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A B S T R A C T

In this letter, an improved SIR (ISIR) model is proposed, to analyze the spread of COVID-19 during the time
window 21/01/2020–08/02/2021. The parameters can be extracted from an inverse problem of the ISIR to
assess the risk of COVID-19. This study identifies that the cure rate is 0.05 and the reproduction number is
0.4490 during the time interval. The prediction values demonstrates high similarity to the reported data. The
results indicate that the disease had been under control in China.
Introduction

On December 2019, the Corona Virus Disease 2019 (COVID-19)
confirmed case was reported in Wuhan, Hubei, China. The disease
COVID-19 has become the deadliest infectious disease in the world
soon [1,2]. COVID-19 is quite different from the previous SARS, and it
is a totally new coronavirus that has not been previously identified. As
of 26/01/2021, 100 360 cases of COVID-19 were officially confirmed
in China, including 4815 deaths. During the same time window, more
than 99.79 million cases of COVID-19 were confirmed worldwide,
including about 2.1 million deaths. It has evolved into a global public
health incident and caused huge loss of life in the world.

In 2020, techniques about COVID-19 have become an active and
flouring research topic. In terms of COVID-19, different models are
used to estimate the key features of the disease such as the incubation
period, transmissibility, asymptomatic, severity, and likely impact of
different public health interventions. Among those models, the SIR-
type model, the Logistic model, the nonlinear fitting model due to
the exponential nature of growth of the epidemic, and extrapolation
models are commonly adopted by using different biological and social
processes. SIR (Susceptible–Infected–Recovered) shares several charac-
teristics with models of population dynamics and conceptual lumped
models in hydrology. The basic model of the SIR is listed as follows:

⎧

⎪

⎨

⎪

⎩

𝑆′ = −𝛽𝑆𝐼,
𝐼 ′ = 𝛽𝑆𝐼 − 𝛾𝐼,
𝑅′ = 𝛾𝐼,

(1)

where 𝛽 is the transmission rate and 𝛾 the recuperation rate. Although
this model is nonlinear, it can be analytically solved.
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This model simulates the temporal evolution of some compartments
of the population [3,4]. Some examples refer to applications to dengue
transmission [5], H5N1 [6], HIV [7] and SARS [8]. It is the basic
method to deal with the analysis of the infectious diseases. Therefore,
many scholars have developed a number of predicting approaches to
the trend forecasting of COVID-19, in the worst affected countries,
based on the SIR-type model [9–12]. However, COVID-19 is quite
different from SARS and other infectious diseases, whose trend cannot
be simply analyzed by applying the SIR-type model based on other
diseases. For example, the transmission probability of the COVID-19 is
not a constant during the time interval and the compartment of the total
population is more complicated than the one in the basic SIR model,
and so on.

Besides the SIR-type model, the Logistic model is often used in
regression fitting of time series data due to its simple principle and
efficient calculation [13,14]. In the COVID-19 cases, Logistic growth is
characterized by a slow increase in growth at the beginning, fast growth
phase approaching the peak of the incidence curve and a slow growth
phase approaching the end of the outbreak [15–18]. The Logistic model
originated form the modeling of population growth in ecology. As
an improvement on the Malthus population model, in 1838, Pieere
Francois Verhulst published the basic model of the Logistic as follows:

𝑑𝑄
𝑑𝑡

= 𝑟𝑄(1 − 𝑄
𝐾
) → 𝑄(𝑡) = 𝐾

1 + 𝑎 × 𝑒𝑟×𝑡
, (2)

where 𝑄, 𝑟, 𝐾 indicate the size of accumulates infected cases, the
intrinsic growth and the maximum cases size that the world or country
could carry, respectively.
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Fig. 1. Flow chart of the COVID-19 transmission model.

The main weakness of the Logistic model is that it does not consider
the spread characteristics. The Logistic model is not the mechanism
model. Many feature parameters cannot be obtained by the Logistic
model. Due to the imported cases, the maximum cases size cannot be
obtained accurately.

