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C O R O N A V I R U S

The impact of relaxing interventions on human contact 
patterns and SARS-CoV-2 transmission in China
Juanjuan Zhang1, Maria Litvinova2,3, Yuxia Liang1, Wen Zheng1, Huilin Shi1, 
Alessandro Vespignani4,3, Cecile Viboud5, Marco Ajelli2,4*†, Hongjie Yu1,6,7*†

Nonpharmaceutical interventions to control SARS-CoV-2 spread have been implemented with different intensity, 
timing, and impact on transmission. As a result, post-lockdown COVID-19 dynamics are heterogeneous and difficult 
to interpret. We describe a set of contact surveys performed in four Chinese cities (Wuhan, Shanghai, Shenzhen, 
and Changsha) during the pre-pandemic, lockdown and post-lockdown periods to quantify changes in contact 
patterns. In the post-lockdown period, the mean number of contacts increased by 5 to 17% as compared to the 
lockdown period. However, it remains three to seven times lower than its pre-pandemic level sufficient to control 
SARS-CoV-2 transmission. We find that the impact of school interventions depends nonlinearly on the intensity of 
other activities. When most community activities are halted, school closure leads to a 77% decrease in the repro-
duction number; in contrast, when social mixing outside of schools is at pre-pandemic level, school closure leads to 
a 5% reduction in transmission.

INTRODUCTION
The novel coronavirus disease 2019 (COVID-19) outbreak caused 
by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
began in Wuhan City, China in December 2019 and quickly became 
a global pandemic on 11 March 2020 (1). As of 30 July, a total of 
84,292 cases of COVID-19, including 4634 deaths, have been re-
ported in mainland China (2). The epidemic in Wuhan and in the 
rest of China subsided quickly after implementation of strict con-
tainment measures and travel restrictions. With the reduction of 
domestic cases in China and recent cases primarily originating from 
international travel (2), strict interventions have been gradually re-
laxed since February 2020.

In most of mainland China outside of Hubei Province, workplaces 
were allowed to resume operations after 10 February 2020 (3). Close 
community management (e.g., only one household member was al-
lowed to purchase supplies every 3 days) and travel restrictions were 
lifted in March, and schools reopened at the end of April 2020. Sim-
ilarly, the lockdown ended on 8 April 2020 in Wuhan. It has been 
widely argued that relaxing inventions increases the risk of resur-
gence as transmission may intensify, a prediction that has been 
borne out in southern United States and Europe (4–8). However, 
despite interventions being relaxed and continuous importation of 
new infections, a second wave in China has yet to materialize. Key 
questions remain about how relaxing interventions alters age-specific 
contact patterns and may, in turn, affect transmission. Quantifying 
the interaction between interventions and contacts is a key step to 
understand the post-lockdown SARS-CoV-2 transmission patterns.

This study aims to measure changes in mixing patterns as interven-
tions are gradually relaxed to understand their impact on epidemic 
spread. To achieve this aim, we collected contact survey data in three 
different phases of the pandemic (before the pandemic, during 
the lockdown, and while interventions were being relaxed—post-
lockdown phase) in four locations in China (Wuhan, Shanghai, 
Shenzhen, and Changsha). The post-lockdown phase was set at 
1 month after the start of workplace reopening and relaxation of 
other measures (citywide close community management and mo-
bility restrictions) at a time when there was no local transmission. 
The rationale for the definition of the post-lockdown period was to 
capture a time horizon when people were gradually coming out of a 
full lockdown. We aimed to investigate whether social interactions 
would increase relatively quickly over that horizon, leading to a pu-
tative resurgence of cases. On the basis of the collected data, we in-
vestigate changes in age-stratified contact patterns and provide a 
model-based evaluation of their impact on the SARS-CoV-2 trans-
mission. Moreover, we leverage the calibrated model to project the 
impact of a hypothetical further increase in the number of contacts 
on the emergence of a second wave.

RESULTS
Contact surveys
We performed diary-based contact surveys (9–12) in four Chinese 
cities (Wuhan, Shanghai, Shenzhen, and Changsha) representing 
different epidemiological situations. Wuhan was the early epicenter 
of the outbreak. Shanghai is a highly connected international hub and, 
thus, has been experiencing continuous importations of COVID-19 
cases. Shenzhen is a major hub in Guangdong Province, which re-
ported the largest number of COVID-19 cases outside Hubei Province. 
Changsha is a city of Hunan Province adjacent to Hubei Province 
with a large number of commuters’ influx to and from Hubei.

