gives 

rise to a form of LFS frequently characterized by pediatric adrenocortical carcinoma. The 

R337H residue substitution is in the C-terminal oligomerization domain of p53 and is 

thought to decrease the stability of the active form of p53, a homotetramer, in a pH-

dependent manner169. Although the Trp53R334H mouse model (homolog of human 

TP53R337H) did not have increased cancer incidence, exposure to the environmental 

carcinogen diethylnitrosamine increased liver carcinogenesis in association with decreased 

p53 oligomerization167,168,170. The adrenal glands have a high tissue concentration of 
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ascorbic acid (vitamin C) and, notably, TP53R337H carriers have decreased plasma ascorbate 

levels due to increased oxidative stress171. Thus, mutant p53 oligomerization in the adrenal 

glands of R337H mutation carriers might be further compromised by vitamin C deficiency. 

It is tempting to speculate that environmental changes, such as alterations in dietary vitamin 

C intake or lactate production by inhibition of respiration with metformin, may affect p53 

activity and cancer development. The presence of TP53 and BAP1 mutations may also help 

inform therapy: defective DNA repair leads to chromosomal instability and higher 

mutational load30,172, which potentially provides a rationale for patient stratification with 

regard to immunotherapy16.

Mutagenesis is promoted by chronic inflammation-associated ROS production, and this may 

cooperate with inflammatory cell release of cytokines to promote tumor growth173. This 

knowledge led to chemo-prevention trials that demonstrated how daily aspirin intake, by 

reducing inflammation in the colon, significantly reduced the incidence of colon cancer in 

LS carriers112,113. Specifically, in the Colorectal Adenoma/carcinoma Prevention Program 

(CAPP2) randomized study, high doses of daily aspirin taken by patients with LS resulted in 

a 63% reduction in the relative risk of developing colorectal cancer112. Further support for 

the preventive effect of aspirin in cancer comes from experiments in vitro and in 
vivo174,175,176. The chemo-preventive activity of aspirin has been linked to its ability to 

simultaneously inhibit cyclooxygenase 2 (COX2) and high mobility group B1 (HMGB1) 

activities43 and to its anti-proliferative and apoptosis-inducing activities177. These findings 

underscore the value of reducing the contributing role of environmental factors causing 

chronic inflammation to prevent cancer, especially in genetically predisposed individuals. 

Moreover, patients with LS may benefit from immunotherapy (programmed cell death 

protein 1 (PD1) and PD1 ligand 1 (PDL1) approaches) because of the very high mutation 

burden in their tumors178.

The discovery of the links between the TSC1–TSC2 complex and mTORC1 activation in 

Drosophila122, represents another excellent example of how understanding basic signaling 

mechanisms can lead to high-impact advances in clinical practice. The role of TSC1 and 

TSC2 proteins in inhibiting mTORC1 led to studies that demonstrated a clinical benefit 

associated with the mTORC1 inhibitor sirolimus (rapamycin)122. Patients with TSC benefit 

from treatment with mTORC1 inhibitors (rapalogs, i.e. sirolimus and everolimus)179, though 

their primarily cytostatic effect (the tumors regrow upon treatment discontinuation) requires 

lifelong therapy.

Recognition of the causative role of germline mutations in cancer initiation and tumor 

progression identifies these genes and mutations as high-value therapeutic targets. More 

detailed data may reveal specific genetic or metabolic vulnerabilities that could be harnessed 

to prevent or treat the associated cancer(s). Moreover, mutation-targeted therapies have a 

higher likelihood to be beneficial to carriers of pathogenic germline mutations where key 

pathogenic mutations and their consequences are known. Many clinical trials targeting 

specific pathways in different cancer syndromes are ongoing (for example, 

NCT03207347180, NCT01981525181 and NCT03448718182), and information from these 

trials will likely inform the use of similar therapies in sporadic malignancies carrying the 

equivalent acquired mutations.
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Conclusions

Many – if not most – cancers are a consequence of GxE. The differential contribution of 

genes or environment is most obvious when one or the other component most strongly drives 

cancer risk. However, carcinogenesis is often a long process: spontaneous and 

environmentally-induced mutations can accumulate over the course of decades, with many 

cancers only becoming clinically overt 20 or more years after first carcinogen 

exposure16,139,183–185. This long timespan for most cancers makes it difficult to clearly 

identify ‘causative’ mutations, and the timing of critical mutational events, or strongly 

promoting environmental exposures.

