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ABSTRACT The human colon contains a community of microbial species, mostly
bacteria, which is often referred to as the gut microbiota. The community is consid-
ered essential to human well-being by conferring additional energy-harvesting
capacity, niche exclusion of pathogens, and molecular signaling activities that are
integrated into human physiological processes. Plant polysaccharides (glycans, die-
tary fiber) are an important source of carbon and energy that supports the mainte-
nance and functioning of the gut microbiota. Therefore, the daily quantity and qual-
ity of plant glycans consumed by the human host have the potential to influence
health. Members of the gut microbiota differ in ability to utilize different types of
plant glycans. Dietary interventions with specific glycans could modulate the micro-
biota, counteracting ecological perturbations that disrupt the intricate relationships
between microbiota and host (dysbiosis). This review considers prospects and research
options for modulation of the gut microbiota by the formulation of diets that, when
consumed habitually, would correct dysbiosis by building diverse consortia that boost
functional resilience. Traditional “prebiotics” favor bifidobacteria and lactobacilli, whereas
dietary mixtures of plant glycans that are varied in chemical complexity would promote
high-diversity microbiotas. It is concluded that research should aim at improving knowl-
edge of bacterial consortia that, through shared nourishment, degrade and ferment
plant glycans. The consortia may vary in composition from person to person, but func-
tional outputs will be consistent in a given context because of metabolic redundancy
among bacteria. Thus, the individuality of gut microbiotas could be encompassed, func-
tional resilience encouraged, and correction of dysbiosis achieved.
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WHYMODULATE THE GUT MICROBIOTA OF HUMANS?

Amicrobial community largely composed of bacterial species, often referred to as
the gut microbiota, inhabits the human colon (1). Early in life, when milk (espe-

cially human breast milk) is the sole source of nutrients for the infant host, the gut
microbiota has a relatively simple taxonomic composition (low alpha-diversity), con-
sisting predominantly of bifidobacterial species (2). Assembly of a much more complex
microbiota occurs once solid (weaning, complementary) foods are introduced into the
diet from 4 to 6months of age. Plant glycans in fruit and vegetables that are indigesti-
ble by human processes in the gut pass to the colon, where they become available as
growth substrates for bacteria (3, 4). Plant glycans are included in the category of die-
tary components known as dietary fiber (Text Box 1) (5). Ingestion of increasing
amounts of plant glycans during the first year of life is accompanied by increasing di-
versity of bacterial species until, by about 12months of age, a gut microbiota with
many similarities to that of adults has developed (6, 7). Members of the bacterial fami-
lies Lachnospiraceae and Ruminococcaceae, as well as Bacteroidaceae, are then the pre-
dominant taxa within the microbiota in terms of relative abundances (8). However, a
mature microbiota in which characteristic taxa are maintained temporally in relatively
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constant proportions may not be reached until children are 3 to 4 years of age or even
older (9, 10). All of these developments are subject to influences associated with mode
of delivery at birth, ethnicity, microbial dispersion, antibiotic administration, human
genetics, and nourishment (11–17). It is nevertheless clear that the formation of the
natural assemblage of bacterial species is influenced by two major factors, one exoge-
nous, i.e., host diet components (such as plant glycans), and the other endogenous,
i.e., host secretions (such as glycans associated with mucus) (3, 18). Practical manipula-
tion of mucus production is likely to be difficult if not impossible to achieve, but the
amount and kinds of plant glycans (dietary fiber) delivered to the colon can be con-
trolled by dietary intake. Thus, dietary intervention with plant glycans provides a
means of modulating the gut microbiota of adult humans.

Modulation (exerting a controlling influence) of the microbiota in a targeted man-
ner might be useful in the treatment or prevention of human diseases and medical
conditions. Although the rudiments of gut microbiota composition and its principal
emergent properties were known long ago, DNA-based technology has provided
detailed information about the taxonomic composition and functional capacity of the
gut microbiota (19, 20). There is evidence from such studies that microbiota composi-
tion is altered in association with certain human diseases and conditions in comparison
to the microbiota of well people (21–49). This evidence of “dysbiosis” (taxa imbalance;
community perturbation leading to disturbance of microbe/host relationship) in sick
humans has understandably become a major driving force for gut microbiota research.
Although most evidence of dysbiosis is based on statistical correlation, and accepting
that attempts at testing Koch’s postulates using human microbiota rodents may be
flawed (49, 50), investigations into the modulation of the gut microbiota using plant
glycans nevertheless remain a valid goal in gut microbiota research due to the need to
alleviate the enormous burden placed on health services by noncommunicable
diseases.

WHAT ARE PLANT GLYCANS?

Plant cells contain polymeric compounds that consist of a large number of mono-
saccharides with glycosidic linkages: plant glycans. Two groups of glycans (starches
and hemicelluloses) that comprise dietary fiber have received particular attention in
the case of the human gut microbiota (8). Starch is an energy storage polymer

TEXT BOX 1 CODEX definition of dietary fiber (5)

Dietary fiber means carbohydrate polymersa with 10 or more monometric unitsb

which are not hydrolyzed by the endogenous enzymes in the small intestine of
humans and belong to the following categories:

1. Edible carbohydrate polymers naturally occurring in the food as consumed.

2. Carbohydrate polymers, which have been obtained from food raw material
by physical, enzymatic, or chemical means and which have been shown to
have a physiological effect of benefit to health, as demonstrated by generally
accepted scientific evidence to competent authorities.