The surveys were conducted from 1 to 20 March 2020 in Shanghai, 
Shenzhen, and Changsha, about 1 month after workplaces started 
to reopen on 10 February. In Wuhan, the survey was performed 
from 7 to 15 May 2020, about 1 month after the end of the lockdown 
(8 April). We collected information on weekday contact behavior 
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for the pre–COVID-19 baseline period, the pandemic period when 
strict social distancing was in place, and during the post-lockdown 
survey period, as interventions were relaxed (Materials and Meth-
ods). At the time of the contact survey, schools had not reopened 
except for the final year of senior high school in Wuhan, but travel 
restrictions and community management had begun to relax (Fig. 1)  
(section S1).

Characteristics of contact patterns
We analyzed a total of 54,324 contacts reported by 9206 study par-
ticipants (Table 1). In Wuhan, the average daily number of contacts 
per participant significantly increased from 2.0 during the outbreak 
period (mean contacts weighted by age structure: 1.9) to 3.3 in the 
post-lockdown period (mean contacts weighted by age structure: 
3.6) (P < 0.001). The increase in contacts was significantly different 
by sex, age, type of profession, and household size, with the exception 

of respondents under 20 years (Table 1). A smaller increase was 
observed in Shanghai, Shenzhen, and Changsha, where the average 
daily number of contacts increased by 0.1 to 0.4 contacts per day 
(0.2 to 0.8 for the mean number of contacts weighted by the age 
structure) starting from about 2.2 contacts during the lockdown 
period. The observed increase in the number of contacts (especially 
among adults) is statistically significant for Wuhan, Shanghai, and 
Shenzhen (Table 1). Participants in the four cities essentially report-
ed the same number of contacts during the lockdown, but on aver-
age, individuals in Wuhan reported more contacts than individuals 
in the other cities in the post-lockdown period, possibly because of 
the different timing of the contact surveys in the four locations 
(section S3.2).

In the four cities, the vast majority of contacts occurred at home in 
both periods, but workplace contacts increased in the post-lockdown 
period (sections S3.4 and S3.5). Moreover, a statistically significant 

BA

C D

Fig. 1. Number of COVID-19 reported cases, timing of the surveys, and the main interventions in place over time. (A) Wuhan. (B) Shanghai. (C) Shenzhen. 
(D) Changsha. COVID-19 cases by local transmission and international importation are indicated in light red and blue. The contact surveys for Shanghai, Shenzhen, and 
Changsha were conducted from 1 to 20 March, corresponding to the period of relaxation of interventions, and 7 to 15 May for Wuhan. The contact diaries for the baseline 
and outbreak periods were derived from retrospective interviews or previous surveys. The horizontal bars at the bottom of each panel represent the intensity over time 
of the four main performed interventions, where the height of the bar refers to the relative share of population affected by the intervention with the exception of close 
community management. With relatively small number of cases, the close community management was limited to subcity areas where cases were identified. The de-
tailed timeline of the interventions is reported in table S1. Note that the school and university closure starting in mid-January was the regular winter break before the 
Lunar New Year holiday. In the absence of the pandemic, schools were set to reopen around mid-February 2020, while universities were scheduled to reopen between 
4 February and 1 March 2020. However, because of the pandemic, these closures were extended.
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increase in the number of physical (skin-to-skin) contacts was also 
observed in Wuhan only, but the increase was relatively small—from 
1.2 to 1.4 physical contacts (section S3.3). Overall, the number of 
contacts increased over time from the outbreak period to the post-
lockdown period (P < 0.001) (section S3.6).

When we consider the pre-pandemic (baseline) period, the typi-
cal features of age-mixing patterns (10, 11) emerge in all locations 
(Fig. 2, A to D). These features can be illustrated in the form of 
age-stratified contact matrices (provided as ready-to-use tables in section 
S3.7), where each cell represents the mean number of contacts that an 
individual of a certain age group has with other individuals of different 
ages. The bottom left corner of the matrix, corresponding to contacts 
between school-age children, is where the largest number of contacts 
is recorded. The contribution of contacts in the workplace is visible in 
the central part of the matrix, while the three diagonals (from bot-
tom left to top right) represent contacts between household members.

