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M O L E C U L A R  B I O L O G Y

Persistent spectral–based machine learning  
(PerSpect ML) for protein-ligand binding  
affinity prediction
Zhenyu Meng and Kelin Xia*

Molecular descriptors are essential to not only quantitative structure-activity relationship (QSAR) models but also 
machine learning–based material, chemical, and biological data analysis. Here, we propose persistent spectral–
based machine learning (PerSpect ML) models for drug design. Different from all previous spectral models, a fil-
tration process is introduced to generate a sequence of spectral models at various different scales. PerSpect 
attributes are defined as the function of spectral variables over the filtration value. Molecular descriptors ob-
tained from PerSpect attributes are combined with machine learning models for protein-ligand binding affinity 
prediction. Our results, for the three most commonly used databases including PDBbind-2007, PDBbind-2013, 
and PDBbind-2016, are better than all existing models, as far as we know. The proposed PerSpect theory provides 
a powerful feature engineering framework. PerSpect ML models demonstrate great potential to significantly im-
prove the performance of learning models in molecular data analysis.

INTRODUCTION
Data-driven learning models are among the most important and 
rapidly evolving areas in chemoinformatics and bioinformatics (1). 
Greatly benefiting from the accumulation of experimental data, ma-
chine learning models have contributed significantly to various as-
pects of virtual screening in drug design. In particular, machine 
learning–based models have achieved a better accuracy than tradi-
tional physics-, knowledge-, and empirical-based models in protein-
ligand binding affinity prediction (2–4). Featurization, or feature 
engineering, is key to the performance of machine learning models 
in material, chemical, and biological systems. More than 5000 mo-
lecular descriptors and chemical descriptors have been proposed to 
characterize the structural, physical, chemical, and biological prop-
erties (5). These descriptors capture information from molecular 
formula, fragments, motifs, topological features, geometric features, 
conformation properties, hydrophobicity, electronic properties, ste-
ric properties, etc. They are widely used in quantitative structure-
activity relationships (QSARs) and quantitative structure-property 
relationships (QSPRs). These descriptors can be combined to form 
a fixed-length vector, known as molecular fingerprint. Molecular 
fingerprints, which can be generated from various software packag-
es, such as RDKit (6), Open Babel (7), and ChemoPy (8), are widely 
used in machine learning models.

Recently, advanced mathematical models from algebraic topology, 
differential geometry, and algebraic graph theory have been used 
for the representation of biomolecular systems (4). They have been 
found to significantly enhance the performance of statistic learning 
models in various aspects of drug design (3). Different from tradi-
tional molecular descriptors, three unique kinds of invariants, i.e., 
topological invariant (Betti numbers), geometric invariant (curva-
tures), and algebraic graph invariant (eigenvalues), are considered 
(3, 4). The combination of these invariants with learning models 
has achieved unprecedented success in various aspects of drug 
design (3), including protein-ligand binding affinity prediction, 

protein stability change upon mutation prediction, toxicity predic-
tion, partition coefficient and aqueous solubility prediction, and 
binding pocket detection. These advanced mathematics–based 
machine learning models have constantly achieved some of the best 
results in D3R Grand Challenge (9, 10), an annual worldwide com-
petition for drug discovery.

Here, we present a new molecular representation framework, 
known as persistent spectral (PerSpect), and PerSpect-based ma-
chine learning (PerSpect ML) for protein-ligand binding affinity 
prediction. We combine a filtration process, which will induce a 
series of nested topological representations (graph, simplicial com-
plex, and hypergraph), with spectral models (spectral graph, spectral 
simplicial complex, and spectral hypergraph). Molecular descrip-
tors are obtained from PerSpect attributes, which are functions of 
eigenvalues over the filtration value. Our PerSpect ML can achieve 
state-of-the-art results in protein-ligand binding affinity prediction.

RESULTS
Biomolecular topological modeling
The structure-function relationship is of essential importance to the 
analysis of biomolecular flexibility, dynamics, interactions, and func-
tions. As a mathematical tool, topology studies the network and 
connection information within the data and provides an effective 
way of structure characterization. There are three basic topological 
representations, including graph, simplicial complex, and hyper-
graph. An example of these representations for an Aspirin molecule 
is given in Fig. 1. Mathematically, a simplicial complex, which is 
composed of simplexes, can be viewed as a generalization of the 
graph. A k-simplex is the convex hull made from k + 1 vertices and can 
be viewed geometrically as a point (0-simplex), an edge (1-simplex), 
a triangle (2-simplex), a tetrahedron (3-simplex), and their k-
dimensional counterpart (k-simplex). Note that a graph is composed 
of only 0-simplexes and 1-simplexes, while a simplicial complex is 
made from simplexes at different dimensions under certain combi-
national rules. With hyperedges as its building blocks, a hypergraph 
is a further generalization of the simplicial complex (see Materials 
and Methods).
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Recently, topological data analysis (TDA), in particular persistent 
homology (11–13), has been used in molecular representations. 
TDA-based machine learning models have achieved outstanding 
performance in various aspects of drug design (3, 4). One of key 
reasons for their successes is the use of the topological invariant, i.e., 
Betti numbers, as molecular descriptors. As illustrated in Fig. 2C, 0 
is the number of connected components, 1 is the number of circles 
or loops, and 2 is the number of voids or cavities. Note that for the 
octahedron surface, which is composed of eight triangles (in yellow 
color), its 2 value is 1. In Fig.  2D, four simplicial complexes are 
generated at filtration values of 0.7, 0.9, 1.1, and 1.6. Their 0 values 
are 7, 4, 3, and 1, respectively; their 1 values are 0, 1, 0, and 1, re-
spectively; and their 2 values are all 0.

