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PURPOSE: Individuals with mosaic pathogenic variants in the FBNT gene are mainly described in the course of familial screening. In
the literature, almost all these mosaic individuals are asymptomatic. In this study, we report the experience of our team on more
than 5,000 Marfan syndrome (MFS) probands.

METHODS: Next-generation sequencing (NGS) capture technology allowed us to identify five cases of MFS probands who harbored
a mosaic pathogenic variant in the FBNT gene.

RESULTS: These five sporadic mosaic probands displayed classical features usually seen in Marfan syndrome. Combined with the
results of the literature, these rare findings concerned both single-nucleotide variants and copy-number variations.
CONCLUSION: This underestimated finding should not be overlooked in the molecular diagnosis of MFS patients and warrants an
adaptation of the parameters used in bioinformatics analyses. The five present cases of symptomatic MFS probands harboring a
mosaic FBN1 pathogenic variant reinforce the fact that apparently asymptomatic mosaic parents should have a complete clinical
examination and a regular cardiovascular follow-up. We advise that individuals with a typical MFS for whom no single-nucleotide
pathogenic variant or exon deletion/duplication was identified should be tested by NGS capture panel with an adapted variant

calling analysis.

Genetics in Medicine (2021) 23:865-871; https://doi.org/10.1038/s41436-020-01078-6

INTRODUCTION

Marfan syndrome (MIM 154700, MFS) is a hereditary connective
tissue disorder with an estimated incidence of 1 in 5,000
individuals. In this disease, many systems are affected with great
phenotypic variability and life-threatening complications, such as
the cardiovascular system, with thoracic aortic aneurysms and
dissections; ocular system, with ectopia lentis; and skeletal system,
with recognizable features such as scoliosis, long bone over-
growth, arachnodactyly, and pectus deformity. The clinical
diagnosis is based on the revised Ghent nosology.' Heterozygous
pathogenic variants in the FBNT gene, encoding fibrillin-1, an
extracellular matrix protein, are found in the majority of patients
with MFS (1,850 different pathogenic variants described in the
UMD-FBN1 database? (http://www.umd.be/FBN1/). A clear family
history is apparent in the majority of MFS probands, whereas the
disease arises de novo in about 25% of the cases.

Mosaicism defines an individual who has developed from a
single fertilized egg and has two or more populations of cells with
distinct genotypes, due to postzygotic de novo variants.> A variant
can occur in a somatic cell and be contained in only a few tissues
(somatic mosaicism), it can occur in a germline cell (germline/
gonadal mosaicism), or it can occur in an early precursor cell
giving a mixed somatic and germline mosaicism (gonosomal
mosaicism).* A transmission of the variation to descendants is
possible if the mosaic is present in a germ cell, which is the case in
germline and gonosomal mosaicism. The most obvious example
of somatic mosaicism is cancer, but mosaicism has also been

described extensively in autosomal dominant diseases. The
phenomenon was initially highlighted through the observation
of localized or segmental forms of cutaneous diseases, such as
neurofibromatosis type 1.> Another example is Proteus syndrome,
which is caused by somatic mosaicism for a pathogenic variant
presumed lethal in the nonmosaic state.®’

Mosaicism was long suspected to exist in MFS because of the
high rate of sporadic cases® Our team performs systematic
diagnostic study of the FBNT gene in patients suspected for MFS
since the early 1990s. More than 5,000 MFS-suspected probands
have been tested for molecular diagnosis, either by Sanger
sequencing or by next-generation sequencing (NGS) capture
panel, and 1,961 were shown to harbor at least one heterozygous
pathogenic variant in the FBNT gene.® Among these MFS patients
with a pathogenic variant in the FBN7 gene, a family history was
documented in 65%, while among the remaining apparently
sporadic cases, a de novo occurrence could be confirmed in 258
cases, representing 13% of all the patients (Fig. 1). Moreover, a
parental mosaicism was found in 23 cases, notably the first case of
both somatic and gonosomal mosaicism reported in MFS.'® At the
clinical level, all 23 cases were asymptomatic. In the literature, only
two cases of symptomatic MFS patients exhibit a FBNT mosaic
pathogenic variant.'"'? The past 20 years have completely altered
the diagnosis of MFS and related disorders, first through the
availability of capillary Sanger sequencers followed by that of the
NGS technologies.'® With the latter applied to a capture panel, we
discovered five cases of mosaicism in five probands for whom the
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Fig. 1 Distribution of sporadic and familial cases in all the Marfan syndrome (MFS) patients with FBNT pathogenic variants detected in
the laboratory. Percentages are expressed relative to the total number of probands.

diagnosis of MFS had already been ascertained at the clinical level.
This study reports on these unusual and underestimated
molecular events that should be routinely looked for.