During the COVID-19 outbreak period, when strict social dis-
tancing policies were in place, most of the abovementioned features 
disappear, essentially leaving the sole contribution of household 

mixing (Fig. 2, E to H). In particular, assortative contacts between 
school-age individuals fully vanish. Overall, contacts during the 
outbreak mostly occurred within household members (more than 
90% in Shenzhen, Changsha, and Wuhan; 79% in Shanghai). If we 
compare the post-lockdown period with the outbreak period, more 
contacts were reinstated in the workplace and in community set-
tings. Therefore, the fraction of contacts at home decreased to 
63.0% in Wuhan, 72.5% in Shanghai, 70.2% in Shenzhen, and 78.8% 
in Changsha. Nevertheless, the three diagonals (from bottom left to 
top right) representing contacts between household members were 
still dominant. Note that while strict social distancing measures 
gradually relaxed in these four locations, a considerable share of 
workers had not yet resumed work or continued to work from home 
at the time of the survey (section S3.5).

Modeling the impact of relaxing interventions on  
SARS-CoV-2 transmission
We used the next-generation matrix approach to quantify changes 
in R0 during the post-lockdown period, as interventions were relaxed. 

A B C D

E F G H

I J K L

Fig. 2. Contact matrices by age. (A) Baseline period contact matrix for Wuhan (regular weekday only). Each cell of the matrix represents the mean number of contacts 
that an individual in a given age group has with other individuals, stratified by age groups. The color intensity represents the numbers of contacts. To construct the matrix, 
we performed bootstrap sampling with replacement of survey participants weighted by the age distribution of the actual population of Wuhan. Every cell of the matrix 
represents an average over 100 bootstrapped realizations. (B) Same as (A), but the contact matrix weighted by weekday and weekends for Shanghai. (C and D) Same as 
(A), but for Shenzhen and Changsha. (E to H) Same as (A), but for the outbreak contact matrices for Wuhan, Shanghai, Shenzhen, and Changsha. (I to L) Same as (A), but 
for the post-lockdown contact matrices weighted by weekday and weekends for Wuhan, Shanghai, Shenzhen, and Changsha.
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In the early phases of COVID-19 spread in Wuhan, before control 
measures were put in place, R0 was estimated to range from 2.0 to 
3.5 (13–19). In this study, we extended this range from 1 to 4 for the 
baseline period (i.e., before interventions). We found that the con-
siderable changes of mixing patterns observed in Shenzhen and 
Changsha during the social distancing period led to a drastic de-
crease in R0 (Fig. 3). The reproductive number drops well below the 
epidemic threshold for all four locations.

When we considered contacts in the post-lockdown period, 
while keeping the same baseline disease transmissibility as in the 
preintervention period at an average value of R0 = 2.5, the increase 
in the number of contacts was not high enough to bring R0 above 
1 in any location. The reproductive number exceeded the epidemic 
threshold in Wuhan (Fig. 3A) and Shenzhen (Fig. 3C) for baseline 
R0 above 3.0, and in Changsha (Fig. 3D) for baseline R0 above 3.5. 
The reproductive number in Shanghai did not reach the threshold 
even for baseline R0 = 4 (Fig. 3B). These findings are robust to as-
sumptions about age differences in susceptibility to infection in 
Wuhan, Shanghai, and Shenzhen (Fig. 3, E to G). Considering age 
differences in susceptibility to infection has a marked effect in pre-
dicted dynamics in Changsha, where transmission can be inter-
rupted for baseline R0 at least up to four (Fig. 3H). We performed 
sensitivity analyses regarding age differences in infectiousness; an 
average individual aged 0 to 14 years was assumed to be twice less 
infectious than one aged above 14 years old. The results are consis-
tent with those reported here (section S6.1). We also performed 

sensitivity analyses regarding possible compliance biases of self-
reported contacts during the post-lockdown period. In this case, 
by assuming baseline R0 = 2.5 and by making the extreme as-
sumption that only half of the actual nonhousehold contacts were 
reported by study participants, the reproduction number for post-
lockdown period would still be below the threshold or slightly above it 
(section S6.2).