The main objective of this paper is to construct a reliable model
based on the SIR-type model to analyze and assess the epidemic dy-
namics of COVID-19 in China. There are two important problems. The
first is how to construct the comprehensive mathematical model based
on the characteristics of COVID-19. The second problem is how to
estimate parameters of the model describing the evolution in the time
of the current COVID-19 pandemic. To overcome these two problems,
this paper proposes an ISIR model, which subdivides the total pop-
ulation into the following seven compartments: Susceptible, Infected,
Recovered, Death, Exposed, Quarantine, and Patients with suspected.
They are based on phenomenological laws to describe the transfer of
individuals from one class to another. On the other hand, this paper
discretizes the differential equation model via a forward-time finite-
difference scheme. The parameters of the proposed model are estimated
via a minimization problem.

This rest of this paper is structured as follows. In ‘‘An improved
SIR model for COVID-19’’, the continuous and the discrete models
are proposed, based on the SIR model. The results on the COVID-19
parameters, obtained by applying our ISIR model, are shown in ‘‘An
inverse problem of the ISIR and solution algorithm’’, and numerical
simulations are given in ‘‘Simulations, results and conclusions’’.

An improved SIR model for COVID-19

The continuous ISIR model

In this subsection, an improved SIR model will be proposed. We start
our research by defining the objects involved in the continuous ISIR
model considered in this paper. We divide the total population into
seven compartments: susceptible individuals in the free environment
(S), undiagnosed and non-isolated infectious individuals (I), recovered
individuals (R), death individuals (D), free Exposed (E), Confirmed and
isolated infectious individuals (Q), and Patients with suspected (P). The
transfer relationships between compartments are shown in Fig. 1.

We denote by 𝜖, 𝛼 and 𝛾 the rate latent individuals progressed to the
undiagnosed infectious class, the fatality rates related to the pandemic,
and recovery rates, respectively. The transfer relationships between
class R and other classes can be expressed as follows:

𝑅′ = 𝛾𝑄. (3)
2

Suspected cases might be misdiagnosed, and the number of the
misdiagnosed individuals entering P class is 𝑑𝑠𝑝 Q. Misdiagnosed sus-
pected cases return to the susceptible class at a rate of 𝑏𝑠𝑝. We use
the function 𝑓 (𝑆,𝐸, 𝐼, 𝑅) to measure the number of the suspected
individuals transferring into the exposed class. Therefore, the transfer
relationships between class S and other classes can be expressed as
follows:

𝑆′ = −𝑓 (𝑆,𝐸, 𝐼, 𝑅) − 𝑑𝑠𝑝𝑄 + 𝑏𝑠𝑝𝑃 . (4)

We denote by 𝑑𝑒𝑝 the rate of the tracked and free exposed indi-
viduals diagnosed as suspected cases. We assume that diagnosed and
confirmed individuals are strictly isolated and could not further infect
others. We denote the impulse function 𝛿𝑒𝑡𝑎(𝑥 − 𝑥0) and the delta
function 𝛿(𝑥 − 𝑥0) below:

𝛿𝜂(𝑥 − 𝑥0) =

{ 1
2𝜂 , 𝑥0 − 𝜂 < 𝑥 < 𝑥0 + 𝜂,

0, otherwise,
(5)

𝛿(𝑥 − 𝑥0) = lim
𝜂→0

𝛿𝜂(𝑥 − 𝑥0). (6)

We denote by 𝑚𝑖 the number of imported cases at time 𝑡𝑖. Therefore,
the transfer relationships between class E and other classes can be
expressed as follows:

𝐸′ = 𝑓 (𝑆,𝐸, 𝐼, 𝑅) − (𝜖 + 𝑑𝑒𝑝)𝐸 +
𝑚
∑

𝑖=1
ℎ𝑖𝛿(𝑡 − 𝑡𝑖). (7)

