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Abstract

Background: The 3D point cloud is the most direct and effective data form for studying plant structure and morphology. In
point cloud studies, the point cloud segmentation of individual plants to organs directly determines the accuracy of
organ-level phenotype estimation and the reliability of the 3D plant reconstruction. However, highly accurate, automatic,
and robust point cloud segmentation approaches for plants are unavailable. Thus, the high-throughput segmentation of
many shoots is challenging. Although deep learning can feasibly solve this issue, software tools for 3D point cloud
annotation to construct the training dataset are lacking. Results: We propose a top-to-down point cloud segmentation
algorithm using optimal transportation distance for maize shoots. We apply our point cloud annotation toolkit for maize
shoots, Label3DMaize, to achieve semi-automatic point cloud segmentation and annotation of maize shoots at different
growth stages, through a series of operations, including stem segmentation, coarse segmentation, fine segmentation, and
sample-based segmentation. The toolkit takes ~4-10 minutes to segment a maize shoot and consumes 10-20% of the total
time if only coarse segmentation is required. Fine segmentation is more detailed than coarse segmentation, especially at
the organ connection regions. The accuracy of coarse segmentation can reach 97.2% that of fine segmentation. Conclusion:
Label3DMaize integrates point cloud segmentation algorithms and manual interactive operations, realizing semi-automatic
point cloud segmentation of maize shoots at different growth stages. The toolkit provides a practical data annotation tool
for further online segmentation research based on deep learning and is expected to promote automatic point cloud
processing of various plants.
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Introduction studies underpin the significance of integrating the 3D morpho-
logical characteristics of plants when conducting genetic map-
ping, adaptability evaluation, and crop yield analysis [1, 2]. Us-
ing 3D data acquisition technology to obtain a 3D point cloud

Plant structure and morphology are important features for ex-
pressing growth and development. At present many research
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is the most effective way to perceive plant structure and mor-
phology digitally. However, 3D point clouds are initially obtained
in an unordered, unstructured manner and with little seman-
tic information. Therefore, it is critical to use computer graph-
ics technologies and plant morphology knowledge to convert
the unstructured 3D point clouds into well-organized and struc-
tured data that contain rich morphological features with seman-
tic information. Therefore, plant morphology research based on
measured point clouds forms a critical component of 3D plant
phenomics [3-6], 3D plant reconstruction [2, 7], and functional-
structural plant models [8, 9].

The development of 3D data acquisition technology [10] has
significantly enriched approaches for fine-scale 3D data acqui-
sition of individual plants, including 3D scanning [11, 12], LIDAR
[13], depth camera [14], time-of-flight reconstruction [15], and
multi-view stereo (MVS) reconstruction [16, 17]. Owing to the low
cost of sensors and better quality of reconstructed point clouds,
MVS reconstruction has been widely adopted in many applica-
tions. Recently, multi-view image acquisition platforms that can
realize semi-automatic and high-throughput 3D data acquisi-
tion for individual plants have been developed [18-21] and en-
able 3D data acquisition for the phenotypic analysis of large-
scale breeding materials [22, 23]. However, how to efficiently and
automatically process the acquired big data of 3D point clouds
is a bottleneck in 3D plant phenotyping.

The key technologies for 3D point cloud data processing in-
clude data registration, extraction of the region of interest, de-
noising, segmentation, feature extraction, and mesh generation.
Among these tasks, point cloud segmentation is challenging.
Therefore, automatic and accurate point cloud segmentation
could significantly affect subsequent results of phenotype ex-
traction and 3D reconstruction. Point cloud segmentation can
be classified as population-shoot or shoot-organ segmentation.
Population-shoot segmentation allows for automatic segmen-
tation of maize populations under low density [24] or at early
growth stages [25, 26] with little overlap, which can be realized
via the spatial distance between shoots. However, it is difficult to
achieve automatic segmentation of high-density populations or
those with many overlapping organs in late growth stages. Com-
paratively, more attention has been paid to shoot-organ segmen-
tation. Though high-quality input point clouds and restricted
connections between organs are required, color-based [27] and
point clustering [28-30] approaches have also been widely used.
For instance, Elnashef et al. [16] used the local geometric fea-
tures of the organs to segment maize leaves and stems at the
6-leaf stage. Paulus et al. [31, 32] segmented grape shoot organs
by integrating fast point feature histograms, support vector ma-
chine (SVM), and region growing approaches. However, these
methods can only segment plant shoots with clear connection
characteristics between stems and leaves [11] and have diffi-
culty solving leaf-wrapping stem segmentation problems. For
time-series 3D point clouds, the leaf multi-labeling segmenta-
tion method was used for organ segmentation and plant growth
monitoring [33]. While plant organs could also be segmented
through skeleton extraction and hierarchical clustering [34, 35],
these methods need interactive manual correction for complex
plants to guarantee the segmentation accuracy. Jin et al. [36] pro-
posed a median normalized vector growth algorithm that can
segment the stems and leaves of maize shoots. On this basis,
an annotation dataset of maize shoots was constructed, and
the deep learning method was introduced to improve the auto-
matic segmentation level [37]. However, parameter interactions
are still needed for different shoot architecture and cannot meet
the needs of high realistic 3D reconstruction.