Impact of a possible return to pre-pandemic mixing patterns 
in schools, workplaces, and the community
We performed scenario analyses for Shanghai where we assume 
that contacts at school, in the workplace, and the community return 
to the levels reported during the pre-pandemic period. In this anal-
ysis, we set R0 = 2.5 to be in line with R0 measured in Wuhan before 
the start of the interventions (16) and age-specific susceptibility to 
infection as estimated in our previous study (9).

By assuming no contacts at school, we estimate that, in the ab-
sence of contact tracing and other control measures, 55% of workplace 
and 65% of community mixing could be resumed while keeping R0 
below the epidemic threshold. In particular, a reduction of 80% of 
effective contacts in the community (corresponding to 1.2 contacts 
per day) would allow the work contacts to be resumed at 50% (Fig. 4A). 
Opening of senior high schools, even when considering as little as 
10% of workplace and 10% of community contacts, could increase 
R0 above 1 (Fig. 4B). Broader school opening has a higher effect on 
R0 (Fig. 4C).

A

E

B

F

C

G

D

H

Fig. 3. Effect of relaxing interventions on epidemic spread (assuming equal infectiousness by age). (A) Estimated R0 during the outbreak and post-lockdown peri-
ods [mean and 95% confidence interval (CI)] as a function of baseline R0 (i.e., that derived by using the contact matrix estimated from the baseline period). The distribution 
of the transmission rate is estimated through the next-generation matrix approach by using 100 bootstrapped contact matrices for the baseline period to obtain the 
desired R0 values. We then use the estimated distribution of the transmission rate and the bootstrapped outbreak and post-lockdown contact matrices to estimate R0 for 
the outbreak period and the post-lockdown period, respectively. The 95% CIs account for uncertainty in the distribution of the transmission rate, mixing patterns, and 
susceptibility to infection by age. (B to D) Same as (A), but for Shanghai, Shenzhen, and Changsha. The figure includes both the scenario accounting for susceptibility to 
infection by age and the scenario where we assume that all individuals are equally susceptible to infection. (A) to (D) refer to the first scenario, and (E) to (H) refer to the 
second scenario.
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It is important to highlight that the effect of school closure de-
pends nonlinearly on the share of other activities being resumed 
(Fig. 4D). In particular, if we compare R0 in an extreme scenario 
when nearly all workplace and community activities are halted (i.e., 
only 5% workplace and community contacts included, which is about 
the same level observed during the lockdown period—about 4%), 
we can see that school closure corresponds to a decrease of R0 from 
1.78 to 0.41. On the contrary, in a scenario where workplace and 
community contacts return to their pre-pandemic level (i.e., 100%), 
school closure corresponds to a decrease of R0 of about 0.13. In other 
words, social contacts in schools only truly matter if other social 
mixing opportunities are hindered. In this context of greatly re-
duced contact patterns at work and in the community, school clo-
sure becomes determinant in controlling disease spread. If contacts 
in other social settings are moderate or back to normal, then school 
closure is less relevant as the infection can spread through other 
chains of transmission. This effect is nonlinear and is captured by 
the change of the eigenvalues of the next-generation matrix.

When we consider relaxing interventions simultaneously (e.g., 
school reopening, workplace resumption, and resuming community 
activities), returning up to 34% of the pre-pandemic level of non-
household contacts (corresponding to a mean of 7.8 contacts per day) 
can lead R0 above the threshold in Shanghai, with slightly lower 

proportions (26 to 30%, corresponding to 3.4 to 5.5 contacts per day) 
in Shenzhen, Changsha, and Wuhan (section S9).

DISCUSSION
We have provided measures of the changes in mixing patterns linked 
to gradual relaxation of interventions in the Chinese cities of Wuhan, 
Shanghai, Shenzhen, and Changsha and their impact on the spread 
of SARS-CoV-2. We find that although the number of contacts has 
increased in the post-lockdown period in China, social behavior has 
only partially and slowly changed and mixing patterns have not re-
turned to normal, including among adults. We estimate that the 
increase in mixing patterns 1 month after the Wuhan lockdown was 
lifted and after work resumed in the other three cities was not enough 
to sustain local transmission. The mixing patterns measured in this 
study were far from the pre-pandemic ones. We also estimate that 
the importance of school closure/reopening on SARS-CoV-2 con-
trol increases in a nonlinear fashion as contacts in the other settings 
decrease. In particular, our findings support that closing schools was 
essential to keep the epidemic under control during the lockdown.