The other key reason for the great successes of TDA-based ma-
chine learning models is the use of a filtration process. As illustrated 
in Fig. 2D, the filtration value (denoted as f) is defined as the diam-
eter of the spheres assigning to each point of the data. With the in-
crease of filtration value, simplexes are consistently generated and a 
sequence of nested Vietoris-Rips complexes is obtained. Their Betti 
numbers can be calculated and visualized by using a persistent bar-
code, as demonstrated in Fig. 2E. At each filtration value, if we add 
the bars together (along the green lines), the total number is exactly 
equal to the Betti numbers. Note that simplicial complexes that 

are generated at smaller filtration values characterize short-range 
interactions, while the ones from larger filtration values character-
ize long-range interactions. Betti numbers from different filtration 
values represent interaction information from various scales; thus, 
persistent barcode provides a unified multiscale topological repre-
sentation of the interactions within a structure.

PerSpect theory
Essentially, TDA studies the topological invariants at multiple scales, 
while our PerSpect theory studies spectral information from vari-
ous different scales. Our PerSpect theory covers three basic models, 
i.e., PerSpect graph (14), PerSpect simplicial complex, and PerSpect 
hypergraph. Mathematically, spectral graph theory (15), spectral 
simplicial complex (16–19), and spectral hypergraph (20–22) have 
been developed on the basis of graph, simplicial complex, and hy-
pergraph (see Materials and Methods). These models use different 
types of connection matrices, in particular Laplacian matrices, to 
represent structure connections. Generally speaking, Laplacian ma-
trices from graphs characterize relations between vertices, Hodge 
Laplacian (or combinatorial Laplacian) matrices from simplicial 
complexes describe connections between simplexes, and hyper-
graph Laplacian matrices represent hyperedge connections. On the 
basis of these matrices, spectral information, including eigenvalues, 

Fig. 1. Three topological representations of the aspirin molecule. (A) Chemical structure of aspirin. (B) to (D) Topological representations of aspirin structure: (B) graph; 
(C) simplicial complex; and (D) hypergraph. Mathematically, a graph is a simplicial complex with only vertices (0-simplexes) and edges (1-simplexes). The simplicial complex 
includes higher-dimensional simplexes, such as 2-simplexes (triangles in yellow) and 3-simplexes (tetrahedrons in blue). Hypergraph is a further generalization of the 
simplicial complex by replacing simplexes with hyperedges.

Fig. 2. The illustration of the fundamental concepts in TDA. (A) k-simplex is a convex hull made from k + 1 vertices. Geometrically, they can be viewed as a point 
(0-simplex), an edge (1-simplex), a triangle (2-simplex), and a tetrahedron (3-simplex). (B) In Vietoris-Rips complex, spheres are assigned to each data point, and a 
k-simplex is formed among a set of k + 1 vertices if any two spheres among k + 1 spheres overlap with each other. (C) Geometrically, 0 is the number of connected components, 
1 is the number of circles or loops, and 2 is the number of voids or cavities. (D) Illustration of a filtration process. Simplicial complexes at four different filtration values repre-
sent interactions at four different scales. (E) Persistent barcode generated from the filtration process in (D). (F) Persistent barcode–based featurization using a binning approach.
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eigenvectors, characteristic polynomials, and eigenfunctions, can 
be calculated and used in structure description.

Different from all previous spectral models, our PerSpect theory 
characterizes the persistence and variation of spectral information 
at various different scales. A filtration process as in TDA is consid-
ered to generate a nested sequence of topological structures, which 
can be graphs, simplicial complexes, or hypergraphs. From these 
topological representations, a sequence of connection matrices can 
be constructed and their spectral information can be calculated. 
Our PerSpect theory studies spectral information in this series of 
connection matrices. PerSpect attributes are defined as functions of 
spectral variables over the filtration value.

PerSpect attributes can be obtained from the statistical and com-
binatorial properties of spectral information over a filtration pro-
cess. They can be used to describe both geometric and topological 
information of structures. For instance, the multiplicity (or number) 
of Dim(k) (kth dimension) zero eigenvalue is equal to Betti number 
k; thus, persistent multiplicity, which is defined as the multiplicity 
of Dim(k) zero eigenvalue over a filtration process, is exactly the 
persistent Betti number or Betti curve (12,13), which is just the 
summation of bars at each filtration value as stated above. Basic sta-
tistic properties, such as mean, SD, maximum, and minimum, can 
be used to define four PerSpect attributes, i.e., persistent mean, per-
sistent SD, persistent maximum, and persistent minimum. Other 
eigenspectral properties can also be incorporated into our PerSpect 
attributes (see Materials and Methods).

Figure 3 demonstrates a sequence of nested simplicial complexes 
and Hodge Laplacian matrices for the filtration process of fullerene 
C60. Vietoris-Rips complex is used, and filtration parameter is cho-
sen as the sphere diameter. It can be seen that, during the filtration 
process, complexes have been generated and the simplicial complex 
“grows” from a set of isolated vertices to a fully connected complete 
graph. The corresponding Laplacian matrices characterize this 
“expansion” process. We denote Lk as kth dimensional Hodge 
Laplacian matrix. For Dim(0), at the very start of the filtration, 