Non-isolated infectious individuals are diagnosed and confirmed at
a rate of 𝑑𝑖𝑝. Therefore, the transfer relationships between class I and
other classes can be expressed as follows:

𝐼 ′ = 𝜖𝐸 − 𝑑𝑖𝑝𝐼. (8)

Suspected individuals are further diagnosed and confirmed at a rate
of 𝑑𝑝𝑞 . Therefore, the transfer relationships between class P, class Q and
other classes can be expressed as follows:

𝑃 ′ = 𝑑𝑒𝑝𝐸 + 𝑑𝑠𝑝𝑄 − (𝑏𝑠𝑝 + 𝑑𝑝𝑞)𝑃 , (9)

𝑄′ = 𝑑𝑝𝑞𝑃 + 𝑑𝑖𝑝𝐼 − (𝛼 + 𝛾)𝑄. (10)

We only consider the deaths caused by COVID-19. Therefore, the
transfer relationships between class D and other classes can be ex-
pressed as follows:

𝐷′ = 𝛼𝑄. (11)

We denote by 𝐶 the contracted rate, which we assume to be the
same in the exposed class and the infectious class:

𝑓 (𝑆,𝐸, 𝐼, 𝑅) = (𝛽𝐸𝐶𝐸 + 𝛽𝐼𝐶𝐼) 𝑆
𝑆 + 𝐸 + 𝐼 + 𝑅

=
𝛽𝐼𝐶𝑆

𝑆 + 𝐸 + 𝐼 + 𝑅
(
𝛽𝐸
𝛽𝐼

𝐸 + 𝐼). (12)

The 𝛽𝐸 and 𝛽𝐼 mean the individuals transmission rates in the exposed
class and the infectious class, respectively, and 𝛽𝐸 ≪ 𝛽𝐼 . We denote the
𝛽(𝑡) to be the transmission probability at time 𝑡 as follows:

𝛽(𝑡) ≜
𝛽𝐼𝐶𝑆

𝑆 + 𝐸 + 𝐼 + 𝑅
=

𝑓 (𝑡)
𝛽𝐸
𝛽𝐼

𝐸 + 𝐼
. (13)

A discrete ISIR model

A discrete model is a simple forward-time finite-difference dis-
cretization of Eqs. (1). For 𝑛 ∈ 𝑍, we denote the discrete time steps, at
a uniform spacing 𝛥𝑡 = 1 day, in agreement with the sampling of the
available date set on COVID-19 pandemic, by 𝑡𝑛 = 𝑛𝛥𝑡. Data for this
study are the total cumulative confirmed cases, recovered cases and
total deaths cases, active cases, suspected cases of COVID-19 in China
from 30/01/2020 to 08/02/2021. This real-time data was compiled
by the National Health Commission of People’s Republic of China and
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made available on the website at the time we started to conduct our
study [19].

We describe the precise methodology used to find reasonably good
approximation of the function 𝛽(𝑡). According to the experiences of ex-
perts, the average duration of new infectious individuals keeping in the
free environments is 10 days and the average duration of individuals
keeping in the exposed class is 7 days. Therefore, the approximation of
the function 𝛽(𝑛) is given as follows:

𝛽(𝑛) =
𝐹 (𝑛 + 10)

∑6
𝑖=0 𝐹 (𝑛 + 𝑖) + 𝑘 ×

∑9
𝑖=7 𝐹 (𝑛)