Several studies have shown a very marked decrease in the num-
ber of contacts between the pre-pandemic and lockdown periods 
(9, 20–24), in agreement with what we found here, which parallels a 

Fig. 4. Estimated R0 for Shanghai under different assumptions on the number of contacts in workplaces, community, and schools. (A) Heatmap of the estimated 
mean value of R0 for a different combination of number of contacts in the workplaces and community under the assumption that all schools are closed. Share equal to 1 
corresponds to the pre-pandemic contact pattern. The triangle corresponds to the measured share of contacts in the workplace and the community during the 
post-lockdown period. Baseline period R0 was set to 2.5, and we considered age-specific susceptibility to infection as in (9), and no differences in infectiousness by age. 
R0 values are estimated through the next-generation matrix approach. (B) Same as (A), but assuming that contacts in senior high schools are as in the pre-pandemic pe-
riod. (C) Same as (A), but assuming that contacts in all schools (corresponding to the entire student population except for college students) are as in the pre-pandemic 
period. (D) Estimated mean value of R0 for different shares of workplace and community contacts under different levels of school closure.
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decrease in mobility patterns (9, 25). However, our study shows that 
the post-lockdown increase in mobility patterns is not a good proxy 
of the daily number of in contacts in the four study locations (sec-
tion S4). The intracity mobility in the analyzed cities has also been 
rebounding to pre-pandemic levels, while contacts in the same pe-
riod are still very close to the ones estimated during the lockdown 
period. Several studies for different countries have shown a rebound 
in mobility after the lockdown (26–29). However, the much slower 
increase in the number of daily contacts that we estimated here 
could be location-specific. A similar pattern has been found in the 
United States where mobility measured by mobile phone data has 
rebounded to pre-pandemic levels, but the number of contacts 
quantified by co-proximity is still at 50% or less of pre-pandemic 
levels (30). Whether these results can be generalized to other coun-
tries remains unclear.

To estimate how changes in contact patterns affect SARS-CoV-2 
spread, we performed a model-based analysis. In particular, we es-
timated that the level of contacts recorded during the post-lockdown 
period in spring 2020 is sufficient to keep the reproduction number 
below the epidemic threshold. On the contrary, in a purely theoret-
ical scenario where all schools were open but parents could agree to 
stay at home, social distancing among adults would not be sufficient 
to prevent a COVID-19 outbreak. This highlights the need for con-
sidering additional case- and population-based interventions such 
as those in place in China since the end of the lockdown (e.g., 14-day 
quarantine in designated places for medical observation and testing 
for imported cases and use of face masks). However, it is important 
to stress that the population may spontaneously adjust its behavior, 
including avoidance of gatherings and adherence to hygiene mea-
sures, to limit their risk of SARS-CoV-2 infection while the pan-
demic is still spreading worldwide. These behavioral adaptations 
may partially explain why the number of contacts measured in this 
study in the post-lockdown period is still remarkably lower than 
before the pandemic.

This study is prone to the limitations pertaining to social contact 
surveys. The definition of contact relevant for SARS-CoV-2 trans-
mission is still unclear. We used the classic definition of having a 
conversation or direct physical contact (9), which does not include 
contacts with surfaces (fomite transmission) that may have been 
possibly contaminated by infectious individuals. However, contacts 
with surfaces are hard to quantify, irrespective of the adopted meth-
odology, and their contribution on SARS-CoV-2 transmission has 
yet to be clarified. The contact survey presented in this study is based 
on self-reported contacts. It can thus be affected by various biases, 
including recall bias and self-reporting bias. In particular, reported 
contacts for the baseline period in Wuhan, Shenzhen, and Changsha 
may be prone to recall bias as contacts were recorded retrospectively 
with delays up to 1 month in Wuhan and up to 2 to 3 months in 
Shenzhen and Changsha (table S2). This may explain why we ob-
served a larger number of contacts during that period in Shanghai 
with respect to the other three locations and less marked typical 
features of contact matrices by age (such as the presence of three 
main diagonals representing contacts among household members, 
a bottom-left corner showing contacts among students, and a cen-
tral area showing contacts between workers) in these three locations 
with respect to Shanghai. Nonetheless, it is important to stress that 
the mean number of daily contacts estimated for the four locations 
during the pre-pandemic period is comparable to that obtained in 
other countries (10, 31, 32), ranging from 4.5 contacts per day in 

Japan (32) to 27 contacts per day in the United Kingdom (33). More-
over, the age-stratified contact matrices presented in those studies 
share the same features as those presented here. Another possible 
bias is that survey participants may have felt pressure to minimize 
reported contacts that occurred during the post-lockdown period, 
given that social distancing policy has not been totally relaxed, even 
if the anonymity and confidentiality of the survey were emphasized. 
However, results are robust to inflating reported contacts outside of 
the home severalfold, suggesting that possible compliance and so-
cial acceptability biases linked to the post-lockdown period do not 
affect our main findings (section S6.2).