Owing to the complexity of plant morphology and structure,
almost all 3D point cloud segmentation methods for plants need
certain manual interactions, which is inconvenient for huge
amounts of point cloud data processing, and substantially de-
creases the efficiency. Therefore, it is necessary to improve the
automation of segmentation and increase the throughput of
3D point cloud data processing for plants. Deep learning ap-
proaches can effectively solve this problem [21, 38, 39], among
which the construction of high-quality training datasets is a
prerequisite. For example, LabelMe [40] can realize high-quality
data annotation for image segmentation. However, 3D point
cloud tools for data annotation are rare, especially for plants.
Besides, current datasets used for point cloud segmentation
are oriented to general segmentation tasks [41-44]. The existing
datasets for 3D plant segmentation contain only small amounts
of data [21, 45, 46], which cannot meet the data requirements for
high-quality deep learning models.

Because point cloud annotation of plants is labor-intensive
and time-consuming, deep learning approaches can be applied
to segment plant point clouds. Hence, how to improve the ef-
ficiency of high-quality data annotation and develop support-
ing software tools is the key to automatic point cloud seg-
mentation of plants by deep learning. To meet this data an-
notation demand, the present study used maize as an exam-
ple and proposes a top-down point cloud segmentation algo-
rithm. In addition, the toolkit Label3DMaize for point cloud an-
notation of maize shoots is developed, which could provide
technical support for automatic and high-throughput process-
ing of plant point clouds. The toolkit integrates clustering ap-
proaches and computer interactions supported through maize
structural knowledge. Optimal transportation-based coarse seg-
mentation is satisfactory for basic segmentation tasks, and fine
segmentation offers users a way to calibrate the segmentation
details. This plant-oriented tool could be used to segment point
cloud data of various maize growth periods and provide a prac-
tical data-labeling tool for segmentation research based on deep
learning.

Three maize cultivars, including MC670, Xianyu 335 (XY335), and
NK815, were planted on 20 May 2019 at the Tongzhou experi-
mental field of Beijing Academy of Agriculture and Forestry Sci-
ences (116 70.863 E, 39 70.610 N). The planting density of all the
plots was 6 plants/m? with a row spacing of 60 cm. Morphologi-
cal representative shoots of each cultivar at sixth leaf (V6), ninth
leaf (V9), 13th leaf (V13), and blister (R2) stages [47] were selected
and transplanted into pots. Then multi-view images were ac-
quired using the MVS-Pheno platform [18], after which 3D point
clouds of the shoots were reconstructed. For validation, 12 shoot
point clouds at 4 growth stages (V3, V6, V9, and V12) were ac-
quired using a 3D scanner (FreeScan X3, Tianyuan Inc., Beijing,
China), to test the segmentation performance of a different data
source.

The point cloud of a maize shoot can be segmented into 5 in-
stances: stem, leaf, tassel, ear, and pot. The stem, tassel, and
pot on a shoot can be regarded as an instance for each. For each
transplanted shoot at stage R2, assuming that it contains n; ears
and n, leaves, the point cloud of this shoot can thus be seg-



mented into N = 3 + n; + ny instances. ¢}, represents the point
cloud tobe segmented, and @, (i = 1, 2, ...... ., N)represent the
ith point cloud instance. In particular, ¢} and ¢} refer to the stem
and pot (if exists) instance, respectively. Before the segmenta-
tion begins, ¥, contains all the points of the shoot, and Q}is are all
empty. With the progression of segmentation, the points in ¢,
are gradually assigned to ¢.. The segmentation completes when
#y is empty.

The segmentation pipeline includes 5 parts (Fig. 1): point
cloud down-sampling, stem segmentation, coarse segmenta-
tion, fine segmentation, and sample-based segmentation. (1)
Point cloud down-sampling: the original input point cloud is
down-sampled to maintain the shoot morphological features,
which improves the segmentation efficiency and quickens the
entire segmentation process. (2) Stem segmentation: the top and
bottom points of the stem are interactively selected, and the cor-
responding radius parameters are interactively adjusted. Sub-
sequently, the median region growth is applied to segment the
stem points from the shoot automatically. (3) Coarse segmenta-
tion: the highest points of each organ instance, except the stem,
are obtained via manual interaction, after which all organ in-
stances are segmented automatically on the basis of the optimal
transportation distances. (4) Fine segmentation: the unsatisfac-
tory segmentation point regions are selected interactively, and
the seed points of organ instances are selected. Organs are then
segmented by Markov random fields (MRF). (5) Sample-based
segmentation: maize shoots with high-resolution point clouds
are segmented on the basis of the fine segmentation result of
low-resolution point clouds.

Two seed points sy and s, at the bottom and top of each stem
were selected interactively. Then, a median-based region grow-
ing algorithm [36] was applied to segment the stem points. This
segmentation procedure updates the seed point iteratively along
the direction from s; to s,. Points around the seed points were
classified into stem points. Supposing the algorithm is currently
at the kth iteration and the seed point is s, the segmentation
process was evaluated as follows:

Stepl: Points lying in a sphere were classified as stem points,
where s, is the center of the sphere, r; is its radius, and r; is a
user-specified parameter.