Recent data indicate that about 12% of cancers develop in carriers of pathogenic germline 

mutations, mostly of genes that regulate DNA repair and cell death186–188. This percentage 

is likely to grow with additional analyses of cancer patients and experimental forward 

genetics studies of cancer predisposition in mice. These germline mutations might accelerate 

the accumulation of DNA damage as cells divide with age, and/or in response to 

environmental mutagen or carcinogen exposure. TPSs offer the unique opportunity to study 

cancer in a setting in which the initiating genetic event is known. LOH occurs in most of 

these malignancies, further proof of the key oncogenic role of these mutations in driving 

tumor growth. Many of these syndromes can lead to tumors in multiple organs, allowing 

GxE to be addressed in multiple cellular contexts within a defined genetic background. A 

subset of these exposures may be identifiable by virtue of their ability to generate an agent 

or exposure-specific mutational signature138.

The studies of GxE are helping us to solve the question of why some individuals do - and 

most do not - develop cancer when they have comparable exposures to any given carcinogen. 

Information on GxE allows us in turn to tailor prevention and early detection to those who 

need it the most. We need to identify the exposures and the mechanisms that make carriers 

of these mutations more susceptible to cancer and also to other diseases and develop and 

implement prevention strategies. At times this is simple and the information is already 

available. For example, recent discoveries linked specific mutations to increased individual 

susceptibility to various infectious agents: by avoiding travel in areas where these pathogens 

are prevalent, mutation carriers can reduce their risk of life-threatening infections189,190. 

Similarly, we have already accumulated a wealth of knowledge that allows us to start 

implementing lifesaving approaches for carriers of pathogenic germline mutations, as 

discussed in this article with respect to cancer (see, “Opportunities for Prevention and 

Therapy”). It is now time to translate this knowledge into preventive and early detection 

strategies to save lives on a larger scale. However, to make a global impact and reduce the 

cancer burden, we need widespread genetic testing to identify those who carry pathogenic 

germline mutations.

Access to germline testing varies depending on regional availability and insurance coverage. 

In the US, free germline genetic testing for patients with cancer and other diseases is offered 

in only a few institutions, and is otherwise unavailable or expensive and often not covered by 

health insurance. Therefore, presently we are not identifying most germline mutation 

carriers: these individuals are unaware of their increased cancer risk and susceptibility to 
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carcinogens. This creates an obvious yet unrecognized health disparity: many lives that 

could be saved from cancer are not. For example, the median age for colorectal cancer 

diagnosis for patients with LS and for breast cancer in BRCA1 or BRCA2 carriers is 45 

years old, at or before the age at which colonoscopy and mammography screening, 

respectively are recommended. Therefore, many patients with LS and BRCA1 or BRCA2 
carriers, among others, cannot benefit from surgery or therapy, unless the mutation is 

identified through screening at an earlier age.

To address this challenge, the Healthy Nevada Project (HNP)191, sponsored by the State of 

Nevada and by Renown Health, is conducting free WES and providing free genetic 

counseling to an initial 125,000 individuals living in the state on a voluntary basis until the 

quota is reached. Sequencing may be extended to the entire State population depending on 

additional funding. Leveraging this unique resource with separate grant funding has allowed 

the HNP cohort to be investigated for evidence of GxE that may lead to preventive and early 

detection measures. It is anticipated that similar initiatives will soon be started elsewhere, 

and that genetic screening together with studies of GxE contributions to common adult 

cancers will help save lives, reduce health care costs and provide a major boost in our battle 

with cancer.