, (14)

where 𝐹 (𝑛) is the total confirmed cases reported at time 𝑡𝑛, and 𝑘 = 𝛽𝐸
𝛽𝐼

.
In order to more comprehensively use the reported data to estimate

nknown model parameters, the required discrete model is given as
ollows:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑆(𝑛 + 1) = 𝑆(𝑛) − 𝛽(𝑛)(𝑘𝐸(𝑛) + 𝐼(𝑛)) − 𝑑𝑠𝑝𝑄(𝑛) + 𝑏𝑠𝑝𝑃 (𝑛),
𝐸(𝑛 + 1) = 𝐸(𝑛) − 𝜖𝐸(𝑛) + 𝛽(𝑛)(𝑘𝐸(𝑛) + 𝐼(𝑛)) − 𝑑𝑒𝑝𝐸(𝑛)

+
∑𝑚

𝑖=1 ℎ𝑖𝛿(𝑛 − 𝑖),
𝐼(𝑛 + 1) = 𝐼(𝑛) + 𝜖𝐸(𝑛) − 𝑑𝑖𝑝𝐼(𝑛) − 𝛼𝐼(𝑛),
𝑃 (𝑛 + 1) = 𝑃 (𝑛) + 𝑑𝑒𝑝𝐸(𝑛) + 𝑑𝑠𝑝𝑄(𝑛) − 𝑏𝑠𝑝𝑃 (𝑛) − 𝑑𝑝𝑞𝑃 (𝑛),
𝑄(𝑛 + 1) = 𝑄(𝑛) + 𝑑𝑝𝑞𝑃 (𝑛) + 𝑑𝑖𝑞𝐼(𝑛) − 𝛼𝑄(𝑛) − 𝛾𝑄(𝑛),
𝑅(𝑛 + 1) = 𝑅(𝑛) + 𝛾𝑄(𝑛),
𝐷(𝑛 + 1) = 𝐷(𝑛) + 𝛼𝑄(𝑛).

(15)

We denote by 𝑋(𝑛) = (𝑆(𝑛), 𝐸(𝑛), 𝐼(𝑛), 𝑃 (𝑛), 𝑄(𝑛), 𝑅(𝑛), 𝐷(𝑛))𝑇 the
vector of numbers of all classes at time 𝑡𝑛. The matrix 𝐴(𝑛) is con-
structed to express the transfer cases from 𝑡𝑛 to 𝑡𝑛+1, and the matrix
𝐵(𝑛) is constructed to express the imported cases at time 𝑡𝑛:

𝐴(𝑛) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −𝛽(𝑛)𝑘 −𝛽(𝑛) 𝑏𝑠𝑝 −𝑑𝑠𝑝 0 0
0 1 − 𝜖 + 𝛽(𝑛)𝑘 − 𝑑𝑒𝑝 𝛽(𝑛) 0 0 0 0
0 𝜖 1 − 𝑑𝑖𝑝 − 𝛼 0 0 0 0
0 𝑑𝑒𝑝 0 1 − 𝑑𝑠𝑝 − 𝑑𝑝𝑞 𝑑𝑠𝑝 0 0
0 0 𝑑𝑖𝑞 𝑑𝑝𝑞 1 − 𝛼 − 𝛾 0 0
0 0 0 0 𝛾 1 0
0 0 0 0 𝛼 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝐵(𝑛) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
ℎ𝑛

0
0
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

We can obtain the number of each class at time 𝑡𝑛+1 from the
number at time 𝑡𝑛:

𝑋(𝑛 + 1) = 𝐴(𝑛)𝑋(𝑛) + 𝐵(𝑛). (16)

𝑋(0) is the initial condition. 𝑄(0), 𝐷(0) and 𝑅(0) are the active cases,
total deaths cases and recovered cases reported on 31/01/2020. 𝐸(0),
𝐼(0), 𝑃 (0) are the unknown model parameters whose values are not
reported. They can be obtained from the solution of an inverse problem.

An inverse problem of the ISIR and solution algorithm

The reported active cases, total recovered cases and total deaths
cases at time 𝑡𝑖 are denoted by 𝑤𝑖, 𝑦𝑖 and 𝑘𝑖. Thus, the reported
active cases series, the total recovered cases series and the total deaths
cases series read 𝑊 = [𝑤1,…𝑤𝑖,…], 𝐾 = [𝑘1,… , 𝑘𝑖,…] and 𝑌 =
[𝑦1,… , 𝑦𝑖,…].