Step 2: The growth direction v, was determined according to:

Uk = (v + BY) /ety + Bill,,
U1 = median {(pa — s) /IIPa — Skllo. Pa € A},

B = (50— K) /lIsn — Skl

In this formula, ||||2 is L, normal form and median {} rep-
resents the median operation. « and B are weight parameters
set by users and v; is the normalized vector from the median
of already segmented points of the stem to the seed point s;.
Meanwhile, v is the normalized vector from s to s,, which cor-
rects the growth direction to coincide with the stem. In practice,
a = 0.2 while g = 0.8. This parameter setting ensures that the
stem points can be correctly segmented under differentr; values
during the entire growing process.

Step 3: A new seed point si;1 for the next iteration was esti-
mated according to Sgi1 = Sk + r1Uk.

Step 4: Region growth finish condition judgement. Supposing
L represents the line segment from sy to sy, then project se.1 on L.
If the projection point was not on L, it indicates that the current

regional growth was beyond the stem region and the iteration
should be stopped. Otherwise, continue the k + 1 times iteration
and execute Step 1.

Because the maize stem gradually thins from bottom to top, a
uniform radius r; may generate over-segmentation, i.e., classify-
ing the points of other organs into the stem. Besides, the region
growing algorithm also over-segments points in some regions
where the stem bends. Therefore, a simple median operation
was adopted to eliminate the over-segmented points. First, the
already segmented stem points were evenly divided into M seg-
ments along the direction of (s, — S)/lIsh — Soll2, and the median
axis of each segment was fitted using least squares. The average
distance from each point to the central axis was then calculated.
If the distance from a point to the central axis was less than the
average distance, it was retained as the stem point; otherwise it
was removed from the stem to the unsegmented point set. Users
can perform the median operation several times in the toolkit to
reduce the over-segmentation problem. Although multiple me-
dian operations cause an under-segmentation of the stem point
cloud, the issue is resolved in the subsequent organ segmenta-
tion processes. ¢} represents the segmented stem points, and
these points are removed from ¢,. Subsequent organ segmenta-
tion is performed in the remaining point cloud. Stem point cloud
segmentation is illustrated in Fig. 2.

The shoot points were transformed into a regular coordinate
system to access the position of each point in the cloud conve-
niently. The midpoint of the already segmented stem point cloud
was taken as the origin O of the new shoot coordinate system. In
contrast, the Z-axis of the new coordinate system was the mid-
dle axis estimated by the least-squares method from the stem
point cloud. Then, the shoot point cloud was projected onto the
plane using the Z-axis as its normal vector. The first and second
principal component vectors of the projection points were de-
termined by principal component analysis and assigned as the
X- and Y-axis of the new shoot coordinate system, respectively.
Subsequently, the original point cloud coordinates were trans-
formed into the new shoot coordinate system, and the coordi-
nates of their z-value judged the height of points in the shoot.
Points are higher with greater z-values.

A top-down point cloud segmentation algorithm for maize or-
gans from a shoot was applied. The highest point of each or-
gan was taken as the seed point of the organ (Fig. 3A). The other
shoot points after stem segmentation were classified into cor-
responding organ instances from the top down by the optimal
transportation distances (Fig. 3B).

Organ seed points determination

After stem segmentation, the point cloud of maize shoots was
spatially divided into several relatively discrete point clouds (ex-
cluding the stem). However, the exact number of organs is al-
ways larger than the number of discrete point clouds, owing to
the spatial organ connection, especially near the upper leaves.
Thus, the seed point for each organ has to be determined for the
next step segmentation. The highest point of each organ was
regarded as the seed point (Fig. 3A). If a pot was involved in the
point cloud, all points with a z-value less than the lowest point
of the stem were directly classified as pot points. Usually, the
highest point of a new leaf appears at the tip region; the middle
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Figure 1: Workflow of the segmentation.

and lower fully unfolded leaves are mostly curved. Meanwhile,
the highest point lies in the middle of the leaf, and the highest
points of a tassel or ear are at the top. Therefore, it was assumed
that the distance between the highest points of any 2 organs was
>5 cm. On this basis, the highest point of each organ was de-
termined by searching for the point with the maximum z-value
within the point cloud of the organ.

Owing to the complicated spatial points at the organ con-
nection areas, automatic estimation of the highest points of in-
stances may not be accurate. Label3DMaize provides a manual
interaction module to determine the highest seed point of each
organ. Simultaneously, this operation can also assign a serial
number to each organ for further output. Because the number of
maize organs is relatively small, this interactive correction op-
eration is convenient and acceptable. The derived seed points of
each organ are set into the corresponding instance point cloud
VJiSA At this time, each leaf, tassel, and ear instance point cloud
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only contains the highest point, and there are multiple points in
the pot and stem instances.

Coarse segmentation based on optimal transportation distances
After obtaining the seed points of all the instances, the left
points in ¢, were traversed 1 by 1 to determine the instance to
which they belong. For each point to ¥, the distance between
the point and each other point cloud instance was evaluated,
and it was classified into the nearest instance. The classified
points were evaluated from top to bottom; i.e., the points with
bigger z-coordinates were evaluated preferentially. The process
was as follows:

Step 1: The points in the point set i, were reordered from big
to small according to their z-values.

Step 2: For point p € ¥, the organ instance it belongs to was
determined. The distance d' from point p to the ith instance was



Figure 2: Stem point cloud segmentation. (A) Seed points at the bottom and top of the stem are interactively selected, and an appropriate segmentation radius is
set. (B) Stem segmentation result based on (A). (C) A big radius is set. (D) Segmentation result based on (C). (E-G) Stem segmentation results with 1, 2, and 3 median

operations based on (D).