there are only 60 vertices (0-simplex), and a 60*60 all-zero L0 ma-
trix is generated according to Eq. 2 (see Materials and Methods). As 
the filtration value increases, the size of L0 matrices remains un-
changed, while more and more entries with −1 value appear at its 
off-diagonal part. When the filtration value is large enough, a com-
plete graph is obtained, and a full L0 matrix, i.e., all diagonal entries 
are 59 and all off-diagonal entries are −1, is generated according 
to Eq. 2. For Dim(1), at the early stage of filtration, no edges 
(1-simplexes) and, thus, no L1 matrix exist. With edges emerging as the 
filtration value increases, L1 matrices are generated. Different from 
Dim(0) case, the size of L1 matrices increases with the number of 
edges. Off-diagonal entries can be 1 and −1 depending on the edge 
orientation, as in Eq. 3. When the filtration value is large enough, all 
edges will be either upper adjacent or not lower adjacent; thus, L1 
matrix becomes a diagonal matrix with all its diagonal entries as 60. 
For Dim(2), no L2 matrices exist at the beginning stage of filtration, 
as no 2-simplexes are generated. The size of L2 matrices increases 
with the filtration, and the matrix eventually grows into a diagonal 
matrix with its diagonal entry value 60 according to Eq. 3. Mathe-
matically, higher-dimensional Hodge Laplacian matrices can also 
be generated.

Furthermore, we can study PerSpect attributes for fullerene C60. 
Figure 4 shows a comparison between persistent barcode and per-
sistent multiplicity. It can be seen that the persistent multiplicity is 
equivalent to persistent Betti number or Betti curve. In this way, the 
persistent homology information is naturally embedded into per-
sistent multiplicity. Figure 5 shows the persistent mean, persistent 
SD, persistent maximum, and persistent minimum for C60. It can be 
seen that these PerSpect attributes change with the filtration value. 
Each variation of PerSpect attributes indicates a certain change of 
the simplicial complexes. At filtration size 7.10 Å, a complete three-
dimensional simplicial complex is achieved, i.e., any four vertices 
can form a 3-simplex. The corresponding L0 has eigenvalues 0 
and 60. The size for the corresponding L1 is 1770*1770, and its 
eigenvalues are all 60. The size for complete corresponding L2 is 

Fig. 3. Illustration of the filtration process and the associated Hodge Laplacian matrices for fullerene C60. (A) A series of nested simplicial complexes are generated 
during the filtration. (B) Hodge Laplacian matrices are generated from these simplicial complexes. Hodge Laplacian matrices at Dim(0) to Dim(2) are illustrated. During 
the filtration, Dim(0) Laplacian matrix changes from all-zero-entry matrix, meaning no connections at all, to a matrix with all off-diagonal entries as −1, representing a 
complete graph. For Dim(1) and Dim(2) Hodge Laplacian matrices, the total number of their off-diagonal non–zero entries increases at the early stage of filtration, then 
decreases, and finally goes to zero, resulting in two diagonal matrices.
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34220*34220, and its eigenvalues are also 60. Note that ​1770  = ​ C​60​ 2  ​​ and 
​34220  = ​ C​60​ 3  ​​.

PerSpect ML models
Our PerSpect theory provides a mathematical representation of 
molecules. PerSpect attributes can naturally work as featurization 
or feature engineering of molecular structures and interactions. 
More specifically, molecular descriptors/fingerprints can be ob-
tained from the discretization of PerSpect attributes. Similar to the 
binning approach as in Fig. 2F, we can decompose the filtration re-
gion into equal-sized bins and use PerSpect attribute value at each 
grid point as an individual feature. These values are combined into 
a feature vector and further used in various machine learning mod-
els, such as support vector machine, random forest, gradient boost-
ing tree (GBT), and convolutional neural network (CNN). Because 
PerSpect attributes are generated from highly abstract spectral 
models at multiple scales, PerSpect attribute–based feature vectors 
can balance between complexity reduction, data simplification, and 
preservation of intrinsic structure information. A better featuriza-
tion with a higher transferability is obtained in our PerSpect mod-
els; thus, they can boost the performance of learning models in 
molecular data analysis.

PerSpect ML for protein-ligand binding affinity prediction
The prediction of protein-ligand binding affinity is a key step in 
drug design and discovery (2). An accurate prediction requires a 
better representation of the interactions between proteins and ligands 
at the molecular level. Here, the element-specific (ES) topological 
model is considered to characterize protein-ligand interactions (3). 
Essentially, a molecule can be decomposed into different atom sets, 
each with only one type of atom. For instance, a protein structure can 
usually be decomposed into five different atom sets, each containing 
one type of atom, including hydrogen (H), carbon (C), nitrogen (N), 
oxygen (O), and sulfur (S). Ligands are usually composed of around 
10 types of atom sets. Among them, five types are the same as in pro-
tein, and the other five types include phosphorus (P), fluoride (F), 
chloride (Cl), bromide (Br), and iodine (I). In the ES topological 
model, protein-ligand interactions are characterized by topological 
connections between two atom sets, one from protein and the other 

from ligand. For instance, a C-N graph can be constructed (for 
protein-ligand interactions) using a C atom set from protein and a 
N atom set from ligand.

Interactions in the ES topological models can be characterized 
by distance relationships. In this way, ES-based interactive distance 
matrix (ES-IDM) (3) can be defined as follows

       ​M(i, j ) = {​
∥​r​ i​​ − ​r​ j​​∥  ,

​ 
if ​r​ i​​ ∈ ​R​ P​​, ​r​ j​​ ∈ ​R​ L​​ or  ​r​ i​​ ∈ ​R​ L​​, ​r​ j​​ ∈ ​R​ P​​

​     
         ∞  ,

​ 
 otherwise

  ​​

Here, ri and rj are coordinates for the ith and jth atoms, and ∥ri − 
rj∥ is their Euclidean distance. Two sets RP and RL are atom co-
ordinate sets for protein and ligand, respectively. Note that only 
connections (or interactions) between protein atoms and ligand 
atoms are considered in the ES-IDM models. Connections between 
atoms within either protein or ligand are ignored by setting their 
distance as ∞, i.e., an infinitely large value. Interactions in the ES 
topological models can also be modeled using electrostatic proper-
ties. ES-based interactive electrostatic matrix (ES-IEM) (3) can be 
defined as follows

