Skip to main content
. 2021 Apr 21;10:e65541. doi: 10.7554/eLife.65541

Figure 5. Illustration of BonVision across a range of vision research experiments.

(A) Sparse noise stimulus, generated with BonVision, is rendered onto a demi-spherical screen. (and C) Receptive field maps from recordings of local field potential in the superior colliculus (B), and spiking activity in the primary visual cortex (C) of mouse. (D) Two cubes were presented at different depths in a virtual environment through a head-mounted display to human subjects. Subjects had to report which cube was larger: left or right. (E) Subjects predominantly reported the larger object correctly, with a slight bias to report that the object in front was bigger. (F) BonVision was used to generate a closed-loop virtual platform that a mouse could explore (top: schematic of platform). Mice naturally tended to run faster along the platform, and in later sessions developed a speed profile, where they slowed down as they approached the end of the platform (virtual cliff). (G) The speed of the animal at the start of the platform and at the end of the platform as a function training. (H) BonVision was used to present visual stimuli overhead while an animal was free to explore an environment (which included a refuge). The stimulus was a small dot (5° diameter) moving across the projected surface over several seconds. (I) The cumulative probability of Freeze and Flight behaviour across time in response to moving dot presented overhead.

Figure 5.

Figure 5—figure supplement 1. BonVision timing logs are sufficient to support receptive field mapping of spiking activity.

Figure 5—figure supplement 1.

Top row in each case shows the receptive field identified using the timing information provided by a photodiode that monitored a small square on the stimulus display that was obscured from the animal. Bottom row in each case shows the receptive field identified by using the timing logged by BonVision during the stimulus presentation (a separate timing system was used to align the clocks between the computer hosting BonVision and the Open EPhys recording device). (A) Average OFF and ON receptive field maps for 33 simultaneously recorded units in a single recording session. (B) Individual OFF receptive field maps for three representative units in the same session.