In summary, TPSs provide the opportunity to dissect key mechanisms and events in 

carcinogenesis, and the contributions of GxE that modulate cancer risk and the cancer 

phenotype. This knowledge in turn, is improving our ability to prevent cancer, to detect 

cancer at an early stage when it is often curable by surgical resection (melanoma, colon and 

breast cancer, etc.,), and to design specific therapies to target the mechanisms and 

interactions that give rise to cancer and that promote cancer progression.
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GLOSSARY:

Asbestos fibers
For regulatory purposes, 6 out of approximately 400 mineral fibers naturally present in the 

environment were collectively named ‘asbestos’ and their use prohibited or severely 

restricted in the past decades in the US, Australia and Western Europe. The remaining ~394 

mineral fibers are not regulated and thus can and have been used causing human exposure 

and mesothelioma: among them erionite.

Base excision repair (BER)
This repair system removes single base damage from alkylating agents or reactive oxygen 

species. One branch consists of a glycosylase that cleaves the base-deoxyribose bond leaving 

an apurinic site that is subsequently cleaved and replaced by a small 1–2 base patch. 

Formation of a longer patch branch involves the activity of CSB, XRCC1 and PARP1.

Cancer syndrome
Those TPS in which close to 100% of carriers develop one or more cancers during their 

lifetime. Examples include Li-Fraumeni syndrome (~95% of women carriers develop 

cancer) and the BAP1 cancer syndrome (~100% of carriers develop cancer), which are 

caused by heterozygous autosomal dominant mutations of the TP53 and BAP1 genes, 

respectively.

DICER1
An endonuclease implicated in microRNA biogenesis and the specific regulation of mRNAs. 

This mainly cytoplasmic enzyme cleaves precursor hairpin microRNAs to produce mature 

microRNAs (known as 5’-miRNA and 3’-miRNA, one of which will be loaded onto the 

RNA Induced Silencing Complex (RISC), ultimately resulting in down-regulation or 

silencing of the targeted mRNAs.

DNA helicases
Enzymes that unwind the two strands of the DNA helix, a process needed for all aspects of 

DNA metabolism that in turn is important for DNA replication and repair.

DNA interstrand cross-links (ICLs)
Covalent bonds between bases on opposite strands of DNA.

Global genome repair (GGR)
A branch of NER that predominantly occurs in nontranscribed DNA and nontranscribed 

strands of expressed genes. Damage recognition involves two DNA binding proteins, XPE 

and XPC. Subsequent steps involving DNA unwinding, incision, polymerization and ligation 

are common to GGR and transcription-coupled repair (TCR).

Homologous recombination
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This process is essential for the repair of double-stranded DNA breaks and consists of an 

exchange or replacement of a segment of parental DNA with a segment having the 

homologous sequence from a partner DNA.

Homologs
Genes related to second genes by descent from a common ancestral DNA sequence.

Mitochondrial respiration
Also referred to as oxidative phosphorylation (OXPHOS), is a process that takes place in the 

mitochondria and provides the major source of ATP in aerobic organisms.

Mitophagy
Autophagic removal of damaged mitochondria.

Multiplex ligation-dependent probe amplification (MLPA)
This is a multiplex polymerase chain reaction method used to detect larger DNA deletions 

and copy number variations, which are often missed by next-generation sequencing and 

Sanger sequencing.

Next generation sequencing (NGS)
A high throughput sequencing technique that allows rapid simultaneous sequencing of the 

DNA or RNA of multiple genes. Designed to detect nucleotide level mutations, it largely 

replaced manual Sanger sequencing, although this is used to confirm pathogenic mutations 

detected by NGS.

Non-homologous end joining (NHEJ)
An error prone DNA double strand break repair process that entails rejoining of DNA breaks 

without reliance on a homologous template.