MATERIALS AND METHODS

Patients

All the patients included were followed either by the Centre National
Maladies Rares—Syndrome de Marfan et apparentés, the French National
Reference Centre in Paris, or by an affiliated regional Center of Expertise.
Clinical diagnosis was established according to the revised Ghent
nosology.! Patients were examined by several physicians: cardiologists,
ophthalmologists, geneticists, rheumatologists, or pediatricians (depend-
ing on their age) with specific evaluation of clinical features included in
MFS. Systematic slit-lamp examination, cardiac ultrasonography and
radiological investigations were also performed. Aortic diameter was
evaluated at the root and at the tubular portion of the ascending aorta at
end diastole. Aortic aneurysm was defined as a measure above mean +
2 standard deviations (Z score >2) as described by Campens et al."* Dural
ectasia was looked for by imaging. Systemic score was calculated as
described in the revised Ghent nosology.' Between 1996 and 2020, blood
samples were obtained for more than 5,000 consecutive unselected
probands referred nationwide to our laboratory for molecular diagnosis of
suspected MFS.

DNA amplification and variant detection

Genomic DNA was isolated from peripheral blood leukocytes with a DNA
Blood 4K kit (Perkin EImer®) on Chemagicstar (Hamilton®) according to the
manufacturer’s instructions. Originally, the FBNT gene was systematically
screened in patients suspected of MFS by bidirectional Sanger sequencing
as previously reported.® Since 2014, the FBN1 gene has been screened on
MiSeq (Illumina®) by NGS (on more than 3,000 patients) using MARFAN
MASTR Assay (Multiplicom®) or a custom capture array (NimbleGen,
Roche®) designed to capture FBNT gene (NM_000138.4; genome build
hg19) and 27 other genes already known to be associated with Marfan
syndrome and related diseases (total size of the target: 132 kb). Variant
calling is performed through CLC Genomics Workbench v10.1.1 (Qiagen®
Bioinformatics). Once a single-nucleotide or a small insertion/deletion
pathogenic variant is found in this way, it is systematically confirmed by
bidirectional Sanger sequencing of the altered exon. When the pathogenic
variant alters the regional restriction map, the presence of the variation is
also checked by polymerase chain reaction (PCR)/digestion using the
appropriate restriction enzyme. When possible, familial segregation of
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pathogenic variants is investigated. Description of sequence variants is
performed according to Human Genome Variation Society nomenclature.'?
In brief, complementary DNA (cDNA) numbering with +1 corresponds to
the A of ATG, the translation initiation codon in the reference sequence
(FBN7: NM_000138.4). Exon numbering is historically made considering
that exon 1 carries the initiation codon.

Copy-number variation (CNV) analysis

Before the routine use of the NimbleGen custom capture array, CNVs in the
FBN1 gene were searched for with multiplex ligation-dependent probe
amplification (MLPA, MRC-Holland®) on 53 of the 65 exons of FBNT using a
ABI-3130XL analyzer, and analyzed using Coffalyser.Net (MRC-Holland®).
For patients screened using the NimbleGen custom capture array, CNV
analysis was based on a comparison of normalized coverage depths for
each amplicon to those of a group of 24 patients from the same
experiment (CNV ratio). All CNVs were confirmed by quantitative PCR using
specific PCR primers and SYBR™ Green Master Mix (Applied Biosystem®) on
an ABI 7500 Fast and analyzed with the 7500 Fast Real-Time PCR System
software (Applied Biosystem®). Quantification was normalized using the
expression of the two housekeeping genes (PBGD and RB1).

Long-range PCR

A 7-kb fragment comprising FBNT exons 44 to 50 was amplified using an
Expand® High Fidelity PCR System (Sigma-Aldrich®) on a PeqSTAR®
thermal cycler (UNO96G), with the following program: initial denaturation:
2 minutes at 94 °C; 10 cycles (denaturation: 10 seconds at 94 °C, annealing:
30 seconds at 60 °C, elongation: 15 min at 68 °C); 25 cycles (denaturation:
15 seconds at 94 °C, annealing: 30 seconds at 60 °C, elongation: 15 minutes
+ 20seconds at 68°C); final elongation: 7 minutes at 68°C. Multiple
amplification primers were designed in introns 44 and 49, and sequentially
used to amplify shorter and shorter fragments. The shortest amplified
fragment was then sequenced and analyzed using Seqscape® (Applied
Biosystem?®) to identify breakpoints in these introns.