3. Synthetic carbohydrate polymers, which have been shown to have a
physiological effect of benefit to health, as demonstrated by generally
accepted scientific evidence to competent authorities.

aWhen derived from a plant origin, dietary fiber may include fractions from lignan and/or other
compounds associated with polysaccharides in the plant cell walls. These compounds also may be
measured by a certain analytical method(s) for dietary fiber.
bDecision on whether to include carbohydrates of 3 to 9 monomeric units should be left up to national
authorities.
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produced by many plants and consists of two types of molecules: linear and helical
amylose and branched amylopectin. The proportions of amylose and amylopectin in
starch are variable according to plant source. Amylose is more resistant to digestion by
human amylase than is amylopectin. Moreover, starch may be inaccessible to digestion
if trapped within seeds and grains. When cooked, starch undergoes gelatinization, in
which the crystal structure is broken down and the molecules become accessible to
amylase. However, cooling, drying, and freezing starch cause changes in starch struc-
ture (retrogradation), which transforms it into an indigestible form (Table 1) (51–53).
The second major group of plant glycans, the hemicelluloses, provides the matrix in
which cellulose fibrils are embedded within the plant cell wall (Table 1). They include
mannans, xylans, arabinogalactans, glucans, and pectins that vary greatly in chemical
composition and structure, even within specific glycan groups when they are derived
from different plant sources. For example, xylans consist of a xylopyranose backbone
onto which methylglucuronic acid groups, O-acetyl groups, or sugars such as arabinose
can be substituted in greater or lesser complexity. Ferulic acid can be attached to these
arabinose molecules (54). Arabinoxylans have backbones substituted in places with
arabinose and are common in cereal grains (wheat, barley, maize, rice). They form part
of the diet of humans worldwide. Hence, there has been considerable interest in the
microbiota response to ingesting arabinoxylan oligosaccharides (AXOS) derived by hy-
drolysis of arabinoxylans (55–62). A consistent finding is that short-chain fatty acid
(SCFA) (usually butyrate) concentrations rise during consumption of arabinoxylan/
AXOS-supplemented diets, but the increases are small and individualistic (55, 63).
Since therapeutic or prophylactic levels of butyrate have not been established, the sig-
nificance of these augmentations to human health is unknown, but they show promise
because they indicate that modulating the metabolic output of the microbiota is
possible.

The chemical diversity that exists among plant glycans has the potential to differen-
tially influence particular attributes of the microbiota, because only bacteria that pos-
sess the appropriate, specialized biochemical machinery will metabolize them. If all
other growth-limiting nutrients are available, these species will replicate and perhaps
have increased cell numbers and/or metabolic output. Earlier analyses of genomic data
of cultured members of the gut microbiota, as well as metagenomic investigations of
whole communities, have revealed biochemical pathways by which the bacteria can
degrade a wide variety of plant glycans (64, 65). Genomic and biochemical investiga-
tions of cultured members of the gut microbiota have revealed molecular details of
how the specialized bacteria degrade plant glycans for growth (66–69). In general,
they comprise highly specific, colocalized, coregulated complexes of proteins at cell
surfaces that recognize, sequester, and degrade glycans and transfer hydrolytic prod-
ucts resulting from their degradation into the bacterial cell (Table 2).

Plant glycans might be said to belong to the category of food supplements known
as “prebiotics,” i.e., “a substrate that is selectively utilized by host microorganisms

TABLE 1 Examples of starch and nonstarch plant glycans

Plant glycan Descriptiona

Cellulose A linear chain of several hundred to many thousands of b(1!4)-linked D-glucose units.
Hemicelluloses Heteropolymers, such as arabinoxylans, mixed-link (b1-3, 1-4) glucans, and glucomannan.
Pectin A complex polysaccharide rich in galacturonic acid and composed of heterogeneous branched components such as HG, RGI,

and RGII. HG is a linear polymer of (1–4)-linked a-D-GalpA. RGI consists of a repeating disaccharide [-4)-a-D-GalpA-(1–2)-a-L-
Rhap-(1-] with arabinan, galactan, and/or arabinogalactans attached to rhamnose residues. RGII has a backbone of HG to
which are attached complex side chains (51). Pectins represent the major “soluble” fiber in many fruits and vegetables.

Starch Two forms of glucose polymers—amylose (linear, helical) and amylopectin (branched). Some forms of starch are more
resistant to hydrolysis by human pancreatic amylase: RS1, physically inaccessible, such as that trapped in partly milled grains
and seeds; RS2, native granular structure (b-crystalline), such as that in raw potato and banana; RS3, retrograded due to
cooking and cooling, which produces new crystalline matrices (potato, bread, cornflakes); RS4, starch that has been
chemically modified to resist digestion through chemical cross-linking; RS5, amylose-lipid complexes, slow digestion, not true
resistant starch (52, 53).

aHG, homogalacturonan; RG, rhamnogalacturonan; RS, resistant starch.
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conferring a health benefit” (80). However, “prebiotic” commonly refers to inulin, fruc-
tooligosaccharides (FOS), and galactooligosaccharides (GOS), which are used as food
additives with the aim of producing an augmentation of the numbers of bifidobacteria
and lactic acid bacteria in the gut. The use of glycans with greater structural complexity
is more likely to target the bacterial species that are characteristically members of the
normally predominant families of bacteria of the mature gut microbiota of adult
humans. Therefore, the FOS (derived from hydrolysis of inulin or by chemical synthesis)
and galactose-containing substances (GOS; synthesized from lactose), although widely
used in the food industry, will not be considered further in this review. There are al-
ready many published articles contributing information on this topic (81–87).