    ​​M​ E​​(i, j ) = 

{
​
​  1 ────────────  
1 + exp​(​​ − ​ 

c ​q​ i​​ ​q​ j​​ _ 
∥ ​ r​ i​​ − ​r​ j​​  ∥

​​)​​
 ​,
​ 

if ​r​ i​​  ∈ ​ R​ P​​, ​r​ j​​  ∈ ​ R​ L​​ or ​r​ i​​ ∈ ​ R​ L​​, ​r​ j​​ ∈ ​ R​ P ​​
​     

∞ ,

​ 

otherwise

  ​​

Here, qi and qj are partial charges for the ith and jth atoms, and 
parameter c is a constant value. In this matrix, electrostatic interac-
tions between atoms within either protein or ligand are dismissed 
by setting their value as ∞ in our ES-IEM models. A filtration pro-
cess can be generated from both ES-IDM and ES-IEM. The filtration 
parameter can be chosen as either the distance value or electrostatic 
value. Simplicial complexes can be generated by using Vietoris-Rips 
complex. We consider PerSpect simplicial complex model and se-
lect 11 PerSpect attributes to generate feature vectors (see Materials 
and Methods).

Fig. 4. Comparison of persistent barcodes and persistent multiplicities of 
fullerene C60. (A) The persistent barcodes for fullerene C60. (B) The persistent mul-
tiplicities for fullerene C60. The Dim(k) persistent multiplicity is multiplicity of zero 
eigenvalues for Dim(k) combinatorial Laplacian matrices during a filtration pro-
cess. Multiplicities of zero eigenvalues are equivalent to Betti numbers. Persistent 
multiplicity is equivalent to persistent Betti numbers or Betti curves.

Fig. 5. Illustration of four PerSpect attributes for fullerene C60. (A) Persistent 
mean. (B) Persistent SD. (C) Persistent maximum. (D) Persistent minimum.
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To validate our models, we consider the three most commonly 
used protein-ligand datasets, namely, PDBbind-2007, PDBbind- 
2013, and PDBbind-2016 (23). Three PerSpect-GBT models with 
features from ES-IDM model, ES-IEM model, and combined ES-IDM 
and ES-IEM models are considered. An average Pearson correlation 
coefficient (PCC) of around 0.81 is obtained for all three models in 
all three datasets. The results are for the test sets and are listed in 
Table 1. Figure 6 shows the comparison between the predicted binding 
affinity values with the experimental ones. Furthermore, to have a 
better understanding of the performance of our models, we com-
pare our PCC results with the state-of-the-art results in literature 
(2, 24–31), as far as we know. The results are illustrated in Fig. 7. It 
can be seen that our PerSpect-GBT models have achieved the highest 
PCCs for all three datasets.

Note that our PerSpect-GBT can be applied to various other 
steps of virtual screening in drug design, including the predic-
tion of solubility, partition coefficient, toxicity, and other proper-
ties for drug absorption, distribution, metabolism, excretion, and 
toxicity (32).

DISCUSSION
Advanced mathematical representations that characterize molecu-
lar intrinsic structural, physical, and chemical properties provide a 
solid foundation for molecular function and property analysis. Mo-
lecular descriptors obtained from the advanced mathematical rep-
resentations provide an effective featurization for learning models 
in material, chemical, and biological data analysis. Compared with 
traditional featurization, our PerSpect theory has several advantages. 
First, a multiscale representation is attained through a filtration 
process. Note that PerSpect attributes capture the eigen informa-
tion from various different scales through an expansion process, 
instead of only a special fixed scale as in traditional models. Second, 
PerSpect models characterize the intrinsic structure properties. Es-
sentially, Betti number, a topological invariant, is incorporated into 
PerSpect attributes. Third, a balance between the geometric com-
plexities and topological simplification is achieved. PerSpect at-
tributes from non–zero eigenvalues characterize the quantitative 
geometric information of the structure. Last, it is the first time the 
Hodge theory has been used in featurization and machine learn-
ing models.

MATERIALS AND METHODS
Topological representations
Graph
Graph or network models have been applied to various material, 
chemical, and biological systems. In these models, atoms and bonds 
are usually simplified as vertices and edges. Mathematically, a graph 
representation can be denoted as G(V, E), where V = {vi; i = 1,2, …, 
N} are vertex set with N = ∣ V∣ the total number. Here, E = {ei = 
(vi1, vi2); 1 ≤ i1 < i2 ≤ N} denotes the edge set. Note that graph invariants 
are graph properties that remain unchanged under graph isomor-
phism (bijective mapping between two graphs). Typical graph invari-
ants include graph order, size, clique number (clique is a maximal 
set of nodes that is complete), and chromatic index.
Simplicial complex
A simplicial complex is the generalization of a graph into its higher-
dimensional counterpart. The simplicial complex is composed of 
simplexes. Each simplex is a finite set of vertices and can be viewed 
geometrically as a point (0-simplex), an edge (1-simplex), a triangle 
(2-simplex), a tetrahedron (3-simplex), and their k-dimensional 
counterpart (k-simplex). More specifically, a k-simplex k = {v0, v1, 
v2, ⋯, vk} is the convex hull formed by k + 1 affinely independent 
points v0, v1, v2, ⋯, vk as follows

	​​ ​​ k​  =  {​​ 0​​ ​v​ 0​​ + ​​ 1​​ ​v​ 1​​ + ⋯  + ​​ k​​ ​v​ k​​ ∣ ​  ∑ 
i=0

​ 
k
  ​​ ​​ i​​  =  1; ∀ i, 0  ≤ ​ ​ i​​  ≤ 1}​	

The ith dimensional face of k (i < k) is the convex hull formed 
by i + 1 vertices from the set of k + 1 points v0, v1, v2, ⋯, vk. The 
simplexes are the basic components for a simplicial complex.