The estimated values of the initial condition of class I and class P
are 𝐼(0) and 𝑃 (0), the estimated value of the initial condition of the
susceptible cases can be obtained as follows:

̂ ̂ ̂
3

𝑆(0) = 𝑁 − 𝐼(0) − 𝑃 (0) −𝐷(0) −𝑄(0) − 𝑅(0). (17)
The estimated values of model parameters are denoted by 𝜖, 𝑑𝑒𝑝, 𝑑𝑖𝑝,
𝛼, �̂�, 𝑑𝑝𝑔 . These estimated parameters substituted in Eqs. (15), the
estimated values of the active cases 𝑄(𝑛), total deaths cases 𝐷(𝑛) and
the recovered cases 𝑅(𝑛) at time 𝑡𝑛+1 can be obtained, based on the
initial condition, according to Eq. (16).

The misfit between model predictions and the target values is
computed by the following functions:

𝑚1 =
∑

|𝑤𝑖 −𝑄(𝑖)|
2

(18)

𝑚2 =
∑

|𝑦𝑖 − 𝑅(𝑖)|
2

(19)

𝑚3 =
∑

|𝑘𝑖 −𝐷(𝑖)|
2

(20)

This inverse problem is the multi-objective optimization problem. The
final function is the sum of above three functions, each of which
considers one of the reference quantities:

𝑜𝑝 =
3
∑

𝑖=1
𝑚𝑖. (21)

The unknown model parameters can be write 𝑢𝑝 as a vector:

𝑢𝑝 = [𝐼(0), 𝑃 (0), 𝜖, 𝑑𝑒𝑝, 𝑑𝑖𝑝, 𝛼, 𝛾, 𝑑𝑝𝑔]. (22)

These model parameters are fixed before the simulation and obtained
from the solution of the underlying inverse problem. The objective of
the model calibration is to find the parameter values which best fit the
reference data in the given time interval:

𝑢𝑝∗ = 𝑎𝑟𝑔min 𝑜𝑝. (23)

By the next-generation matrix model, we obtain the effective re-
production number of the model (15), which is given by Eq. (23):

𝑅0 =
𝛽(𝑡)(𝜖 + 𝑘(𝛼 + 𝑑𝑖𝑝))
(𝜖 + 𝑑𝑒𝑝)(𝛼 + 𝑑𝑖𝑝)

. (24)

𝑅0 > 1 means the occurrence of infectious disease becomes more
frequent, and 𝑅0 < 1 means the infectious disease gradually disappears.

Model (22) is the multi-objective nonlinear programming model, in
which there are seven unknown model parameters needed to optimize.
The gridding search algorithm is applied to solve this model.

Algorithm 1 ISIR model
1: Input: model parameters 𝑢𝑝𝑖
2: Initialization: 𝑛= begin of the time window, 𝑋(0)=the initial

condition of the Eq. (15)
3: repeat
4: 𝑛 ← 𝑛 − 1
5: Update 𝑄(𝑛) based on Eq. (16)
6: Update 𝑅(𝑛) based on Eq. (16)
7: Update 𝐷(𝑛) based on Eq. (16)
8: until 𝑡𝑛=end of the time window
9: Update 𝑜𝑝(𝑢𝑝𝑖) based on Eqs. (18)–(21)
utput: obtained 𝑜𝑝(𝑢𝑝𝑖) based on the model parameters 𝑢𝑝𝑖