IS THERE EVIDENCE FOR DIFFERENTIAL USE OF PLANT GLYCANS BY GUT BACTERIA?

A differential effect on the members of the microbiota is implicit in the concept of
modulation using dietary fiber. Preferential utilization of particular glycans by different
bacterial taxa is the specific basis of the modulatory effect. Culture-based studies con-
firm the evidence from genetic studies that specialization of substrate utilization by
gut bacteria occurs, even to the level of species and strains (77, 88–93). Much of this
work relates to commonly detected members of the gut microbiota that belong to the
genus Bacteroides, which can serve as an exemplar. In general, Bacteroides species have
relatively large genomes that encode numerous carbohydrate-active enzymes (CAZymes)
conferring the ability of the bacteria to synthesize, recognize, or metabolize complex car-
bohydrates (94). The results of laboratory studies with cultured Bacteroides species show,
indeed, that the species differ in ability to use particular glycans as growth substrates (for
example, barley b-D-glucan) (Fig. 1A). Biochemically complex molecules, such as flax xylan,
narrow the number of species that, in pure culture, can utilize the substrate (Fig. 1B). In
some instances, clustering of species according to growth in medium containing pectic
substrates occurs (Fig. 1C), indicating that several species can potentially occupy the same
fundamental niche in the gut community while others have unique roles. Similar growth
profiles may reflect interchangeable members of bacterial consortia involved in the degra-
dation and fermentation of specific glycans. Additionally, individual species have preferen-
ces to degrade particular regions of complex glycans. For example, several Bacteroides spe-
cies can grow using the homogalacturonan backbone of pectins, but relatively few can
utilize the rhamnogalacturonan portion and only after the removal of arabinan, galactan,
and arabinogalactan side chains by other bacteria. Utilization of these sugars for growth is

TABLE 2 Examples of molecular modules associated with plant glycan degradation by human gut bacteriaa

Metabolic module Components Reference(s)
Polysaccharide utilization loci (PULs; e.g.,
Bacteroides ovatus; Roseburia/Eubacterium rectale
group [gpPULs])

Genetic loci that encode proteins for the highly specific capture, degradation, and
importation of specific glycans. Each kind of PUL targets a different glycan
structure. The archetypal PUL is the starch utilization system (Sus) that contains
eight colocalized and coregulated genes. gpPULs are not close homologs of
Bacteroides PULs and vary between Firmicutes in terms of specific glycosyl
hydrolase genes.

66–70

Cellulosome (e.g., Ruminococcus champanellensis)
and amylosome (e.g., Ruminococcus bromii)

Complexes of molecules that bring hydrolytic enzymes and carbohydrate domains
in substrates together at the cell surface, facilitated by dockerins and cohesins. The
amylosome is simpler than a cellulosome but is associated with the exceptional
ability of bacteria to degrade particulate-resistant starches.

71–74

Cell surface-associated complex (e.g.,Monoglobus
pectinilyticus)

A combination of enzymes that degrade pectin. Esterases remove methyl and
acetyl groups from pectins, allowing pectic lyases access to HG and RG backbones.
S-layer proteins may anchor enzymes to the cell surface.

75

Xylan degradation genes (e.g., Bacteroides ovatus,
Bacteroides xylanisolvens)

Utilization of xylan by B. ovatus and B. xylanisolvens is associated with one large
PUL and one small PUL (remnant) that are transcriptionally linked. The small PUL is
linked to the utilization of xylans of simple composition, whereas the large PUL is
associated with the degradation of structurally complex xylans. A key feature of
xylan degradation appears to be endo-1,4-b-xylanases belonging to glycosyl
hydrolase family 10. Of the Bacteroidetes, only B. ovatus and B. xylanisolvens have
these PULs.

76–79

agpPULs, Gram-positive polysaccharide utilization loci; HG, homogalacturonan; RG, rhamnogalacturonan.
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FIG 1 Differential utilization of plant glycans by Bacteroides species. (A) Barley b-glucan as a growth
substrate; (B) New Zealand flax xylan as a growth substrate; (C) pectic polysaccharides as growth
substrates. (A and B) Mean A600 ratios after 24 h of incubation of cultures of Bacteroides species in
basal medium containing plant glycans (0.2%, wt/vol) relative to basal medium. Significantly different
values (P, 0.05) from controls are shown as black bars. (C) Significantly (P, 0.05) augmented growth
relative to the control (A600 ratios) in the form of a heat map. Nonsignificant differences in growth are
plotted as zero. Data are taken from references 89, 91, and 92.