Figure 3: Illustration of coarse segmentation. (A) Highest point determination of each organ. (B) Visualization of segmented shoot from different angles of view.

defined as
d' = Dy (p, 5‘) R

where Ds is the optimal transportation distance between any
2 points calculated based on the Sinkhorn algorithm [48]. Then
point p is assigned into the organ instance with the lowest d'. pi,
in the ith instance, is the nearest neighbor of point p under the
optimal transportation distance.

Step 3: Move point p from @, into the corresponding L. Con-
tinue traversing the next point in #,, and perform Step 2 until ¢,

is empty.

The detailed description of D; in Step 2 is as follows. The op-
timal transportation strategy of point cloud Q to its identical set
Q' is the one that transmits all the quality of any point p € Q
to the same point p’ € Q'. The Sinkhorn algorithm [48] was used
here to calculate the optimal transportation distances. It allo-
cates the quality of any point p € Q to all points in Q'. A point
with higher allocation quality suggests the point is closer to p
than any other points under the optimal transportation strategy.
Suppose that point cloud Q contains Ng points. Q' represents the
same point set of Q. py is the uth point in Q, and M, indicates
the quality of point p,. Similarly, p, is the vth pointin Q’, and M;
indicates the quality of point p,. my, represents the transported



quality from p, € Q to p, € Q. Then the optimal transportation
energy from point cloud Q to point cloud Q' can be described as:

. N N 1 N N,
argyl;lnlnzuilzvilwv lpu—pil+ s Zuilzvilmwlogmw’
N N

s.t. My, > 0; Zvil My = My ; Zuil My, = M, .

In this equation, ¢ is the adjustment parameter, which was
set to 5 in this article, and ||| is the L, normal form. The above
equation can be solved by the Sinkhorn matrix scaling algorithm
[49], and the optimal transportation from Q to Q' can be de-
rived; i.e., an Nq x Ng optimal transportation matrix M is ob-
tained. The element my, at u row and v column in the matrix is
the transported quality from the uth to the vth point. A larger
my, indicates that the 2 points are closer. After obtaining the
optimal transportation solution, the optimal transportation dis-
tance from the uth to the vth point in the point cloud can be de-
fined as Ds (pu, pv) = 1/My. The pseudocode for calculating the
optimal transportation distance M is shown in Table 1.

In the optimal transportation energy equation, when param-
eter ¢ increases, the transportation strategy gets closer to the
classical optimal transportation, and the segmentation result
using optimal transportation distance Ds is also closer to that
using Euclidean distance. The same results can be derived using
the 2 distances when the ¢ is >100. When ¢ is smaller, the solu-
tion becomes smoother, and the nearest neighbor calculated un-
der the D; distance tends to the region with higher point density.
Compared with the Euclidean distance, using the optimal trans-
portation distance to estimate the distance between points can
better deal with the challenge of big leaves wrapping on leaflets
than using the Euclidean distance (Fig. 4A and B). When the ad-
hesion area of the 2 organs is not significantly large, the segmen-
tation result using the optimal transportation distance is better
than that of the Euclidean distance (Fig. 4C and D).

Coarse segmentation can provide preliminary results, but false
segmentation is frequently observed in the intersecting regions
of organs. To obtain more precise segmentation results, this
study developed a fine segmentation module for organs in La-
bel3DMaize, which included the following processes:

Step 1: n (n > 1) organ instances to be fine segmented were
selected, and ., represents the ith instance.

Step 2: The region of interest was selected among the above
instance point cloud, represented by @,

Step 3: The seed point for the ith instance ¢, was selected
from region @, . The selected points were removed from ¢, and
stored in ¢, .

Step 4: The points in ¢, were re-segmented using MRFE.

The re-segment algorithm was detailed using MRF in Step 4,
as explained in the following. The fine segmentation of the in-
terest region mentioned above is a multi-classification problem.
It allocates p, € @y into n organ instances ﬂis,, i.e., search for the
right organ tag for point p,. Hence a mapping function fu(py) is
defined for any point p,. When a point p, is mapped to the ith
instance, f, (pu) = i, the energy function is defined as:

E (fo)= Vzpuewu, Dy, (fa (Pu))‘*‘z(mqu)e&(pu)v(fn (pu) . fo (qu) .
Dy, ()= D(pu#l)i = [L2...... n,

V (s (02 (@) = (d(p;; qu)>r (a(np)nu))w'

T

In this function, R(p,) is the k-neighborhood of p, € #y. The
data item Dy, (fn(pu)) measures the loss of classifying p, to n
instances ¢.. D(py, #.) represents the distance from point p,
to instance Ws,, which is the distance from p, to the nearest
point in ¢ y is a weight parameter that controls the propor-
tion of distance term in the energy function. The smooth item
V(fa(pu). fn(qu) quantifies the corresponding loss when assign-
ing the tag fn(pu) and fn(qu) for point p, and qy, respectively. This
smooth term encourages spatial consistency; i.e., the probabil-
ity that adjacent points belong to the same class is higher. The
smooth term is composed of the product of the distance term
on the left and the angle term on the right. Meanwhile, d(pu. qu)
is the Euclidean distance of the 2 points and d’ is the maximum
Euclidean distance between all points and their neighborhood
points, regulating the distance term in the range of (0, 1]. n,
and n, are the normal vectors of points p, and gy, respectively.
a(np, ny) is the angle between the 2 normals. r and ¢ are the
weight parameters for the distance and angle term, respectively,
both with a default value of 1.0. The minimum solution of the
energy function is solved by «-expansion MRF [50].