A simplicial complex K is a finite set of simplexes that satisfy two 
conditions. First, any face of a simplex from K is also in K. Second, 
the intersection of any two simplexes in K is either empty or a 
shared face. A kth chain group Ck is an Abelian group of oriented 
k-simplexes k, which are simplexes together with an orientation, 
i.e., ordering of their vertex set. The boundary operator ∂k (Ck → Ck − 1) 
for an oriented k-simplex k can be denoted as

	​​ ∂​ k​​ ​​​ k​  = ​  ∑ 
i=0

​ 
k
  ​​ ​(− 1)​​ i​ [ ​v​ 0​​, ​v​ 1​​, ​v​ 2​​, ⋯  , ​​   v ​​ i​​, ⋯  , ​v​ k​​]​	

Here, ​[​v​ 0​​, ​v​ 1​​, ​v​ 2​​, ⋯  , ​​   v ​​ i​​, ⋯  , ​v​ k​​]​ is an oriented (k  −  1)–simplex, 
which is generated by the original set of vertices except vi. The 
boundary operator maps a simplex to its faces, and it guarantees 
that ∂k − 1∂k = 0. There are various kinds of simplical complexes, 
including Vietoris-Rips complex, Čech complex, alpha complex, 
and clique complex. Among them, Vietoris-Rips complex is used 
here, and an example can be found in Fig. 2. Clique complex (also 
known as flag complex) can be generated directly from a graph or a 
hypergraph by using a clique expansion.

To facilitate a better description, we use notation ​​​j​ k−1​  ⊂ ​ ​i​ 
k​​ to 

indicate that ​​​j​ k−1​​ is a face of ​​​i​ 
k​​ and notation ​​​j​ k−1​  ∼ ​ ​i​ 

k​​ if they have 
the same orientation, i.e., oriented similarly. For two oriented 
k-simplexes, ​​​i​ 

k​​ and ​​​j​ k​​, of a simplicial complex K, they are upper 
adjacent, denoted as ​​​i​ 

k​ ∩ ​​j​ k​​, if they are faces of a common (k + 1)–
simplex; they are lower adjacent, denoted as ​​​i​ 

k​ ∪ ​​j​ k​​, if they share a 
common (k − 1)–simplex as their face. Moreover, if the orientations 
of their common lower simplex are the same, it is called similar 
common lower simplex (​​​i​ 

k​ ∪ ​​j​ k​​ and ​​​i​ 
k​  ∼ ​ ​j​ k​​); if their orientations 

Table 1. The PCCs and root mean square errors (in kcal/mol) of our 
PerSpect simplicial complex–based GBT models on the three test sets 
of PDBbind-2007, PDBbind-2013, and PDBbind-2016. Three 
PerSpect-GBT models are considered. Their features are generated from 
the ES-IDM model, the ES-IEM model, and combined ES-IDM and ES-IEM 
models (ES-IDM + ES-IEM). The detailed information of the training sets 
and test sets can be found in Table 2. The detailed setting of GBT 
parameters can be found in Table 3. 

ES-IDM ES-IEM ES-IDM + ES-
IEM

PDBbind-2007 0.829 (1.868) 0.816 (1.941) 0.836 (1.847)

PDBbind-2013 0.781 (2.005) 0.786 (1.979) 0.793 (1.956)

PDBbind-2016 0.830 (1.764) 0.832 (1.757) 0.840 (1.724)

Average 0.813 (1.879) 0.811 (1.892) 0.823 (1.842)



Meng and Xia, Sci. Adv. 2021; 7 : eabc5329     7 May 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 10

are different, it is called dissimilar common lower simplex (​​​i​ 
k​ ∪ ​​j​ k​​ 

and ​​​i​ 
k​  ≁ ​ ​j​ k​​). The (upper) degree of a k-simplex ​​​i​ 

k​​, denoted as 
d(k), is the number of (k + 1)–simplexes, of which ​​​i​ 

k​​ is a face.
Hypergraph
A hypergraph is a generalization of a graph in which an edge is 
made of a set of vertices. Mathematically, a hypergraph (Vℋ, ℋ) 
consists of a set of vertices (denoted as Vℋ) and a set of hyperedges 
(denoted as ℋ). Each hyperedge contains an arbitrary number of 
vertices and can be regarded as a subset of Vℋ. A hyperedge ​​e​i​ 

h​​ is 
said to be incident with a vertex vj when the vertex is in the hyper-
edge, i.e., ​​v​ j​​  ∈ ​ e​i​ 

h​​. Note that a hypergraph can also be viewed as a 
generalization of the simplicial complex. Moreover, a unique clique 
complex can be generated from a hypergraph by defining each hyp-
eredge as a clique.