Minireview Applied and Environmental Microbiology

March 2021 Volume 87 Issue 6 e02757-20 aem.asm.org 5

https://aem.asm.org


also differential among Bacteroides ovatus, Bacteroides finegoldii, Bacteroides cellulosyliticus,
and Bacteroides intestinalis (91). Moreover, bacteria prioritize glycans as to order of utiliza-
tion for growth. Bacteroides ovatus, for example, utilizes less complex, smaller polysaccha-
rides before using branched, higher-molecular-weight polymers (approximate order,
b-glucan, pectin, xyloglucan, and arabinoxylan [100, ;300, 1,028, and 232 kDa, respec-
tively]) when presented with a mixture of these substrates (92, 95–97). Bacteroides thetaio-
taomicron, when provided with a mixture of 12 glycans, prioritizes the use of some over
others, as evidenced by measurement of the transcription of polysaccharide utilization loci
(PULs) (98). Chemical linkages in glycans also influence the specificity of utilization. For
example, the specific import of b2-6 fructan, relative to b2-1 fructan, into the periplasm of
Bacteroides thetaiotaomicron is determined by cell surface-associated degradation and
binding machinery (99). The structural complexity of the molecules and the corresponding
need for coordinated actions of several enzymes in the degradation of substrates are im-
portant determinants of prioritization (100). The human host is likely to consume a mixture
of glycans from different plant sources (fruits and vegetables) each day, so knowledge of
how the bacterial taxa react to this in terms of the prioritization of use of specific glycans,
and the extent to which each is used, will be critical to the success of efforts to modulate
the gut microbiota. For example, testing taxa to utilize specific plant glycans relies on the
culture of fastidious bacteria under laboratory conditions, a skill that needs to be encour-
aged despite an emphasis in recent decades on culture-independent (nucleic acid-based)
studies of the gut microbiota. Metagenomic studies indicate that a large proportion of the
taxa detected in gut microbiota studies do not yet have a cultivated representative, but a
proportion of these genomes may originate in gut transients, not inhabitants (101).
However, the common, predominant members of the microbiota have been cultivated
and are extant in culture collections and hence available for use in screening complex gly-
cans as growth substrates (102, 103). Pure culture studies are a starting point, but multi-
plex cocultures will be necessary to reveal the interactive networks by which complex sub-
strates are degraded by consortia of bacterial species. Thus, trophic patterns need to be
elucidated and used in the design of food interventions in human studies. Continuous co-
cultures in chemostats, and in multistage fermentors simulating the gut, will provide useful
knowledge in this respect, because the bacteria can be maintained as stable populations
(87, 104–108). Chemostats provide steady-state conditions (growth occurs at a constant
rate and in a constant environment) under which all of the bacterial cells have a similar
metabolic state under conditions of carbon and energy limitation. These conditions relate
to bacterial growth in the colon, where competition for growth substrates is intense due
to the large, complex microbial community. This is apparent by observation of the reduced
breadth of realized niches (actual activity in the community) relative to that of fundamen-
tal niches (potential capacity measured in vitro) of gut bacteria (109). However, the colon is
probably not exactly a continuous-culture system, because the digesta passes through the
gut in boluses and the ileocecal valve controls passage of digesta into the large bowel.
Hence, the colon environment may provide a mixture of batch and continuous culture
conditions that are difficult to replicate in vitro.

It will be important to recognize and understand the functioning of bacterial con-
sortia associated with the degradation and fermentation of specific plant glycans.
Dietary intervention with plant glycans will be most likely to modulate interactive bac-
terial species rather than individual target species that act alone. Microbial consortia
can be thought of as clusters of taxa that cooperate metabolically to degrade and fer-
ment complex substrates. These consortia are based on shared nourishment of the
members (syntrophy). Polysaccharide backbones of complex substrates may be pre-
pared for hydrolysis by removal of sugars linked to the polymer. Other species capable
of hydrolyzing the substrate (all or in part) “leak” potential nutrients to taxa that, them-
selves, cannot degrade the intact substrate. It is assumed that there will be a quid pro
quo in that the nonhydrolytic members of the consortium will help provide an environ-
ment that enhances life for the whole entity (19). For example, this could be by pro-
duction of growth-limiting nutrients, such as vitamins (92, 110–112). Metabolic cross-
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feeding of hydrogen (interspecies hydrogen transfer) is likely to be important because
maintenance of a low partial pressure of hydrogen thermodynamically favors reoxida-
tion of NADH resulting from fermentative reactions. This allows even more fermenta-
tion, and therefore increased growth of saccharolytic bacteria, to occur (113). Acetogens,
methanogens, and sulfate-reducing bacteria are important hydrogenotrophs, even
though they are present at relatively low abundances in the human colon (114).
Metabolic cross-feeding of fermentation acids is also notable in gut microbiotas (115,
116). For example, succinate produced by Bacteroides species is then transformed into
propionate by Veillonella parvula (97, 117). It will therefore be important to identify ro-
bust clusters of taxa in metagenomic studies of the microbiota in assessing the modula-
tory effects of dietary modification.

CHOOSING THE RIGHT DIETARY FIBER TOMODULATE THE GUTMICROBIOTA

Modulation of the gut microbiota presupposes that suitable choices of glycans that
have differential effects can be found and then administered in conjunction with
knowledge of what is normally consumed. Food frequency questionnaires (FFQs) are
widely used in nutritional studies to gain insight into the variety of food groups and
associated nutrients that are consumed over a prescribed period, usually 7 to 30 days
(118). FFQs collect information on the frequency of consumption of foods but usually
not on the quantity consumed. When FFQs do include questions about quantity, quan-
tity is typically based on standard portion sizes rather than direct weight or use of
household utensils. A drawback is that FFQs rely on recall of what was eaten, and recall
bias is likely to increase with longer periods of recall (119). The weighed food record
(WFR) provides the most accurate information about dietary intake (120–122). It
requires that all food and beverage portions be weighed at the time of consumption;
plate waste is recorded, along with a description of the food, preparation methods,
and brand names. The WFR can be used to validate the accuracy of an FFQ.
Information from FFQs and/or WFRs enables habitual dietary patterns to be con-
structed, and individuals can be graded according to adherence/nonadherence to a
pattern (123). Dietary patterns have been used to investigate associations between
diet and disease and should be of increasing benefit in understanding dietary impacts
on the maturation of the gut microbiota (124, 125). Taken a step further, measurement
of adherence to dietary patterns in association with microbiota data might reveal defi-
cits in specific plant glycan intake, which could be rectified by dietary correction of nat-
ural food intake or the use of diet supplements. This assumes that nutritional analysis
is equal to the task; there are concerns about the estimation of specific kinds of dietary
fiber. Definitions of food categories change, and the kinds of technical assays that are
used in analysis affect the completeness and accuracy of food composition databases
(126, 127). Once candidate dietary glycans are identified, procedures to achieve
increased consumption of specific types of dietary fiber in attractive and palatable
ways will need to be devised with consideration of daily caloric intake. Dose-response
studies will be needed to determine and standardize efficacy. Large doses of complex
glycans, relative to current intakes, may be required for efficacy, and this could repel
consumers in Western countries, perhaps even globally, who need considerable per-
suasion to consume even 15 to 20 g of dietary fiber per day (128, 129). While labora-
tory culture studies use purified substrates extracted from plants, substances used in
interventions may require cooking, which can alter chemical structures and hence
might affect efficacy in the gut (130). Therefore, it will be wise to test processed dietary
fiber, as well as “raw” ingredients, in screening studies.