Nucleotide-excision repair (NER)
The process by which ultraviolet light induced DNA lesions and other large adducts such as 

from AAF or B(a)P are repaired.

Orthologs
Genes in different species that evolved from a common ancestral gene by speciation. 

Usually, orthologs retain the same function in the course of evolution.

Penetrance
The likelihood that a person who has a certain disease-causing mutation in a gene will show 

signs and symptoms of the disease.

Spliceosome
Molecular complex involved in removing introns (intervening sequences between coding 

sequences) from the primary RNA transcript

SUMOylation
A process by which proteins are post-translationally modified, by the covalent addition of 

Small Ubiquitin-like Modifier proteins through lysine side chains, resulting in a remodeling 
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of the surface of these proteins, thereby affecting their function in three main ways: through 

inhibition of the usual interaction between the target of sumoylation and another protein, 

through provision of a new binding surface, and through conformational changes in the 

target protein.

Targeted NGS (tNGS)
These are commercial or custom gene panels that target the exons of specific sets of genes, 

for example all tumor suppressor genes.

Transcribed coupled repair (TCR)
A branch of NER that predominantly occurs on the transcribed strand of expressed genes. 

Damage recognition involves RNA polymerase II arrest at damage in transcribed strands that 

is relieved by the action of CSA, CSB, and UVSSA. Subsequent steps involving DNA 

incision, polymerization and ligation are common to GGR and TCR.

Tumor predisposition syndrome (TPS)
Affected individuals are predisposed to benign and/or malignant tumors. Depending on the 

gene that is mutated, a variable fraction of mutation-carriers develop one or more tumors 

during their lifetime. TPSs can be caused by heterozygous (autosomal dominant) or 

homozygous (autosomal recessive) mutations.

Whole exome sequencing (WES)
All exons in the genome are sequenced.

Whole genome sequencing (WGS)
All of the genome including introns is sequenced. Identifies both nucleotide level deletions 

and large DNA deletions but the interpretation of the data requires special expertise and the 

use of super-computers that can handle the very large amount of data.
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BOX 1.

The Warburg effect and mitochondrial metabolism

Metabolic reprogramming is a hallmark of cancer195. Otto Warburg found that, even in 

the presence of oxygen, cancer cells produced increased amounts of lactate which later 

was interpreted as cancer cells using enhanced metabolism of glucose by glycolysis to 

produce ATP (aerobic glycolysis), instead of the more energy-efficient oxidative 

phosphorylation (OXPHOS)196. Aerobic glycolysis provides cancer cells with different 

metabolites and varying oxidative or redox molecules required for rapid tumor cell 

proliferation, as well as the ability to grow in a hypoxic environment49,197. The presence 

of BRCA1-associated protein 1 (BAP1) mutations in otherwise normal cells also induces 

aerobic glycolysis43. TP53 mutations cause an increase in OXPHOS in cells, confirmed 

in a mouse model (Trp53R172H) of the human TP53R175H mutation ‘hotspot’ in Li-

Fraumeni syndrome and shown to be mediated by mutant p53 retention of mitochondrial 

regulatory activities55. While higher oxidative metabolic capacity is protective against 

cancer198, increased mitochondrial capacity could also be detrimental by promoting 

cancer cell survival199,200. Crossing LFS mice with heterozygous polymerase γ (POLG) 

mutant mice, which have a mild mitochondrial deficiency and a normal lifespan, resulted 

in a 40% increase in cancer-free survival associated with specific anti-proliferative cell 

signaling changes166.