Our modeling analysis contains several approximations. The 
model does not consider explicitly symptomatic and asymptomatic 
individuals and possible differences in their infectiousness and/or 
mixing patterns. Explicit modeling of symptomatic/asymptomatic 
individuals would require assumptions on contact patterns for 
symptomatic/asymptomatic individuals, as this information was not 
collected in our surveys. In particular, it is possible that the differ-
ence in mixing patterns observed in the pre-pandemic, outbreak, 
and post-lockdown phase would be less marked for symptomatic 
individuals (especially for severe ones). Therefore, our estimates of 
SARS-CoV-2 transmission in the post-lockdown phase may be slightly 
underestimated. On the other hand, the model assumes a homoge-
neous network of contacts (i.e., it does not account for the typical 
clustering of human contacts), and thus, our results can be consid-
ered an upper bound of SARS-CoV-2 transmissibility. The adopted 
transmission scheme is simple and does not explicitly account for 
different levels of the severity pyramid, such as hospitalizations or 
deaths. Estimates of incidence and disease burden are beyond the scope 
of the paper; our model was designed to provide a general view of 
the effect of age-mixing patterns on SARS-CoV-2 transmission rather 
than direct projections of the pandemic on the healthcare system.

We would like to stress that here we do not necessarily endorse 
relaxing or reinstating social distancing policies in the context of 
COVID-19, but rather merely describe their impact on SARS-CoV-2 
transmission based on the data collected in four Chinese cities. Our 
contact surveys were conducted about 1 month after social distanc-
ing measures started to be relaxed in China and cover a period of 1 
to 3 weeks in each study location. Whether these findings can be 
generalized to other locations or how and to what extent mixing pat-
terns have evolved over time warrants further research. It remains 
unclear how long people would be able to sustain a reduced level of 
social restrictions, as observed right after the lockdown. Additional 
and more recent contact surveys should be conducted in the pan-
demic and post-pandemic period in a number of countries. Under-
standing compliance to interventions and long-term changes in 
contact patterns because of COVID-19 will be a rich area for future 
research.

From 1 June to 12 December 2020, China has experienced four 
local outbreaks with more than 50 cases: An outbreak of 335 cases 
was reported in Beijing, one of 826 cases in Urumqi in Xinjiang 
Uygur Autonomous Region, one of 92 cases in Dalian in Liaoning 
Province, and one of 78 cases in Kashgar Prefecture in Xinjiang 
Uygur Autonomous Region (34). This supports our modeling re-
sults indicating that the reproduction number may easily cross 
the epidemic threshold when schools are open. However, none 
of these outbreaks escalated to a nationwide level as prompt and 
strict interventions were put in place in reaction to these flare-ups. 
Moving forward, to prevent the resurgence of the epidemic, it will 
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be particularly important to strengthen sanitization activities (e.g., 
washing hands and disinfection) and proactive social distancing 
measures (e.g., increased distance between individuals while in con-
tact or use of a face mask), along with large-scale testing and contact 
tracing (35–38). This is particularly important when schools are 
open (39) and during festivities, when an increase of intercity mo-
bility, inbound travelers, and more social mixing between people 
and households can be anticipated. Researches should continue to 
focus on refining age-specific estimates of susceptibility to infec-
tion, infectiousness, and risk of severe disease, in conjunction with 
changes in mixing patterns, as these are instrumental to evaluate the 
impact of control strategies on SARS-CoV-2 transmission.