WHICH ASPECT OF THE GUTMICROBIOTA SHOULDWEMODULATE?

Thought needs to be given to which aspect of the gut microbiota will be used as a
measure of efficacy. The concept of “dysbiosis” is broadly based on a perceived imbal-
ance in the taxa comprising the microbiota. Therefore, taxonomic analysis would be
appropriate from this point of view, and compositional results of dysbiotic and treated

Minireview Applied and Environmental Microbiology

March 2021 Volume 87 Issue 6 e02757-20 aem.asm.org 7

https://aem.asm.org


microbiotas could be compared. Methods for accomplishing this work are readily avail-
able, but in order to obtain reliable species-level data, metagenomic analysis will be
required rather than only sequencing PCR amplicons of variable nucleotide regions of
16S rRNA genes. Indeed, given the biochemical variation of strains within species,
much more in-depth analysis of the composition of microbiotas will be necessary
(131–134). Identification of enterotypes (robust clusters of taxa) and construction of
microbial (correlation) networks from sequencing data may facilitate understanding of
community trophic structures. Networks show individual microbes as nodes (hub spe-
cies) and species cooccurrence or mutual exclusion as feature-feature pairs (edges); an
edge may imply a biological or biochemical relationship between features. Microbes
that benefit each other may be positively correlated, whereas microbes that compete
for the same niche may be negatively correlated (16, 135–138). Such kinds of analysis
may reveal consortia of bacterial species involved in the utilization of particular sub-
strates. The prevalence of biochemical pathways in microbiotas can be deduced from
metagenomic data, but these data, which show only metabolic capacity, will not nec-
essarily change as a result of diet interventions, given the stability of genotypes associ-
ated with “function” among individuals with microbiotas of markedly different taxo-
nomic compositions (25). This stability reflects the metabolic redundancy characteristic
of gut microbiotas in which the same biochemical function is exerted by more than
one bacterial species (139, 140). Transcriptome studies might be useful in monitoring
the impact of dietary intervention, because clues to the dynamics of intercommensal
relationships can be obtained using transcriptomic analysis; it potentially “eavesdrops”
on the molecular conversations of members of a community (92, 141, 142). The use of
stable-isotope-labeled substrates to probe the microbial utilization of specific substan-
ces has also gained attention in microbial ecology and has potential in investigating
the flow of carbon from plant carbohydrates to bacterial consortia in the gut. Stable-
isotope probing (SIP) can provide insights into both microbial phylogeny and meta-
bolic activity by tracking stable-isotope-labeled atoms from substrates to incorporation
in bacterial 16S rRNA (RNA-SIP) (143–146). Technically simpler and less expensive
options of monitoring could be directed toward the emergent properties of the micro-
biota. The most obvious are the proportions of SCFAs (principally acetate, propionate,
and butyrate) produced by the microbiota as a result of the collective activities of the
community in degrading and fermenting exogenous and endogenous substrates
(147). SCFAs are ligands of receptors in the gut mucosa and, as signaling molecules,
affect immune and physiological processes (such as satiety) (148–150). Measurement
of other biochemical molecules that have the potential to signal in otherwise human
processes (for example the gut-brain axis) may be even more rewarding (151–153).

EVIDENCE THAT THE GUT MICROBIOTA OF HUMANS RESPONDS TO DIETARY
DIFFERENCES

Compelling evidence of dietary modulation of the gut microbiota comes from stud-
ies of the compositions and emergent properties of the gut community of nonwester-
nized humans in Africa compared to those of westerners. For example, children living
in a rural village in Burkina Faso, Africa, eating food high in dietary fiber relative to the
“modern Western diet” of urban Italian children had plentiful Bacteroidetes (57.7% com-
pared to 22.4% relative abundance) in feces, whereas Firmicutes were depleted (27.3%
versus 63.7%) (154). Members of the genera Prevotella and Xylanibacter that had the
genetic capacity to hydrolyze cellulose and xylan were abundant in the African child-
ren’s microbiota but were lacking in the microbiota of Italian children. As a conse-
quence of fiber degradation and fermentation, there was a higher concentration of
SCFAs in the feces of Burkina Faso children. These observations of the fecal microbiotas
of rural African children reflected consumption of a polysaccharide-rich diet from which
they were able to achieve maximal energy harvest through bacterial fermentation.