Spectral theories
The characterization, identification, comparison, and analysis of 
structure data, from material, chemical, and biological systems, are 
usually complicated because of their high dimensionality and com-
plexity. Spectral graph theory is proposed to reduce the data dimen-
sionality and complexity by studying the spectral information of 
connectivity matrices, constructed from the structure data. These 
connectivity matrices include incidence matrix, adjacency matrix, 
(normalized) Laplacian matrix, and Hessian matrix. Spectral infor-
mation includes eigenvalues, eigenvectors, eigenfunctions, and oth-
er related properties, such as Cheeger constant, edge expansion, 
vertex expansion, graph flow, graph random walk, and heat kernel 
of graph. Spectral graph theory has been generalized into spectral 
simplicial complex (16–19, 33) and spectral hypergraph (20–22).
Spectral graph
In spectral graph theory, a graph G(V, E) is represented by its adja-
cency matrix and Laplacian matrix (15, 34–36). The adjacency ma-
trix A describes the connectivity information and can be expressed as

	​ A(i, j ) = {​
1,

​ 
(​v​ i​​, ​v​ j​​ ) ∈  E

​  
0,

​ 
(​v​ i​​, ​v​ j​​ ) ∉  E

 ​​	

The degree of a vertex vi is the total number of edges that are 
connected to vertex vi, i.e., ​d(​v​ i​​ ) = ​∑ i≠j​ N  ​​ A(i, j)​. The vertex diagonal 
matrix D can be defined as

	​ D(i, j ) = {​​​∑ i≠j​ N  ​​A(i, j ) ,​  i  =  j​  
0,

​ 
i  ≠  j

​​​	

Laplacian matrix, also known as admittance matrix and Kirchhoff 
matrix, is defined as L = D − A. More specifically, it can be ex-
pressed as

	​​ L(i, j ) = ​
⎧

 
⎪

 ⎨ 
⎪

 
⎩

​​​​
d(​v​ i​​ ) ,

​ 
i  =  j(5)

​  − 1,​  i  ≠  j and(​v​ i​​, ​v​ j​​ ) ∈  E​   
0,

​ 
i  ≠  j and(​v​ i​​, ​v​ j​​ ) ∉  E

 ​​​​	 (1)

The Laplacian matrix has many important properties. It is always 
positive-semidefinite; thus, all its eigenvalues are non-negative. In 
particular, the number (multiplicity) of zero eigenvalues is equal to 
the topological invariant 0, which counts the number of connected 
components in the graph. The second smallest eigenvalue, i.e., the 
first non–zero eigenvalue, is called Fiedler value or algebraic con-
nectivity, which describes the general connectivity of the graph. The 
corresponding eigenvector can be used to subdivide the graph into 
two well-connected subgraphs. All eigenvalues and eigenvectors form 
an eigenspectrum, and spectral graph theory studies the properties 
of the graph eigenspectrum.

There are two types of normalized Laplacian matrices, including 
the symmetric normalized Laplacian matrix, which is defined as 
Lsym = D−1/2LD−1/2, and random walk normalized Laplacian, which 
is defined as Lrw = D−1L.
Spectral simplicial complex
The spectral simplicial complex theory studies the spectral properties 
of combinatorial Laplacian (or Hodge Laplacian) matrices, which 
are constructed on the basis of a simplicial complex (16–19, 33). For 
an oriented simplicial complex, its kth boundary (or incidence) ma-
trix Bk can be defined as follows

	​​ ​B​ k​​(i, j ) = ​

⎧

 
⎪

 ⎨ 
⎪

 

⎩

​​​

1,

​ 

if ​​i​ 
k−1​  ⊂ ​ ​j​ k​ and ​​i​ 

k−1​  ∼ ​ ​j​ k​

​   − 1,​  if ​​i​ 
k−1​  ⊂ ​ ​j​ k​ and ​​i​ 

k−1​  ≁ ​ ​j​ k​​   

0,

​ 

if ​​i​ 
k−1​  ⊄ ​ ​j​ k​

 ​ ​​	

These boundary matrices satisfy the condition that BkBk + 1 = 0. 
The kth combinatorial Laplacian matrix can be expressed as follows

	​​ L​ k​​  = ​ B​k​ T​ ​B​ k​​ + ​B​ k+1​​ ​B​k+1​ T  ​​	

Note that 0th combinatorial Laplacian is

	​​ L​ 0​​  = ​ B​ 1​​ ​B​1​ T​​	

Furthermore, if the highest order of the simplicial complex K is 
n, then the nth combinatorial Laplacian matrix is ​​L​ n​​  = ​ B​n​ T​ ​B​ n​​​.

The above combinatorial Laplacian matrices can be explicitly 
described in terms of the simplex relations. More specifically, L0 can 
be expressed as

Table 3. The setting of parameters for our GBT model.  

No. of 
estimators

Maximum 
depth

Minimum 
sample split Learning rate

40,000 6 2 0.001

Loss function Maximum 
features Subsample size Repetition

Least square Square root 0.7 10 times

Table 2. Details of the three PDBbind databases. The refined sets are 
composed of training set and test set (core set). 

Version Refined set Training set Test set (core 
set)

v2007 1300 1105 195

v2013 2959 2764 195

v2016 4057 3772 285
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	​​ ​L​ 0​​(i, j ) = ​

⎧

 
⎪

 ⎨ 
⎪

 

⎩

​​​

d(​​i​ 
0​ ) ,

​ 

if i  =  j(9)

​  − 1,​  if i  ≠  j and ​​i​ 
0​ ∩ ​​j​ 0​​   

0,

​ 

if i  ≠  j and ​​i​ 
0 ​​∩ ​​​j​ 0​

 ​ ​​	 (2)

It can be seen that this expression is exactly the graph Laplacian 
as in Eq. 1. Furthermore, when k > 0, Lk can be expressed as

	​​ ​L​ k​​(i, j ) = ​

⎧

 
⎪

 ⎨ 
⎪

 

⎩

​​​

d(​​i​ 
k​ ) + k + 1, if i  =  j

​  
1, if i  ≠  j, ​​i​ 

k ​​∩ ​​​j​ k​, ​​i​ 
k​ ∪ ​​j​ k​ and ​​i​ 

k​  ∼ ​ ​j​ k​
​   

− 1, if i  ≠  j, ​​i​ 
k ​​∩ ​​​j​ k​, ​​i​ 

k​ ∪ ​​j​ k​ and ​​i​ 
k​​∼​​​j​ k​

​   

0, if i  ≠  j, ​​i​ 
k​ ∩ ​​j​ k​ or ​​i​ 

k ​​∪ ​​​j​ k​

 ​ ​​	 (3)

The eigenvalues of combinatorial Laplacian matrices are indepen-
dent of the choice of the orientation (17). Furthermore, the mul-
tiplicity of zero eigenvalues, i.e., the total number of zero eigenvalues, 
of Lk is equal to the kth Betti number k.