The abnormal accumulation of mitochondrial metabolites that can operate as 

oncometabolites, including fumarate, succinate, and D-2-hydroxyglutarate (D-2HG), can 

promote malignancy201. Succinate dehydrogenase (SDH), fumarate hydratase (FH), and 

isocitrate dehydrogenase 2 (IDH2) can be affected by germline mutations201,202. IDH1 
and IDH2 somatic mutations are found in several human tumors203. Carney-Stratakis 

syndrome (characterized by gastrointestinal stromal tumours and paragangliomas) and 

hereditary leiomyomatosis and renal cell cancer (HLRCC; an autosomal dominant 

disorder in which individuals are at risk of developing leiomyomas and kidney cancer), 

are caused by germline mutations of SDH and FH, respectively202. While SDH and FH 
are prone to loss-of-function mutations, accompanied by the accumulation of fumarate 

and/or succinate, IDH1 and IDH2 frequently display gain-of-function mutations, leading 

to the synthesis of D-2HG204. All of these oncometabolites share the capacity to inhibit 

α-ketoglutarate (α-KG)-dependent enzymes that are involved in fatty acid metabolism, 

oxygen sensing, and epigenetic modifications, which could primarily be affected by 

dietary composition and ambient oxygen availability in the environment205–207. In 

summary, perturbations of mitochondrial metabolism may favor tumor development.

Carbone et al. Page 30

Nat Rev Cancer. Author manuscript; available in PMC 2021 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



BOX 2.

Reactive oxygen species

Reactive oxygen species (ROS) are genotoxins that favor the accumulation of DNA 

mutations and the activation of oncogenic signaling pathways208. Mitochondrial 

respiration produces ROS that influence cell proliferation, differentiation, and survival. 

Fanconi anemia (FA) genes, mutated or silenced in a large proportion of human tumors, 

regulate mitophagy [G], suggesting that at least part of the tumor suppressive activity of 

FA proteins may derive from the proficient removal of damaged mitochondria 

overproducing ROS209. Defects in autophagy or mitophagy promote oncogenesis209, and 

indeed patients with FA are at a higher risk of developing different and often multiple 

cancer types209. Furthermore, these cancers are linked to the increased susceptibility of 

patients with FA to the DNA-damaging action of environmental carcinogens209.

Population studies indicate that decreased ambient oxygen exposure with increasing 

altitude may reduce the risk of specific types of cancer, a hypothesis that is 

experimentally supported by the improved survival of cancer-prone p53 null mice housed 

in low ambient oxygen210–212. Moreover, selectively disrupting respiration by knocking 

out p53-regulated SCO2, a gene essential for cytochrome c oxidase assembly, resulted in 

extreme oxidative stress and a DNA damage response that could be prevented by 

decreasing ambient oxygen levels213. These basic experimental and epidemiological 

observations suggest there exists a complex gene x environment interaction (GxE) 

scenario involving a critical tumor suppressor gene and ambient oxygen without which 

life is not possible.

However, even though it is known that ROS can mediate DNA damage and promote 

transformation, the roles of oxidative stress and counterbalancing antioxidant responses 

in the progression of cellular transformation are complex. Harris et al.214 demonstrated 

that antioxidants are required for cancer onset in at least three genetic mouse models of 

carcinogenesis: the development of mammary tumours in PyMT transgenic mice, 

sarcomas in LSL-KrasG12D+/−;Trp53fl/fl Ad-Cre mice, and lymphomas in Pten+/− 

mice214,215. The failure of modulation of oxidative stress (i.e. interfering with GxE) as an 

anticancer strategy in these three models suggested that high ROS levels are harmful to 

premalignant cells. Altering the ‘E’ component of ROS via antioxidants illustrates the 

intricacy of the balance between oxidative stress and redox functions in oncogenesis and 

underscores the controversy over the use of antioxidants in cancer prevention.
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Figure 1. DNA repair pathways and cancer.
(A) The DNA damage response is activated by DNA damage sensors that include the 

MRE11–RAD50–NBS1 (MRN) complex and the Ku heterodimer, which detect DNA 

double-strand breaks. The replication protein A (RPA) heterotrimer engages exposed regions 

of single stranded DNA. These sensors recruit the transducing kinases ataxia telangiectasia 

mutated (ATM) (through the MRN complex), DNA-dependent protein kinase catalytic 

subunit (DNA-PKcs) (through the Ku heterodimer), and ataxia telangiectasia and Rad3-

related protein (ATR) (through RPA), which in turn phosphorylate a broad spectrum of 

mediators and effectors. Ultimately the DNA damage response promotes survival at the 

cellular level and homeostasis and tumor suppression at the organismal level.