Similarly, the Hadza, African hunter-gatherers, have a gut microbiota that has
greater taxonomic diversity of bacteria than that of Italians (155, 156). The microbiota
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includes many Bacteroidetes, Clostridiales, Bacteroidales, and Lachnospiraceae that do
not resemble previously detected families and genera. Moreover, the Hadza microbiota
differs between men and women, reflecting the different diets of the groups stemming
from different community roles: women tend to consume more dietary fiber than men.
The dietary fiber is sourced especially from tubers, which is associated with increases
in the relative abundance of spirochetes (Treponema) in the microbiotas of women.
These bacteria are rare in Western microbiotas. Hadza men consume more meat while
on hunting expeditions. Their microbiota has increased abundances of Eubacterium
and Blautia relative to that of women. No such gender differentiation of Italian micro-
biotas was apparent. Emergent properties of the microbiotas differed between the
Hadza and Italians, reflecting the relative amounts and types of dietary fiber that were
consumed. Italians had more butyrate in the feces than the Hadza, who had more pro-
pionate. Lower concentrations of butyrate were associated with lower content of
Clostridium clusters IV and XIVa (butyrate producers), whereas more propionate was
associated with greater relative abundance of Prevotella.

These studies, together with studies in which participants undertook major changes
in diet under experimental conditions (“plant-based” diet, i.e., rich in grains, legumes,
fruits, and vegetables, or “animal-based” diet, i.e., rich in meats, eggs, and cheese), pro-
vide clear evidence that the microbiota and its function can be modulated by habitual
dietary intake (157). Under experimental conditions, the altered dietary intakes of the
participants did not affect the variety of bacteria present (alpha-diversity), but changes
in microbiota composition based on differences in phylogeny, relative abundances of
“species,” and degree of similarity of microbiotas (beta-diversity) could be detected
between the animal-based diet group and other groups just 1 day after the food
reached the colon. The most common clusters associated with the animal-based diet
were composed of bile-resistant bacteria, which correlated with the known increase of
bile acids in the gut when there is a high fat intake. Feces from participants consuming
the animal-based diet had much lower concentrations of SCFAs originating from the
fermentation of carbohydrates (acetate and butyrate) but higher concentrations of
SCFAs originating from the fermentation of amino acids (isobutyrate, isovalerate), rela-
tive to baseline and plant-based diet samples.

OTHER CONSIDERATIONS LEARNED FROM DIETARY INTERVENTION STUDIES

Important knowledge associated with modulation of the gut microbiota has
emerged from more subtle dietary interventions.

A high-diversity microbiota may not respond to dietary intervention. Microbiotas
that are already relatively high in diversity do not respond to increased intake of die-
tary fiber even at a level of 40 g per day (128). Thus, screening the gut microbiotas of
potential participants in intervention studies to identify individuals with low-diversity
communities has been suggested. There would then be some hope of obtaining
“improvement” (158–160). High-diversity microbiota compositions are considered pref-
erable to low-diversity communities (139, 161–163). This is because communities with
high taxonomic diversity have high functional diversity associated with metabolic re-
dundancy among taxa. This gives resilience to communities, because the loss of some
members of the microbiota will not necessarily mean the total loss of a particular func-
tion (140). Dysbiotic microbiotas may lack this functional resilience and hence do not
perform the usual interactive relationship with the human host. These low-diversity
microbiotas are clearly a target for dietary intervention, because plant glycans are the
main nutritional driver of the gut microbiota (3).

Among unselected human subjects, only some will have microbiotas that
respond to a particular dietary intervention. For example, Walker and colleagues
investigated the effect of dietary intervention in overweight men (159). A diet contain-
ing resistant starch (RS) was included in the study. Increases in the numbers of a small
number of taxa (Ruminococcus bromii-like, Oscillibacter-like, and Eubacterium rectale-
like bacteria) were detected by quantitative PCR when the RS diet was consumed, but
there was considerable interindividual variation. In two human subjects, greater than
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60% of RS passed through the gut undigested, probably related to the paucity of R.
bromii-like bacteria in the feces. Baxter and colleagues reached similar conclusions in a
more recent study (164). Correcting a society-wide deficiency (e.g., in butyrate concen-
tration) will be difficult, because some humans will not respond and therefore benefit.
However, in correcting a dysbiosis associated with disease, the aim is not to provide a
“one-diet-fits-all” approach to improving general health but must target specific
aspects of the microbiota that are associated with particular diseases or conditions. So,
a realistic aim is to target dysbiosis-associated diseases but not to reach as far as per-
sonalized nutrition, unless a critical factor for microbiota regeneration is absent in par-
ticular individuals. This requires a different mindset from that of traditional prebiotics,
because it requires a more pharmaceutical approach (restoring, correcting, or modifying
specific organic functions) rather than general wellness. Bacteria detected in the gut micro-
biotas of pastoral and hunter-gatherer societies (Succinivibrionaceae, Paraprevotellaceae,
Spirochaetaceae, Prevotellaceae), which are dependent on seasonal diet, but not in the
microbiotas of westerners might be necessary “probiotic” adjuncts to dietary modification
in order to supply “missing microbes” (165).

The quantity of dietary fiber above baseline level that is required to produce
consistently measurable results. The amount of dietary fiber that might need to be
consumed daily, long term, in order to produce a sustainable outcome could be
beyond the tolerance of modern-day humans in Western countries. Daily intakes of 80
to 150 g of dietary fiber per day would equate to that consumed by the Hadza (155).
Changing quality rather than quantity of dietary fiber might be a more attractive prop-
osition. Substantial knowledge of the differential utilization of plant glycans by bacte-
rial consortia in the gut, including comparisons of what is ingested and what is
excreted, is required to enhance the value of dietary intervention studies. Dose-
response experiments are allied with this work because the minimum efficacious
amount of glycan in relation to potential adverse effects should be known (for exam-
ple, excessive flatus production). In the case of the gut microbiota, the dose response
is conditional because extensive metabolic interactions within the microbiota are
likely. Several of these aspects were investigated by Deehan and colleagues, who
found that different forms of chemically modified starch with small structural differen-
ces produced differential effects in microbiota composition and SCFA production and
that augmentation of these effects by increased intake was limited because a plateau
was reached at 35 g per day (166).