RESULTS

Molecular aspects

Of 5,000 MFS suspected patients, 1,961 probands were shown to
harbor at least one heterozygous pathogenic variant in the FBNT
gene.? Approximately half of these were identified by NGS capture
panel routinely performed since 2014. This last technology
allowed the identification of five mosaic pathogenic variants in
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Fig. 2 Results of the mosaic pathogenic variant confirmations for patient 1 and 2. Targeted Sanger sequencing on exon 24 (patient 1, a)
and exon 25 (patient 2, d). Similar sequencing profiles were obtained for patient 3 and 4. Restriction maps and results of the enzymatic
restriction using either Mspl enzyme (patient 1, b,c) or Taal enzyme (patient 2, ef).

the FBN1 gene in five different probands. In these five cases, the
entire FBNT gene was covered with a minimum depth of 90 reads
(mean depth: 422, 453, 478, 235, and 927 respectively for patients
1 to 5). In four cases (patients 1 to 4), four different single-
nucleotide variants were identified with abnormally low allelic
fraction (26%, 18%, 20%, and 24% respectively). The presence of
these mosaic variants was confirmed using targeted Sanger
sequencing, and PCR followed by enzymatic restriction when
appropriate (Fig. 2). The variant found in patient 1 (c.3037G>A-p.
[Gly1013Arg]) affects a highly conserved glycine, consensus in the
transforming growth factor-8 binding protein domain 3, and has
already been reported in ten probands in UMD-FBN1 database.
Prediction tools were in favor of a pathogenic effect for this
variation (UMD-Predictor®,'® PonPhen—Z”). In patient 2, an
intronic variant was detected in intron 25 (c.3208-+2T>A). This
variant affects the consensus donor splice site of intron 25 and is
predicted to cause an abnormal splicing of the intron and a major
impact at the protein level. The two mosaic variants identified in
patients 3 and 4 affect a cysteine, in calcium-binding epidermal
growth factor domains 12 and 19, respectively. These two
pathogenic variants, already reported in UMD-FBN1 database,
are known to affect proper disulfide bond formation and to
disrupt domain conformation. In the case of patient 5, a mosaic
deletion of exons 45 to 49 in the FBNT gene was suspected during
CNV analysis since CNV ratios were intermediate (ranging from
0.73 to 0.78) for these five exons (Fig. 3). Quantitative PCR
confirmed a 75-80% relative quantity of exons 45, 47, and 49,

Genetics in Medicine (2021) 23:865 - 871

compared with controls. Long-range PCR was performed to
determine the deletion breakpoints and identified a 9,128-bp
deletion (c.5546-750_6163 + 1205del). This deletion of five exons
is predicted to lead to an in-frame deletion of 206 amino acids but
this could not be verified by a transcript analysis.

Clinical aspects

The five probands with a mosaic pathogenic variant described in
this report were sporadic cases. None of them had children, and
their unaffected parents did not carry the pathogenic variant
when the samples were available. Four of five were diagnosed
during infancy and displayed classical MFS features usually found
in heterozygote patients, with ascending aortic dilatation and/or
ectopia lentis, and a systemic score ranging from 6 to 9. The last
one (patient 4) was diagnosed after an emergency surgery for
type A aortic dissection at 48 years old; the clinical examination
was incomplete for him. The detailed clinical features of these
probands are summarized in Table 1, as well as with the clinical
features of the two symptomatic mosaic patients from the
literature."2

DISCUSSION

In the present study, we describe five MFS probands harboring
mosaic FBNT pathogenic variants. At the clinical level, these
mosaic patients displayed typical MFS features with the involve-
ment of the skeletal, cardiovascular, and/or ocular systems. These
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Fig. 3 Characterization of the FBNT mosaic exons deletion identified in patient 5. (a) Scatter plot of copy-number variation (CNV) for the
next-generation sequencing (NGS) capture panel (28 genes). (b) CNV ratio data from NGS for exons 42 to 52 in the FBNT gene. (c) Relative
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FBNT gene in this proband.

findings were unexpected since mosaicism is rare in patients with
typical MFS in the literature, which almost exclusively reports
asymptomatic mosaic parents in the context of familial studies.
Indeed, our team reported the first case of paternal mosaicism
with both somatic and gonadal mosaicism for a FBNT gene
variant.'® In sporadic cases of MFS, it is important to find out
whether the variation occurred de novo or if it has been inherited,
to properly assess the risk of recurrence for another child. In
our experience and in the literature, individuals harboring
mosaic pathogenic variants in the FBN7 gene are usually
asymptomatic.?'®2* As a precaution, a follow-up in cardiology is
recommended for these patients. In the literature, mosaicism is a
very rare event in MFS patients since only two reports mention
symptomatic probands mosaic for a FBN1 pathogenic variant.'""'?
The first case is a sporadic case of MFS diagnosed at a young age
for whom a mosaic deletion of exons 13 to 49 was reported. The
second report is a symptomatic proband’s mother who was shown
to harbor the familial intronic variant as a mosaic.

The five present cases of symptomatic probands mosaic for
pathogenic variants in the FBNT gene reinforce the fact that
caution is warranted in the clinical follow-up of parental mosaic
individuals. Another interesting point is that somatic mosaicism
could also sometimes explain the mild and incomplete form of the
disease often seen in the patients referred to MFS clinics for
diagnosis.