We can define the kth combinatorial down Laplacian matrix as ​​
L​k​ down​  = ​ B​k​ T​ ​B​ k​​​ and combinatorial up Laplacian matrix as ​​L​k​ up​  = ​
B​ k+1​​ ​B​k+1​ T  ​​. These matrices have very interesting spectral properties 
(18). First, eigenvectors associated with non–zero eigenvalues of ​​
L​k​ down​​ are orthogonal to eigenvectors from non–zero eigenvalues of 
​​L​k​ up​​. Second, non–zero eigenvalues of Lk are either the eigenvalues 
of ​​L​k​ down​​ or those of ​​L​k​ up​​. Third, eigenvectors associated with non–
zero eigenvalues of Lk are either eigenvectors of ​​L​k​ down​​ or those 
of ​​L​k​ up​​.
Spectral hypergraph
Laplacian matrices can also be defined on hypergraph (20–22). One 
way to do that is to use a clique expansion, in which a graph is con-
structed from a hypergraph (Vℋ, ℋ) by replacing each hyperedge 
with an edge for each pair of vertices in this hyperedge. A graph 
Laplacian matrix can then be defined on this hypergraph-induced 
graph. Note that the clique expansion also generates a clique 
complex, and Hodge Laplacian matrices can also be constructed 
based on it.

The other way is to directly use the incidence matrix. In a hyper-
graph, an incidence matrix H can be defined as follows

	​​ H(i, j ) = ​
{

​​​
1,

​ 
if ​v​ i​​  ∈ ​ e​j​ h​

​ 
0,

​ 
if ​v​ i​​  ∉ ​ e​j​ h​

 ​​​	

The vertex diagonal matrix Dv is

	​​ ​D​ v​​(i, j ) = ​{​​​​
​∑ j​ ​​ H(i, j ) ,

​ 
i  =  j

​  
0,

​ 
i  ≠  j

​​​​	

The hypergraph adjacent matrix is then defined as A = HHT − Dv, 
and the unnormalized hypergraph Laplacian matrix is defined as

	​ L  =  2 ​D​ v​​ − H ​H​​ T​​	

Similar to the graph models, the symmetric normalized hyper-
graph Laplacian is defined as ​​L​ sym​​  =  2I − ​D​v​ 

−1/2​ H ​H​​ T​ ​D​v​ 
−1/2​​, with I 

as the identity matrix. The random walk hypergraph Laplacian is 
defined as ​​L​ rw​​  =  2I − ​D​v​ 

−1​ H ​H​​ T​​. Recently, embedded homology, 

Fig. 6. Comparison of predicted protein-ligand binding affinities and experi-
mental results for the three test sets. (A) PDBbind -2007. (B) PDBbind-2013. 
(C) PDBbind-2016. The PCCs are 0.836, 0.793, and 0.840, respectively. The root mean 
square errors are 1.847, 1.956, and 1.724 kcal/mol, respectively.
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persistent homology, and weighted (Hodge) Laplacians have been 
developed for hypergraphs (37, 38).

PerSpect theory
Filtration
A filtration process naturally generates a multiscale representation 
(12). The filtration parameter, denoted as f and key to the filtration 
process, is usually chosen as sphere radius (or diameter) for point 
cloud data, edge weight for graphs, and isovalue (or level set value) 

for density data. A systematical increase (or decrease) of the value 
for the filtration parameter will induce a sequence of hierarchical 
topological representations, which can be not only simplicial com-
plexes but also graphs and hypergraphs. For instance, a filtration 
operation on a distance matrix, i.e., a matrix with distances between 
any two vertices as its entries, can be defined by using a cutoff value 
as the filtration parameter. More specifically, if the distance be-
tween two vertices is smaller than the cutoff value, an edge is formed 
between them. In this way, a systematical increase (or decrease) of 

Fig. 7. Performance comparison of our PerSpect simplicial complex–based GBT with the-state-of-art models (2, 24–31). We consider three datasets, including (A) 
PDBbind-2007, (B) PDBbind-2013, and (C) PDBbind-2016 .
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the cutoff value will deliver a series of nested graphs, with the graph 
produced at a lower cutoff value as a part (or a subset) of the graph 
produced at a larger cutoff value. Similarly, nested simplicial com-
plexes can be constructed by using various definitions of complex-
es, such as Vietoris-Rips complex, Čech complex, alpha complex, 
cubical complex, Morse complex, and clique complex. Nested hy-
pergraphs can also be generated by using a suitable definition of 
hyperedge.
PerSpect models
The essential idea of our PerSpect theory is to provide a new math-
ematical representation that characterizes the intrinsic topological 
and geometric information of the data. Different from all previous 
spectral models, our PerSpect theory does not consider the eigen-
spectrum information of the graph, simplicial complex, or hypergraph, 
constructed from data at a particular scale; instead, it focuses on the 
variation of the eigenspectrum of these topological representations 
during a filtration process. Stated differently, our PerSpect theory 
studies the change of eigenspectrum when the structure representa-
tion, i.e., graph, simplicial complex, or hypergraph, grows from a set 
of isolated vertices to a fully connected topology, according to their 
inner structure connectivity and a predefined filtration parameter.