Simulations, results and conclusions

The total confirmed cases and recovered cases in China during the
given time interval are shown in Fig. 2. On 31/01/2020, there were
11 821 cumulative confirmed cases in China. Then, the total confirmed
cases were growing fast. On 29/02, there were 79 968 cumulative
confirmed cases, which was 7 times higher than reported in the be-
ginning of February. From 01/03, the growth of confirmed cases fell
and became almost stable.
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Algorithm 2 Searching algorithm for optimal model parameters
1: read recovered cases, deaths cases and active cases reported on each

day, 𝑤𝑖, 𝑦𝑖, 𝑘𝑖
2: set bounds 𝛺 =range for 𝑢𝑝
3: repeat
4: Choose 𝑝𝑖 ∈ 𝛺
5: Call Algorithm 1 ISIR model
6: Update 𝛺 = 𝛺 − 𝑝𝑖
7: until 𝛺 = ∅
Output: 𝑢𝑝∗ based on Eq. (23)

Fig. 2. The pandemic trend of COVID-19 in China.

In Fig. 2, in the beginning of the outbreak, the high infection rate
and the high low recovery rate are the characteristics of the period. In
the March, the number of new confirmed cases flatten out. From 09/02,
the number of recovered cases was growing fast.

Before simulating the trend of COVID-19 in China, we should de-
termine the function of the transmission probability. According to
Eq. (14), the scatter diagram of 𝛽(𝑡) and the regression function during
the time interval are shown in Fig. 3.

The regression function is shown as follows, and the R-square of this
function is 0.9346:

𝛽(𝑡) = 5.838 × 𝑒𝑥𝑝(−0.09378 × 𝑡) − 5.664 × 𝑒𝑥𝑝(−0.09287 × 𝑡) + 0.1376. (25)

As shown in Fig. 3, the transmission probability was very large at the
beginning of the outbreak, the transmission probability was reducing
fast, and then flatten out. Taking the regression function into the
Eq. (16) to simulate the pandemic trend of the disease, and then the
model parameters can be estimated by comparison of the prediction
values and the actual values. Figs. 4–7 show the prediction results of
the ISIR model for the recovered cases, the confirmed cases, the active
cases, and the deaths cases in China.

The Figs. 4–7 show that the prediction values demonstrate high
similarity to the reported values. There is a remarkable fit between the
actual number and the predicted cure in the time interval.

We also simulated the trend of the free exposed cases and the
undiagnosed and non-isolated infectious individuals during the time
interval, which were not reported on the website (see Figs. 8 and 9).

The Figs. 8–9 show that the prediction values increase at the begin-
ning of the disease and then reducing fast, and then flatten out.
4

Fig. 3. The scatter diagram of transmission probability and its regression function.

Fig. 4. Model results for total recovered cases.

Fig. 5. Model results for total deaths cases.
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Fig. 6. Model results for active cases.

Fig. 7. Model results for suspected cases.

Fig. 8. Simulation of the free exposed cases.
5

Fig. 9. Simulation of the infectious cases.

Table 1
The estimated model parameters.

Parameter Value

𝜖 0.26
𝛼 0.001
𝑑𝑖𝑞 0.004
𝑑𝑒𝑝 0.74
𝑑𝑝𝑞 0.14
𝛾 0.05

Fig. 10. The reproductive number during the time interval.

The model parameters obtained from the inverse problem are listed
as Table 1.

Taking these parameters into the Eq. (16), we can get the reproduc-
tive number of the disease as shown in Fig. 10.

Fig. 10 indicates the disease had been under control. At the begin-
ning of the outbreak, the reproductive number is very large. Then, It
decreases to less than 0.5.

In a word, the ISIR model is proposed, which describes the pan-
demic trend of COVID-19 in China. We build the continuous model and
discretize the model by forward-time finite-difference discretization.
The nonlinear least squares inverse problem is constructed to estimate
the unknown model parameters of ISIR. We simulate the trend of
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the disease under those model parameters. The numerical simulation
results show that the prediction values demonstrate high similarity to
the reported values. We also calculate the reproduction number of the
disease, which is varied during the given time interval. It shows that
the disease had been under the control in China.
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