We have identified an uncommon phenomenon in the
molecular diagnosis of MFS patients. Indeed, for some MFS
patients, the causal molecular event may have been missed due to
lack of knowledge and technical sensitivity. In the literature, the
power of MLPA for the detection of mosaicism in blood samples
has been shown to be low, since it could not detect duplication
mosaics below 40% or deletion mosaics below 30%.%* MLPA is
therefore not an effective method for the detection of low-grade
mosaicisms and its wide use in the last decade could explain why
no mosaics for major rearrangements were seen at the time.
Interestingly, targeted Sanger sequencing allows detection of
mosaic variants with far lower allele fractions, as low as 8%
according to a recent study.”® However, the conditions in which
this percentage was obtained are not applicable to routine
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screening by Sanger sequencing. In our experience, enzymatic
restriction is more sensitive than Sanger sequencing and useful in
targeted familial screening to accurately detect parental mosai-
cism. NGS appears to be the ideal method to detect mosaic
variants, provided that background signal is low enough to be to
detect mosaic variants. Therefore, each capture method using
custom bioinformatics analyses should be adapted to properly
query for this molecular phenomenon and should be combined
with additional Sanger sequencing. The lowest allele fraction
detected in this study was 18%; however, the minimal detectable
allele fraction is expected to be lower with an adapted
bioinformatics analysis. Of note, we were able to detect a 4%
minor allele fraction at another locus in the context of parental
mosaicism (unpublished data). Furthermore, parental samples are
tested using NGS technology in our laboratory to accurately
detect parental mosaicism, as also suggested by Brewer et al.>
This is particularly warranted to properly evaluate the risk of
recurrence that another child will be heterozygous for the familial
FBN1 pathogenic variant.

In our experience acquired from mosaic parents, the rate of
heterozygous cells was identical in buccal swab and blood sample.
Unfortunately, we were not able to test any other tissue from the
five MFS patients with a FBNT mosaic pathogenic variant, but we
can assume that in affected tissues, cardiovascular and ophthal-
mological tissues for instance, the rate of heterozygous cells might
be higher. Further studies need to be done on other tissues to
evaluate the presence of mosaic pathogenic variants in the
FBNT1 gene.

Taken together, the seven mosaic variants detailed in this study
and in the literature are three missense variants, two variants with
a predicted impact on splicing, and two deletions of several
successive exons. Interestingly, three of the seven mosaic variants
are located in the “neonatal region” corresponding to exons 24 to
32 of the FBNT gene. This region has been associated with more
severe phenotypes, including neonatal MFS.?® Moreover, the
missense pathogenic variant identified in patient 1 was also found
in five other probands in our laboratory and all of them displayed
a severe form (infantile or neonatal) of the disease. Since patient 1
did not display a particularly severe form of the disease, it could

Genetics in Medicine (2021) 23:865-871
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be speculated that a mosaic state could influence the severity of
the disease. Furthermore, we can hypothesize that the particularly
deleterious consequences of these seven variants may explain
why these mosaic patients are symptomatic.

Interestingly, combining the results from this report and from
the literature, two mosaic patients of seven concerned a deletion
of several exons in the FBN1 gene. This type of molecular event
- may be difficult to identify and the threshold for CNV analysis
Al must be set keeping in mind the possibility of mosaicism.

These five pathogenic variants have been identified through
NGS capture panel technology with a high mean depth on the
entire FBNT gene (>90 reads). We hypothesized that some cases of
mosaicisms could have been missed while performing screening
for FBNT variants using Sanger sequencing before 2014. We advise
that individuals with a typical MFS for whom no pathogenic
© single-nucleotide variant or exons deletion/duplication was
N identified should be tested by NGS capture panel with an adapted
variant calling analysis.

Rekondo et al.'?

NA
NA
NA

A
NA
NA
NA
NA
NA

Blyth et al."'
Dolichocephaly,
malar hypoplasia

NA
NA
NA
NA
NA
NA

Conclusion

Herein, we report five cases of symptomatic MFS patients with a
mosaic FBNT pathogenic variant, discovered in the course of
molecular diagnosis thanks to NGS capture panel technology. This
uncommon molecular event should not be overlooked and
warrants adapting the parameters used in bioinformatics analyses.
Retrospectively, it is highly probable that the phenomenon was
indeed overlooked and mosaic variations have been missed in
MFS probands. This has important consequences since these
patients are now likely to be offered costly sequencing of their
~ genome that, in fact, is not necessary. Finally, the five present
A cases of symptomatic patients with a mosaic FBNT pathogenic
variant underscores the need to perform complete clinical follow-
up in apparently asymptomatic mosaic parents.

Patient 5
(present study)

Patient 4
(present study)
NA
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