(B) Depicted are DNA lesions that can promote cancer development. Mismatch repair 

(MMR) corrects mismatched base pairs (lesion 1). Base excision repair [G] (BER) removes 

chemically damaged bases (lesion 2), repairs abasic sites (a location in DNA that has neither 

a purine nor a pyrimidine base due to DNA damage) (lesion 3) and repairs DNA nicks 

(where there is no phosphodiester bond between adjacent nucleotides of one strand) (lesion 

7). Nucleotide excision repair (NER) is required for the removal of cyclobutane pyrimidine 

dimers (lesion 4) and 6–4 photoproducts (not shown) arising from exposure to ultraviolet 

(UV) light. NER and BER, along with alkyl transferases are responsible for removal of 

damaged bases and bulky adducts (lesion 5). The Fanconi anemia (FA) pathway removes 

intra-strand cross links (lesion 6). DNA double strand breaks can cause pathogenic DNA 

rearrangements, and are repaired by non-homologous end joining [G] (NHEJ) and 

homologous recombination (HR) pathways (lesion 8). The reader is directed to a 

comprehensive review192.
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Figure 2. Mechanisms of BAP1 activity in cancer development.
The powerful tumor suppressor activity of BRCA1-associated protein 1 (BAP1) and its 

ability to regulate gene x environment interactions (GxE) in carcinogenesis are related to its 

dual role in the nucleus, where BAP1 contributes to DNA repair by modulating homologous 

recombination (HR), and in the cytoplasm where BAP1 regulates cell death and 

mitochondrial respiration30. In the cytoplasm, BAP1 localizes at the endoplasmic reticulum 

(ER) where it binds, deubiquitylates (following F-box and leucine-rich repeat protein 2 

(FBXL2) ubiquitylation), and stabilizes type 3 inositol-1,4,5-trisphosphate receptor (IP3R3), 

modulating calcium ion (Ca2+) release from the ER into the cytosol and mitochondria, and 

thus promoting apoptosis30. In primary cells exposed to either asbestos, ionizing radiation 

(IR) or ultraviolet (UV) radiation, reduced levels of nuclear BAP1 impair DNA repair. At the 

same time, reduced cytoplasmic BAP1 levels impair apoptosis, increasing the fraction of 

cells that survive DNA damage and that over time may become malignant30. In addition, 
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mitochondria need Ca2+ for aerobic oxidative phosphorylation (OXPHOS). In response to 

tumor hypoxia, cancer cells need to adjust their metabolism from aerobic (blue) to glycolytic 

(red) in order to sustain growth and survival. Primary cells from BAP1+/− individuals have 

reduced mitochondrial OXPHOS and increased aerobic glycolysis and lactate production, 

even in the presence of oxygen, a phenomenon known as the ‘Warburg effect’56. Therefore, 

the ‘Warburg effect’ in addition to being a hallmark of cancer cells is also found in normal 

cells from BAP1-mutant carriers, and contributes to the adaptation to metabolic stress during 

tumorigenesis56. BAP1+/+, cells with BAP1 wild-type; BAP1+/−, cells with heterozygous 

BAP1 mutations, containing about 50% of BAP1 protein levels compared to wild-type 

cells30. [Ca2+]m, mitochondrial calcium; MCU, mitochondrial calcium uniporter; Re-O2 

reoxygenation; TCA, tricarboxylic acid; Ub, ubiquitin; VDAC, voltage-dependent anion 

channel.
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Figure 3. Xeroderma pigmentosum and Cockayne syndrome as examples of environmental 
impacts and genetics on DNA damage and repair.
Pathways activated by DNA damage depend on the nature of the damage, cell cycle stage, 

and the DNA damage response. The proteins in these pathways also have roles beyond DNA 

repair. DNA damage from exogenous agents that distort the DNA double helix creates a 

target for global genome repair (GGR) also known as GG-nucleotide excision repair (GG-