In addition, users cloud assign an organ label to the region of
interest points after the aforementioned Step 2, which offers a
more direct way for fine segmentation.

It is suggested that the number of points per shoot should
be <15,000 to ensure data processing efficiency. Therefore, La-
bel3DMaize provides point cloud simplification and sample-
based segmentation modules. Voxel-based simplification is
adopted in the toolkit. Sample-based segmentation refers to the
automatic segmentation of a dense point cloud via the segmen-
tation result of the corresponding simplified point cloud. Specif-
ically, suppose that point cloud A is the simplification of dense
point cloud B, and A has already been segmented while B is to
be segmented. The k-nearest neighbors in A of any point p € B
are calculated, followed by counting how many points of these
k-nearest neighbors belong to each instance. The instance with
the maximum neighbor points is determined as the instance of
point p.

The Label3DMaize toolkit was developed using MATLAB. The
interface is composed of the main interface and multiple sub-
interfaces, including stem segmentation, coarse segmentation,
fine segmentation, and sample-based segmentation (Fig. 5).
Each sub-interface pops up after the corresponding button on
the main interface is triggered. The main interface and each
sub-interface are composed of an embedded dialog and an in-
teractive visual window (only the embedded dialog in each sub-
interface is shown in Fig. 5). The interactive visual window en-
ables the user to rotate, zoom, translate, select points of interest
in the view, and improve the segmentation effect visually and in-
teractively. The input of the toolkit includes point cloud files in
text format, such as txt or ply. According to the operational pro-
cess shown in Fig. 5, segmentation results can be refined step
by step by inputting parameters and manually selecting points.
The output of the toolkit is a text file with annotation informa-
tion; i.e., each 3D coordinate point in the text has a classification
identification number, and the points with the same identifica-
tion number belong to the same instance. These format files are



Table 1: Pseudocode for calculating optimal transportation matrix

Algorithm 1. Computation of optimal transportation matrix M, using MATLAB syntax.

Input: Parameter ¢; Point cloud matrix Quqx3; % NQ is the point number of the point cloud

n = Ngq;
Hy o = pdist2(Q, Q);H = H./max(H(;));
Knxn = exp(-¢H);

Upsn = K.+H;
anx1 = ones(n,1)/n;
hpaa=a;

Jnxn = diag(1./a)*K;
while h changes or any other relevant stopping criterion do
h = 1./(x(a./(h’xK)’));
end while

Z nx1 = a./((W'+K)");

M nxn = diag(h(;,1)) * K * diag(z(;,1));

Figure 4: Organ segmentation comparison using optimal transportation distance and Euclidean distance. Point cloud segmentation result for big leaf wrapping small
leaf base case using Euclidean distance (A) and optimal transportation distance (B). Point cloud segmentation result for close or slight organ adhesion case using

Euclidean distance (C) and optimal transportation distance (D).

applicable for 3D deep learning of maize shoots. The executable
program of Label3DMaize can be found in the attachment.

To evaluate the accuracy of coarse and fine segmentation, the
point clouds of 3 varieties in 4 different growth stages of maize
shoots are segmented using Label3DMaize. Figure 6 shows the
visualization results. According to the visualization results, no
significant differences were observed between the coarse and
fine segmentation. Yet, fine segmentation improved the seg-
mentation effect of the details, especially near the connection
region of organs.

The present study has further provided numerical accuracy
results to quantitatively evaluate the difference between coarse
and fine segmentation (Table 2). The precision, recall, and F1-
score of each organ were estimated on the basis of fine segmen-
tation as the ground truth. The averaged precision and recall of
all shoot organs were taken as the precision and recall. Macro-
F1 and micro-F1 are calculated using the precision and recall of
the shoot and organs averaged value, respectively. It can be seen

from Table 2 that although the accuracy of coarse and fine seg-
mentation differed, the overall difference was not significant.

The efficiency of plant point cloud segmentation is an essential
indicator for the practicality of training data annotation tools
for deep learning. Table 3 shows the time consumed in the dif-
ferent steps for maize shoot segmentation at 4 growth stages
using Label3DMaize on a workstation (Intel Core i7 processor,
3.2 GHz CPU, 32 GB of memory, Windows 10 operating system),
including the interactive manual operations and segmentation
computations. It can be seen that point cloud segmentation
takes ~4-10 minutes per shoot, in which coarse segmentation
takes ~10-20% of the total time. In the whole segmentation pro-
cess, the manual interaction time cost is significantly higher
than that of automated computation. The segmentation effi-
ciency is positively related to the number of leaves.

This study also analyzed the detailed time costs. (i) The time
cost of stem segmentation. In the early growth stages of a maize
shoot, the stem is relatively upright, so users only need to se-
lect the bottom and upper points of the stem and specify a suit-
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Figure 5: Interfaces of Label3DMaize. (A) The main interface of the toolkit, composed of a visualization window and an embedded dialog. (B-E) Dialog of stem segmen-
tation, coarse segmentation, fine segmentation, and sample-based segmentation. The visualization window is not shown in these sub-interfaces.