MATERIALS AND METHODS
Design of the contact survey
To estimate changes in age-mixing patterns associated with relax-
ation of interventions against SARS-CoV-2, we conducted contact 
surveys in four cities. The design of the survey was similar to that of 
our previous work (9–11). Participants in Shenzhen and Changsha 
were asked to complete a questionnaire describing their contact 
behavior (9, 12) on three different days: (i) a regular weekday be-
tween 24 and 30 December 2019, before the COVID-19 outbreak 
was officially declared (baseline period); (ii) a day between 3 and 
9 February 2020 when the COVID-19 epidemic peaked across China 
and stringent interventions were in place (outbreak period); and (iii) 
the day before the telephone interview took place, corresponding to 
a period when interventions were being relaxed across China 
(post-lockdown period). A contact was defined as either a two-way 
conversation involving three or more words in the physical pres-
ence of another person or a direct physical contact (e.g., a hand-
shake). Participants in Wuhan and Shanghai were asked to complete 
the same questionnaire used for Shenzhen and Changsha, but to re-
port only the contacts during the post-lockdown period. For the 
baseline and outbreak period in Wuhan and Shanghai, we relied on 
a survey conducted in 2017–2018 and another survey conducted in 
2020 during the pandemic that followed the same design (9, 10). A 
more detailed description of the methodology is given in the Sup-
plementary Materials (sections S1 and S2).

Estimation of contact patterns
The number of daily contacts (including physical and conversation-
al contacts) was compared between the post-lockdown period and 
the outbreak period for each location using a weighted negative bi-
nomial regression, where the weight refers to the day type of contact 
diary (i.e., weekdays or weekends) (9). The same comparison was 
performed among four cities for the outbreak period and the post-
lockdown period, respectively.

We defined 16 age groups (0 to 4 years, 5 to 9 years, 10 to 14 years, 
15 to 19 years, 20 to 24 years, 25 to 29 years, 30 to 34 years, 35 to 
39 years, 40 to 44 years, 45 to 49 years, 50 to 54 years, 55 to 59 years, 
60 to 64 years, 65 to 69 years, 70 to 74 years, and 75 years and over) 
to build age-specific contact matrices. Contact matrices representing 
mixing patterns during a baseline pre-pandemic day (referred to as 
“baseline period contact matrix”), during the COVID-19 outbreak 
(referred to as “outbreak contact matrix”), and during the period of 
relaxation of interventions (referred to as “post-lockdown contact 
matrix”) were estimated for the four cities. Because of the sample 
size, for baseline and outbreak contact matrices in Wuhan, we used 

14 age groups (last age group being 65+ years). To account for the 
uncertainty of the contact matrices and sample representativeness 
of contact matrix, we performed bootstrap sampling with replace-
ment of survey participants weighted by the age distribution of the 
actual population in each location. For the post-lockdown period, 
we adjusted for weekdays and weekends (weight of 2/7 for diaries 
referring to Saturdays/Sundays, weight of 5/7 for diaries referring to 
Monday to Friday) (9).

SARS-CoV-2 natural history and transmission
To explore how our empirical data can inform how to relax COVID-19 
control strategies, we performed a modeling exercise. A key param-
eter regulating the dynamics of an epidemic is the basic reproduction 
number (R0), which corresponds to the average number of secondary 
cases generated by an index case in a fully susceptible population. 
We estimated the impact of relaxing interventions on R0, relying on 
the empirically estimated mixing patterns. We also considered 
age-specific estimates of susceptibility to infection presented in (9) 
and no differential infectiousness by age (40). We also consider sce-
narios where all age groups are equally susceptible by age and where 
children are twice less infectious than adults (section S6.1). The mean 
time interval between two consecutive generations of cases was set 
to be 5.1 days, aligning with the mean of the serial interval reported 
by Zhang et al. (41). Last, we used the next-generation matrix ap-
proach to quantify estimate R0 (section S5) (42).

Simulation of hypothetical scenarios with alternative 
mixing patterns
We project how increasing school, workplace, and community con-
tacts can affect COVID-19 spread in Shanghai. We considered sev-
eral different scenarios, on the basis of the baseline contact matrix 
and gradual implementation of interventions by social setting (i.e., 
household, school, workplace, and community). A similar analysis 
was performed for Shenzhen and Changsha (section S8). No simu-
lations were performed for Wuhan, as for this location we did not 
collect data by social setting for the baseline period (9). We finally 
used the same next-generation matrix approach to project what de-
gree of return to pre-pandemic contact could lead R0 above the epi-
demic threshold if the contacts outside the household are resumed 
simultaneously (section S9).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/19/eabe2584/DC1
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