Mathematically, a filtration operation will deliver a nested sequence 
of graphs as follows

	​​ G​​ 0​  ⊆ ​ G​​ 1​  ⊆  ⋯  ⊆ ​ G​​ m​​	

Here, ith graph Gi is generated at a certain filtration value fi. 
Computationally, we can equally divide the filtration region (of the 
filtration parameter) into m intervals and consider a topological rep-
resentation at each interval. A series of Laplacian matrices {Li∣i = 1,2, …, m} 
can be generated from these graphs. Furthermore, a nested se-
quence of simplicial complexes can also be generated from a filtra-
tion process

	​​ K​​ 0​  ⊆ ​ K​​ 1​  ⊆  ⋯  ⊆ ​ K​​ m​​	

Similarly, the ith simplicial complex Ki is generated at filtration 
value fi. Combinatorial Laplacian matrix series ​{​​L​k​ i ​  ∣​ i=1,2,…,m;k=0,1,2,…​​}​  
can be constructed from these simplicial complexes. Note that the 
size of these Laplacian matrices may be different. Moreover, with a 
suitable filtration process, a nested sequence of hypergraph can be 
generated as follows

	​​ H​​ 0​  ⊆ ​ H​​ 1​  ⊆  ⋯  ⊆ ​ H​​ m​​	

Hypergraph Laplacian matrix series {Li∣i = 1,2, …, m} can be con-
structed accordingly.
Persistent attributes
Other than the multiplicity of zero eigenvalues and non–zero eigen-
value statistic properties, PerSpect attributes can also be generated 
from various spectral indexes (5). For a Laplacian matrix with ei-
genvalues {1, 2, …, n}, commonly used spectral indexes include 
sum of eigenvalues (Laplacian graph energy), sum of absolute devi-
ation of eigenvalues (generalized average graph energy ​​∑ i=1​ n  ​​∣​​ i​​ − ​  ̄​∣​, 
with ​​ ̄ ​​ as the average eigenvalue), spectral moments (​​∑ i=1​ n  ​ ​​​ i​​​​ k​​​, with 
k as the order of moment), quasi-Wiener index (​​∑ j=1​ A  ​ ​A + 1 _ ​​ j​​

 ​ ​​, with j > 
0 and A as the number of all non–zero eigenvalues), and spanning 
tree number (​​log​[​​ ​  1 _ A + 1​ · ​∏ j=1​ A  ​​ ​​ j​​​]​​​​). Furthermore, other spectral 

information, including algebraic connectivity, modularity, Cheeger 
constant, vertex/edge expansion, and other flow, random walk, and 
heat kernel–related properties, can be generalized into their corre-
sponding PerSpect attributes. Note that other persistent functions 
have also been considered (39). Moreover, physical models, such as 
cluster expansion and symmetry function (40), can be used as gen-
eralized persistent functions. Last, note that various normalized 
(Hodge) Laplacians have been proposed (17–19). New PerSpect 
attributes can be generated from these normalized (Hodge) Laplacian  
matrices.

Protein-ligand binding affinity prediction with PerSpect ML
The three datasets (refined sets) are downloaded from PDBbind 
(www.pdbbind.org.cn). The core set is used as the test dataset, and 
the training dataset is the refined set excluding the core set. The 
detailed data information can be found in Table 2.

In our ES-IDM–based PerSpect simplicial complex models, the 
distance value is considered as the filtration parameter. The filtra-
tion value goes from 0.00 to 25.00 Å̊. For discretization, Laplacian 
matrices are generated with a step of 0.10 Å̊. That is to say, a total 
of 250 Laplacian matrices are generated from each filtration pro-
cess. There are, in total, 4*9 = 36 types of ES-IDMs between 4 types 
of atoms from protein, including C, N, O, and S, and 9 types of at-
oms from ligand, including C, N, O, S, P, F, Cl, Br, and I. In our 
ES-IEM–based PerSpect simplicial complex models, the interaction 
strength is used as the filtration parameter and its value goes from 
0.00 to 1.00. In our calculation, the constant c is set to be 100. The 
Laplacian matrix is generated with a step of 0.01, meaning a total 
100 Laplacian matrices for each filtration process. There are 5*10 = 
50 types of ES-IEMs, between 5 types of atoms from protein, includ-
ing H, C, N, O, and S, and 10 types of atoms from ligand, including 
H, C, N, O, S, P, F, Cl, Br, and I.

Furthermore, we consider 11 PerSpect features as follows: Dim(0) 
persistent multiplicity (of zero eigenvalue), Dim(1) persistent mul-
tiplicity (of zero eigenvalue), persistent maximum, persistent mini-
mum, persistent mean, persistent SD, persistent Laplacian graph 
energy, persistent generalized mean graph energy, PerSpect mo-
ment (second order), persistent quasi-Wiener index, and persistent 
spanning tree number.

Note that other than the persistent multiplicity, all PerSpect at-
tributes are calculated from Dim(0) Laplacians. To sum up, in our 
ES-IDMs, there are 36 types of atom combinations as stated above, 
and the total number of features is 36[types]*250[persistence]*11[eigen 
feature]. Similarly, there are 50 types of ES-IEMs, and the number 
of features is 50[types]*100[persistence]*11[eigen feature]. Because 
we have a large feature vector, decision tree–based models are con-
sidered to avoid overfitting. In particular, GBT models have deliv-
ered better results in protein-ligand binding affinity prediction. The 
parameters of GBT are listed in Table 3. Note that 10 independent 
regressions are conducted, and the medians of 10 PCCs and root 
mean square errors are computed as the performance measurement 
of our PerSpect ML model.
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