Testing the long-term effects of dietary intervention. Limitations of investiga-
tions of the gut microbiota include the relatively small numbers of human subjects
that are recruited to studies and the analysis of a single fecal sample per subject. With
dietary interventions, it seems crucial to conduct temporal studies during which die-
tary modification is performed in double cross-over trials that are months in duration.
We do not know accurately the extent of seasonal variation on microbiota composition
in Western societies or whether modulation is sustainable in the long term. Even if die-
tary intervention is maintained, changes in microbiota characteristics may soon disap-
pear and revert to baseline. This aspect requires extensive research (167).

Incorporating the glycans as a “package” of substrates with differential effects.
Dietary fads should not be encouraged, and all dietary interventions need to be con-
sidered rigorously for potential to cause harm. Ways need to be devised to encourage
the consumption of a balanced diet that contains mixtures of glycans that will support
the development and maintenance of a highly diverse and functionally resilient gut
microbiota. In large part, this will succeed only if ways to increase intake of particular
dietary fibers in a palatable form can be found. For example, the “Mediterranean diet,”
inspired by the eating habits of people in Greece, southern Italy, and Spain in the
1940s and 50s, is characterized by fruit, vegetables, fish, and whole grains and limited
saturated fats (168–170). While most interest has focused on the reduced risk of heart
disease associated with this diet, Italians who adhere closely to the diet have higher
SCFA concentrations in feces than in those with lesser adherence. This indicates an
impact of a diet containing complex carbohydrates on the emergent properties of the
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microbiota. Specifying the types of fruits and vegetables in a diet on the basis of the
amount and types of plant glycans that will be delivered to the microbiota would be
an advance.

POTENTIAL DYSBIOTIC TARGETS

Inflammatory bowel diseases (IBD) (Crohn’s disease [CD] and ulcerative colitis [UC])
are disorders that have genetic predispositions, environmental modifiers, and chronic
immune-mediated tissue damage (171, 172). The gut microbiota has been invoked as a
major environmental factor in IBD mainly because of evidence obtained from experi-
mental animal models of gut inflammation. Colitis occurs only if genetically predis-
posed germfree animals are colonized by a gut microbiota (173). A single bacterial spe-
cies has not been identified as the causative agent of IBD. Rather, human studies
indicate that the diversity of species comprising the microbiota in CD in particular is
less than in health. There is generally a depletion of members of clostridial cluster IV
(Clostridium leptum cluster) that characteristically produce butyrate. Interest has also
been placed on Faecalibacterium prausnitzii and Roseburia species (clostridial cluster
XIVa, Clostridium coccoides cluster), because there is an inverse correlation between
abundance of these species and disease activity (22, 24, 30, 174–176). Although a caus-
ative effect of dysbiosis has not been established in IBD, butyrate is an energy source
for colonocytes and has anti-inflammatory effects. Thus, correction of the dysbiosis by
modulation of the microbiota to produce more butyrate remains an attractive treatment
option. IBD patients tend to have low fiber intakes (https://www.crohnscolitisfoundation
.org/diet-and-nutrition/what-should-i-eat). This lower intake of dietary fiber may be the
actual reason for reduced production of butyrate. Increasing dietary fiber intake may
therefore be beneficial for some IBD patients but may not be appropriate for patients
with bowel strictures where there is potential for blockage.

The best current nutrition-based treatment for IBD (mainly pediatric CD) is exclusive
enteral nutrition (EEN), in which patients consume a liquid diet that provides all of their
energy and nutrient needs (177–179). Ironically, EEN results in lower butyrate produc-
tion by the gut microbiota because the diet does not contain dietary fiber (180).
Perhaps the importance of butyrate in gut health has been overstated, but further
research may show that smaller quantities can still be therapeutic. These observations
point to the need to develop threshold criteria for microbial populations and metabo-
lites. How big an increase/decrease in butyrate concentration, for example, is needed
to produce a therapeutic or prophylactic outcome?