NER). Examples include N-2-acetylaminofluorene (AAF) (a carcinogenic and mutagenic 

derivative of fluorene that forms adducts at the C8 position of guanine in DNA) and 

benzo[a]pyrene (B(a)P) (a polycyclic aromatic hydrocarbon that also forms DNA adducts). 

Xeroderma pigmentosum (XP), mutations in the damage recognition proteins xeroderma 

pigmentosum complementation group E (XPE) and XPC cause increased ultraviolet (UV)-

specific mutations and cancer in exposed tissues, mainly skin. Agents such as the fungal 

toxin illudin and the chemotherapeutic agent cisplatin & its derivatives arrest transcription 

and provide sites for rapid repair of the transcribed strand (known as transcription coupled 

repair (TCR) or TCR-NER). Arrested transcription disrupts spliceosomes [G] and activates 

ataxia telangiectasia mutated (ATM) kinase that downregulates DNA synthesis to provide 

adequate time for repair thereby preventing mutagenesis. Cockayne syndrome-type A (CSA) 

& CSB proteins, but not UV-stimulated scaffold protein A (UVSSA), have roles in 

mitochondrial function, the repair of oxidative damage and chromatin remodeling among 

other downstream functions. CSB also functions as a sink for excess electrons released from 

complex 1 (C1e−) of the mitochondria76. In Cockayne syndrome (CS) and ultraviolet 

sensitive syndrome (UVS), mutations in CSA or CSB and UVSSA, respectively cause 

repair-dependent pathologies such as photosensitivity but only mutations in CSA or CSB 
cause additional pathologies such as neurodegeneration, deafness, loss of subcutaneous fat, 
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developmental delay and short lifespans. BER, base excision repair; PARP1, poly(ADP-

ribose) polymerase 1.
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Figure 4. Using ENU mutagenesis to create and ameliorate disease in mice.
Male C57BL/6J mice are injected with three weekly doses of the highly potent mutagen N-

ethyl-N-nitrosourea (also known as ENU). Mutations in spermatogonia are transmitted via 

sperm, which contain an average of 60 coding or splicing changes each (The number that 

cause coding or splicing changes averages 60 per spermatozoa). G1 male offspring are 

sequenced at the whole exome level to identify these mutations in the heterozygous state, 

and then bred to produce G2 daughters, all of which are backcrossed to their sire. In the 

resulting G3 generation, each mutation site can be a homozygous or heterozygous mutant 

allele, or homozygous reference allele. All mutation sites are genotyped in each of about 40 

G3 mice prior to phenotypic screening, usually entailing quantitative (continuous variable) 

assays of biological function, performed using intact mice or cells derived from them. 

Irrespective of the phenotype (either induction of disease or suppression of disease), it can 

be mapped with high confidence, often occurring in multiple allelic forms over many 
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pedigrees. Statistical computation assigns causation of each phenotype to a specific 

mutation, and causation is verified by CRISPR–Cas9 targeting in a non-mutagenized animal. 

Forward genetic screens to identify the gene underlying a phenotype has already led to many 

discoveries in the realm of immunology. For example, defective lipopolysaccharide (LPS) 

signaling in C3H/HeJ and C57BL/10ScCr mice led to the identification of the Toll-like 

receptor 4 (TLR4) as the receptor for LPS193, and the fatal X-linked lymphoproliferative 

disorder observed in the scurfy mouse led to the realization that the protein product of 

forkhead box protein 3 (Foxp3), scurfin, is essential for normal immune homeostasis194.
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