Table 2: Accuracy evaluation of coarse segmentation vs fine segmentation

Overall accuracy (%)

Precision (%)

Recall (%)

Micro-F1 (%)

Macro-F1 (%)

Mean (range) 97.2 (89.8-99.4)

96.7 (92.0-99.2)

95.6 (84.1-99.1)

96.1 (87.9-99.2)

95.6 (85.3-99.1)

Table 3: Segmentation time of different steps on maize shoots at 4 growth stages using Label3DMaize

Growth period No. points of a maize shoot

Time cost (s)

After
Input simplification t ty t3 ty ts ts t; tg to Total
V6 45,833 13,196 10 0.2 16 4 30.2 60 0.05 0.5 100 190.75
V9 62,523 13,953 10 0.2 21 4 35.2 140 0.05 0.6 100 275.85
V13 70,873 12,102 14 0.2 32 5 51.2 260 0.05 0.6 100 411.85
R2 71,909 13,224 14 0.2 35 5 54.2 268 0.05 0.6 100 422.85

t1: Time for stem point selection and radius setting. t,: Time for segmentation computation of stem points. t;: Time for seed points selection of organ instances.
t4: Time for organ segment computation. ts: Time for coarse segmentation, where ts = t; + t, + t3 + t4. tg: Time for fine segmentation operations. t;: Time for fine
segmentation computation. tg: Time for sample-based segmentation. to: Time for other operations, e.g., the alternation between main and sub-interfaces. Underscored

and non-underscored identifiers indicate the time cost for manual interactions and automated computation, respectively.

able radius. However, in the late growth stages, the maize shoot
height increases and the stem becomes thinner from bottom
to top. Meanwhile, the upper part is curved, so interactive me-
dian segmentation is needed, which increases the segmentation
time. (ii) The time cost of coarse segmentation. The major inter-
active operation of coarse segmentation is that the user selects
or adjusts the highest organ points. As the maize shoot grows,
the number of organs gradually increases, so the time costs for
the interactive operation of picking points also increase. Mean-
while, the growth of shoot organs significantly increases the oc-
clusion among organs. Thus, the appropriate angles of view for
users have to be found to determine the highest organ points,
which is time-consuming. (iii) The time cost of fine segmenta-
tion. An increase in the number of organs causes false segmen-
tation of more organs at the connection regions. Therefore, the
fine segmentation of maize shoots with more organs would take

more time. Besides, the segmentation efficiency is related to the
shoot architecture; the spatial distances between adjacent or-
gans are much larger in flattened shoots than those of relatively
compact ones, which increases the segmentation efficiency of
flattened shoots.

Comparison with other methods

Method comparison was conducted to evaluate the algorithm
performance in coarse segmentation. The point cloud data used
here consisted of 12 shoots obtained from the 3D scanner (men-
tioned in the data acquisition section). Region growing in Point
Cloud Library (PCL) [51] and PointNet-based segmentation are
considered the state-of-the-art methods for comparison. The
best segmentation result was obtained through parameter ex-
haustion for each shoot using region growing. For PointNet-
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Figure 6: Visualization of maize shoot segmentation results of 3 cultivars at 4 growth stages. In each pair of images, the left and right are coarse and corresponding

fine segmentation results, respectively.

based segmentation [52], a training dataset containing 1,000 la-
beled maize shoots was built using Label3DMaize. The PointNet
model was then trained, and the segmentation model was de-
rived. The segmentation accuracy is reported in Table 4, and rep-
resentative results of each growth stage are shown in Fig. 7. The
fine segmentation results derived using Label3DMaize were re-
garded as the well-segmented reference for comparison. Results
showed that Label3DMaize could deal with MVS reconstructed

point clouds and also handle the point cloud derived using 3D
scanner. Region growing is oriented to solve general segmen-
tation problems; the segmentation effect is obviously different
from the other 2 methods in maize point cloud segmentation.
Thus, the efficiency of region growing is less than that of Point-
Net and coarse segmentation. The segmentation result of coarse
segmentation presented in this article is more accurate than
that of PointNet. Although the PointNet model can realize au-
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Table 4: Accuracy comparison of region growing, PointNet, and coarse segmentation

Overall accuracy (%) Precision (%) Recall (%) Micro-F1 (%) Macro-F1 (%)
Region growing 79.1 74.7 75.3 76.8 80.5
PointNet 92.6 92.6 92.6 91.7 90.7
Coarse segmentation 99.2 99.0 99.1 99.0 99.0

V3 \/\

Vo6

A%

V12

Region growing PointNet-based ) Ground truth, derived by
. . Coarse segmentation .
segmentation segmentation fine segmentation

Figure 7: Visualization of segmentation results using region growing, PointNet, coarse segmentation, and fine segmentation.



tomatic segmentation compared with the rough segmentation
containing interaction in this article, dealing with many details
could be challenging. For instance, it is difficult to accurately ex-
tract the point cloud at the stem and leaf boundary, segmenting
a big leaf wrapping a small leaf at the shoot top could be chal-
lenging, and it always ignores the newly emerged leaves.

This study determined the performance of Label3DMaize in seg-
menting other plants with only 1 main stem, including tomato,
cucumber, and wheat.