Metabolic syndrome encompasses a cluster of conditions (elevated blood pressure,
elevated blood glucose concentration, excess body fat around the waist, abnormal
blood cholesterol levels) that, when occurring together, increase the risk of heart dis-
ease, stroke, and diabetes. These noncommunicable diseases are of increasing concern
throughout the world and are clearly associated with lower intakes of dietary fiber
(129). Therefore, metabolic syndrome provides the best target of dietary modulation of
the gut microbiota. Millions of people will be benefited, and costs for health services
will be reduced. As mentioned above, SCFAs produced by the microbiota, as well as
having caloric value, are important signaling molecules in the gut (148, 181–185).
Additionally, propionate has anorectic properties by influencing gut hormones (pep-
tide YY [PYY] and glucagon-like peptide 1 [GLP-1]) and thus reducing energy intake
(186). Bile acids are also of interest in relation to metabolic syndrome. Bile acids are
formed in the liver and released into the small bowel in bile. The bile acids are required
at critical concentrations to assist in the emulsification of dietary lipids to facilitate hy-
drolysis by digestive enzymes and for absorption of fatty acids by the small bowel mu-
cosa. Highly efficient recycling of bile acids occurs (the enterohepatic circulation), but
about 5% of bile acids reach the colon, where members of the Bacteroidetes phylum in
particular carry out chemical transformations that result in the secondary bile acids, de-
oxycholate and lithocholate (187, 188). The deconjugation of primary bile acids is the
first step in the transformation process, whereby amino acids (glycine or taurine) are
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removed. This step is catalyzed by bile salt hydrolases produced by the bacteria (187).
Experiments with poultry and mice, as well as observations in human gastric bypass
patients, indicate that bile salt hydrolase activity in the bowel can modify lipid absorp-
tion, blood levels of bile acids, blood lipid chemistry, and weight loss (188–191). These
effects probably involve signaling through bile salt receptors in the gut mucosa. Thus,
the effects of dietary modulation of the gut microbiota could, in this case, be deter-
mined indirectly using metabolomic measurements of blood (plasma) constituents. In
addition to standard diagnostic tests based on blood samples (for example, concentra-
tions of glucose, HbA1c, cholesterols, and insulin), the availability of kits that provide
standardized technical means for targeted analysis using liquid chromatography-mass
spectrometry (LC-MS) makes this a feasible option (192–194). Combined microbial and
human profiling could be used to thoroughly monitor efficacy in dietary intervention
studies.

DIFFERENCES IN SCIENTIFIC AND COMMERCIAL IMPERATIVES

Medical/scientific goals in modulation of the microbiota will likely focus on correct-
ing specific dysbioses associated with particular diseases and to be allied, wherever
possible, with the aim of increasing dietary fiber intake, known to promote general
good health (129, 195). This approach may be satisfied by the recommendation to con-
sume particular classes of fruits and vegetables that are known to contain glycans that
can be degraded and fermented by specific bacterial taxa. The commercial imperative
may be rather to extract (purify) specific glycans, especially from material that is cur-
rently considered waste (for example, peelings or seeds) so that increased value is
extracted from crops. The extracted and processed glycans can be incorporated into
capsules or packaged powders for consumption, making delivery of the “dietary fiber”
to the human gut easy but, of course, somewhat more expensive because of process-
ing costs. The medical/scientific and commercial approaches are not mutually exclu-
sive and could be combined, but consideration needs to be given to the efficacy of
administration of a single substrate (which may have been chemically altered during
extraction) to the gut ecosystem rather than a complexity of glycans such as might be
found in natural fruits and vegetables (unprocessed except by cooking in some instan-
ces). The relative efficacies of these two approaches need to be tested, as well as com-
parisons of ease of uptake and cost to the consumer, and should always be defined in
relation to improved health.

THE RESEARCH JOURNEY AHEAD

Evaluation of the literature indicates that continuing to conduct dietary interven-
tion trials of a speculative nature (feed it and see what happens to the microbiota) are
not helpful. The trials do not offer clear solutions that will minimize the ravages of non-
communicable diseases, largely because the ecology of health-associated microbiotas
has not yet been adequately defined. We know well who are the members of microbio-
tas and what they are capable of doing in a gross sense, but we cannot adequately
predict why perturbations occur in relation to specific diseases. Nor are we able to pro-
duce a roadmap of how a perturbed ecosystem can be rectified in the long term.
Clearly, we have to understand how the gut microbiota functions in health, including
knowledge of thresholds of abundances of taxa or bioactive substances produced by
the microbiota, above or below which disease are associated. Otherwise, changes in
relative abundances of particular taxa and/or butyrate, for example, lack meaningful
context. Modulations of the microbiota need to be considered in terms of the forma-
tion and function of metabolic consortia. A spatial perspective of the habitat is likely to
be important; bacterial cells are associated with plant particulate material in the
digesta, and these bacteria doubtless have a role in the hydrolysis and fermentation of
plant polysaccharides in the gut (196, 197). Spatial associations on food particles of
hydrolytic bacteria (producers) with other bacterial species that benefit from “leakage”
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of hydrolytic products that are potential growth substrates can be envisioned in the
development of consortia in the gut ecosystem.

The next phase of research is thus to define the composition of bacterial consortia
associated with the degradation and fermentation of plant glycans and the changing
abundances of specific consortia associated with alterations to diet. The aim is to fit
members of bacterial taxa together into consortia, as in fitting pieces together in a jig-
saw puzzle, and to measure the kinetics of the integrated metabolism within each con-
sortium. Different consortia will be formed around different glycans, which specifically
fuel each consortium, so there will be many consortia with different functions in the
microbiota when a complex mixture of plant glycans is available. The further aim is to
test the hypothesis that consortia that carry out the same function can differ in terms
of constituent bacterial species (phylogenetically diverse bacteria can encode the
same functions). This phenomenon would explain the individuality of human gut
microbiota compositions but a general similarity in overall community functions. A
structured, habitual, but interesting diet would promote the formation of varied consor-
tia, thus maintaining a high-diversity community with functional resilience. Although a
seemingly simple proposition, implementation of the diverse-glycan diet will not be
easy, given that dietary modulation needs to begin in early adulthood to produce conse-
quences that will be appreciable only in the fifth and sixth decades of life when consid-
ered in relation to metabolic syndrome. It is unlikely that the “ancestral” gut microbiota
detected in hunter-gatherers can be achieved in Western countries—the Hadza, too, pre-
fer meat and honey to dietary fiber-laden tubers (165). The plea is for fundamental eco-
logical research based on an understanding of the gut microbiota, in particular how
high-diversity communities can be promoted by linking the intake of complex plant gly-
cans of diverse chemistry with modulation of the gut microbiota.
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