Two types of segmentation have been conducted on tomato
in the literature [11]; the first (Type I) treats a big leaf with several
small leaves as a cluster leaf, while the second (Type II) treats
each big or small leaf as independent. This study aimed to real-
ize these 2 type forms using Label3DMaize. The Type I segmenta-
tion result (Fig. 8B) was derived by selecting the highest point of
each leaf cluster (Fig. 8A) in the coarse segmentation procedure
and details were enhanced by fine segmentation (Fig. 8C). For
Type Il segmentation, the highest points of all the leaves have to
be specified (Fig. 8D). Consequently, coarse and fine segmenta-
tion could be derived (Fig. 8E and F). The segmentation method
used by Ziamtsov and Navlakha [11] is based on a machine learn-
ing model; thus, it can only segment trained plants. In contrast,
Label3DMaize has better generality.

Cucumber was selected as a plant representative to test the
segmentation performance of Label3DMaize on plants with a
soft stem. Different from the topological structure of maize, cu-
cumber has larger stem curvature and has leaf petioles. Thus,
the interactive end point selection for stem segmentation of cu-
cumber differs from that in maize. Selection of the highest point
of cucumber stem is similar to that in maize. When selecting the
other stem end point, we could find the lowest point that coin-
cides with the straight-line direction from the stem top to bot-
tom (Fig. 9A). Although the unselected stem part will be miss-
ing, it can be completed in the subsequent coarse segmentation
(Fig. 9B). The coarse segmentation and directly fine segmenta-
tion tend to segment each leaf and corresponding petiole into
an individual organ (Fig. 9C). The separated petiole and leaf can
be obtained by fine segmentation, which segments all the peti-
oles and a single stem as a whole (Fig. 9D).

A point cloud of wheat shoot at the early growth stage was
acquired using the MVS-Pheno platform. Because the wheat
shoot is small with a thin stem, the tiller points are fused to-
gether near the shoot base. However, the tiller tops could be
identified, which enables segmentation of the wheat shoot by
Label3DMaize. For plants with tillers, only 1 stem is selected
in the stem segmentation procedure (Fig. 10A). When selecting
the organ’s highest points in coarse segmentation, not only the
highest point of each leaf but also the highest point of each tiller
has to be selected (Fig. 10B). Coarse segmentation can ensure a
better effect of leaf segmentation (Fig. 10C). However, tillers and
stem are prone to undersegmentation, which needs to be ad-
justed by fine segmentation (Fig. 10D).

In representative shoot-organ segmentation approaches [36],
leaf overlap challenges shoot segmentation, especially for upper
leaves in compact shoot architecture. Once the segmentation is
complete, it is difficult to correct the false segmentation points.

Although commercial software, such as Geomagic Studio, can
solve this problem, it is complicated and time-consuming. In
contrast, the Label3DMaize toolkit integrates a top-down seg-
mentation algorithm and interactive operations according to
the morphological structure of maize shoots, which can realize
semi-automatic fine point cloud segmentation. The top-down
coarse segmentation ensures topological accuracy, and the in-
teractive operations improve the segmentation accuracy and
details. Although coarse segmentation can meet the basic de-
mand for phenotype extraction, it is not satisfactory for high-
precision phenotypic analysis and 3D reconstruction based on
point clouds. In contrast, fine segmentation is more satisfac-
tory for the latter demands. The toolkit can solve the point
cloud segmentation problem of compact architecture or organ-
overlapping shoots. Although skeleton extraction methods [34,
35] also provide an interactive way to improve the segmentation
accuracy, they offer skeleton interaction, which hardly improves
the segmentation point details.

Because 3D point cloud annotation tools for plants are lack-
ing, researchers segment plants through multi-view image la-
beling, deep learning-based image segmentation, MVS recon-
struction, and a voting strategy [53]. However, these methods
cause a lot of organ occlusion from different view angles; thus,
it is hard to segment plants with multiple organs through im-
age labeling and MVS reconstruction. Jin et al. [37] transformed
point cloud data into a voxel format, constructed a training set
containing 3,000 maize shoots via data enhancement, and pro-
posed a voxel-based convolutional neural network to segment
stem and leaf point cloud of maize shoots. Label3DMaize en-
ables researchers to directly handle 3D point cloud segmenta-
tion and data annotation without transforming point cloud data
into the voxel form. Meanwhile, using the acquired data di-
rectly improves the diversity of training set data, rather than by
data enhancement, and can thus improve the robustness of the
learned model. In addition, label3DMaize can separate the tassel
and ear except for the stem and leaf, facilitating phenotype ex-
traction of the tassel (such as the number of tassel branches or
the compactness of the tassel) and ears (such as the ear height).

In our recent works, the MVS-Pheno platform [18] was used to
obtain high-throughput 3D point cloud data of maize shoots
at different ecological sites for various genotypes and growth
stages. However, the underlying knowledge about genotypes
and the differences in cultivation management have not been
fully explored, indicating that high-throughput phenotypic ac-
quisition is far from practical application. Therefore, it is ur-
gent to establish automatic and online data analysis approaches
[54]. However, owing to the complexity of plant morphologi-
cal structure, it is difficult to realize automatic 3D segmenta-
tion from the plant morphological characteristics and regional
growth method only. Deep learning is a feasible way to real-
ize automatic segmentation by mining deep features of plant
morphology. The greatest challenge in 3D point cloud segmen-
tation by deep learning is the lack of high-precision and effi-
cient data annotation tools. Most of the existing 3D data anno-
tation methods are for voxel data [37, 55], not 3D point clouds.
Thus, Label3DMaize provides a practical tool for 3D point cloud
data annotation for maize and could be a reference for other
plants. It has been demonstrated that the toolkit can segment
or label other plants, such as tomato, cucumber, and wheat.
Coarse segmentation, i.e., the top-down point cloud segmen-
tation algorithm using optimal transportation distance, suits



Figure 8: Performance evaluation of Label3DMaize on tomato for 2 types of segmentation. Type I: leaf cluster segmentation (A-C). Type II: individual leaf segmentation
(D-F). A and D illustrate the highest point selection in the 2 forms of coarse segmentation. B and E show the coarse segmentation results. C and F are fine segmentation
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Figure 9: Visualization of cucumber point cloud segmentation. (A) Illustration of the lowest and highest selection points in stem segmentation. (B) Coarse segmentation
result. (C) Fine segmentation. Each leaf and corresponding petiole are classified as an instance. (D) Fine segmentation. All the petioles and the main stem are classified

as an instance.

plants with a single stem. Meanwhile, if a plant has too many
organs, selecting all the highest points of each organ is rather
complicated. Above all, interactive operations in fine segmen-
tation enable extension of the toolkit to other specific plants.
Specifically, Label3DMaize does not depend on data generated
through MVS-Pheno. Any point cloud of maize shoot can be the
toolkit input, including data acquired using 3D scanners (Fig. 7),
or reconstructed from multi-view images acquired by handheld
cameras.

Unlike RGB image data annotation [40], data enhancement
does not significantly improve the model robustness of 3D point
cloud segmentation models. Thus high-quality data annotation
is important. It takes 4-10 minutes to label a maize shoot point
cloud by Label3DMaize, and this labeling efficiency can meet
the needs of constructing a training dataset for deep learning.
The fine segmentation module in Label3DMaize ensures accu-
rate segmentation of detailed features at the organ connections
and is thus satisfactory for organ-level 3D reconstruction. Of



Figure 10: Visualization of wheat shoot segmentation using Label3DMaize. (A) Stem point selection. (B) Selection of highest points in leaves and tillers. (C) Coarse

segmentation. (D) Fine segmentation.

note, coarse segmentation results can be used as the annota-
tion data if high precision of the annotation is not required, thus
saving a lot of time.

Label3DMaize is designed for individual shoots and does not
support segmentation of multiple maize shoots. Thus, point
clouds containing multiple shoots have to be preprocessed into
individual shoot point clouds first, through spatial connection
property of points, or interactively separated using commer-
cial software (such as CloudCompare or Geomagic Studio). This
shoot separation preprocess is easy for scenarios without cross
organs. Thus, point cloud data acquisition is important for sub-
sequent segmentation. Point clouds with less noise are required
when using Label3DMaize. For shoots with much random noise
[35], point cloud denoising should be performed first and then
set as the toolkit input for segmentation. Compared with im-
age annotation, the data annotation efficiency of Label3DMaize
is still lower, and fine segmentation requires more manual in-
teraction, which has higher requirements for user experience
and concentration. Thus the algorithm for Label3DMaize needs
improvement to raise the automation level of point cloud seg-
mentation.

At present, a large amount of 3D point cloud data of maize
shoots has been obtained using MVS-Pheno. In our future
study, representative data will be selected and annotated by La-
bel3DMaize, then a 3D maize shoot annotation dataset will be
constructed. A deep learning-based point cloud segmentation
model will then be developed to realize the automatic segmen-
tation of maize shoots. In addition, ted -aize organ data could be
used to build a 3D shape model of maize. All the above technolo-
gies or data will conversely simplify the segmentation and la-
beling processes of the toolkit. Subsequently, online phenotypic
extraction and 3D reconstruction of maize shoot algorithms will
be studied using the well-segmented point clouds. The segmen-
tation algorithm and this toolkit will be extended to other crops
according to their morphological characteristics, which will pro-
mote the automatic 3D point cloud segmentation of plants.

® Project name: Label3DMaize Toolkit

°* Project home page: https://github.com/syau-miao/Label3D
Maize.git

* Source code and executable program: [57]

® Operating systems: Windows

* Programming languages: MATLAB

License: GNU General Public License (GPL)

® RRID:SCR.021029
® biotools ID: label3dmaize

The data underlying this article and snapshots of our code are
available in the GigaDB repository [56].

Supplementary Program. Executable program of Label3DMaize,
which requires that MATLAB runtime (Version 9.2 or above) be
installed.

Supplementary Data S1: The point clouds of maize shoots de-
scribed in Fig. 6, including the point clouds acquired using MVS-
Pheno, coarse segmentation results, fine segmentation results,
and sample-based segmentation results.

Supplementary Data S2: Point cloud data described in Fig. 7.
These point clouds are acquired using a 3D scanner.
Supplementary Data S3: Segmentation results on other plants,
including tomato data described in Fig. 8, cucumber data de-
scribed in Fig. 9, and wheat data described in Fig. 10.

CPU: central processing unit; MRF: Markov random fields; MVS:
multi-view stereo; PCL: Point Cloud Library; R2: blister stage;
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