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Multiple myeloma (MM) is characterized by the uncontrolled proliferation of plasma cells.

Despite recent treatment advances, it is still incurable as disease progression is not fully

understood. To investigate MM and its immune environment, we apply single cell RNA and

linked-read whole genome sequencing to profile 29 longitudinal samples at different disease

stages from 14 patients. Here, we collect 17,267 plasma cells and 57,719 immune cells,

discovering patient-specific plasma cell profiles and immune cell expression changes.

Patients with the same genetic alterations tend to have both plasma cells and immune cells

clustered together. By integrating bulk genomics and single cell mapping, we track plasma cell

subpopulations across disease stages and find three patterns: stability (from precancer to

diagnosis), and gain or loss (from diagnosis to relapse). In multiple patients, we detect “B

cell-featured” plasma cell subpopulations that cluster closely with B cells, implicating their

cell of origin. We validate AP-1 complex differential expression (JUN and FOS) in plasma cell

subpopulations using CyTOF-based protein assays, and integrated analysis of single-cell RNA

and CyTOF data reveals AP-1 downstream targets (IL6 and IL1B) potentially leading to

inflammation regulation. Our work represents a longitudinal investigation for tumor and

microenvironment during MM progression and paves the way for expanding treatment

options.
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Multiple myeloma (MM) is a disease characterized by
clonal proliferation of malignant plasma cells, some-
times manifesting clinically with anemia, renal

impairment, and pathologic bone fractures1,2. Over the past three
decades, novel therapies, such as autologous hematopoietic cell
transplantation, proteasome inhibitors, immunomodulatory
drugs, and targeted monoclonal antibodies have led to dramatic
improvements in quality and length of life in patients with
MM3–7. Despite these advances, the disease remains incurable for
most patients as it progresses and becomes resistant to these
treatments.

Several landmark genomic studies have led to a greater
understanding of the molecular pathogenesis of myeloma. These
studies have demonstrated recurrent mutations in KRAS, NRAS,
and TP53 as well as a significant percentage of previously
unrecognized mutations affecting RNA processing and protein
homeostasis8–10. Other investigations have used bulk sequencing
technologies to broadly describe MM clonal heterogeneity and
evolution in terms of shifting subclonal dominance and branch-
ing evolution, often in response to therapeutic selective
pressure7,11,12. There is an impetus to translate the growing
understanding of the genomic landscape of MM into precision
therapies. This is highlighted by the upcoming MyDRUG trial
(NCT02884102) being initiated by the Multiple Myeloma
Research Foundation (MMRF), which will use genomic and
transcriptomic information obtained from the CoMMpass study
(relating clinical outcomes to assessment of individual genetic
profiles) in order to identify targetable genetic alterations and to
evaluate personalized therapies to enrollees.

Single-cell sequencing methods combine novel sequencing
technologies with cell-sorting techniques, allowing for a more
granular understanding of inter- and intra-tumoral genomics13.
Early studies used low-throughput systems to analyze the tumor
microenvironment in solid tumors, examining the genomes and
transcriptomes of malignant cells, as well the immune compart-
ment, confirming the importance of single-cell resolution13–15.
With the advent of high-throughput methods, these technologies
are rapidly expanding toward dissecting all malignancies. Leder-
gor et al.16 recently used single-cell RNA sequencing (scRNA-seq)
to compare plasma cell transcriptomes from patients with newly
diagnosed MM (NDMM), precursor states, and healthy controls;
they highlighted significant inter-individual heterogeneity and
demonstrated variable subclonal divergence leading to new
thoughts about the role of intergenic mutations, epigenetics, and
environmental transcriptional regulation. Jang et al.17 used
scRNA-seq to examine 597 CD138+ plasma cells from 15
patients at different stages of MM, associating clusters of gene
expression with risk of early disease progression and cytogenetic
abnormalities. The aforementioned studies, however, did not
examine MM patients at multiple points during their disease
progression, nor did they evaluate dynamic alterations in non-
malignant components of the tumor microenvironment.

Here, we report our analysis of single-cell patterns in 29
longitudinal samples procured at different disease stages from 14
MM patients. We collectively analyzed 74,386 single cells from
these patients, including 17,267 plasma cells and 57,719 immune
cells. Deeper dissection of plasma cells and B cells identified
subpopulations of plasma cells with various genetic changes and
marker gene expressions, suggesting cells in transitional states. By
single-cell sequencing, we discerned co-evolution maps of tumor
and immune cells between smoldering MM (SMM) and primary
stages and between primary and relapse stages after remission. In
summary, our study represents a longitudinal investigation of
tumor and immune microenvironment during MM disease
development and paves the way for expanding treatment options
for this disease.

Results
Patients, treatments, technologies, and landscape of genomic
alterations in MM. The main data corpus of the study comprises
29 longitudinal samples from 14 individuals with different com-
binations of disease stages, sequencing data types, and treatments
(Fig. 1a, Supplementary Fig. 1a and Supplementary Data 1). All
patients have at least one sample with both single-cell RNA
sequencing (scRNA-seq) and 10x Genomics linked-read whole-
genome sequencing (10xWGS), and nine patients have data from
two or more time points, including a mix of CD138+ sorted and
unsorted bone marrow aspirate samples. Three patients have data
from the SMM and primary stages, and six have both primary
and relapse samples. To ensure samples matched across time
points, we compared germline variant allele fractions (VAFs) at
24 loci (Supplementary Fig. 1b and Supplementary Data 1). In
addition, we performed CyTOF-based profiling and validation
using tumor samples from four additional patients.

MM exhibits a variety of primary and secondary genomic
events (Fig. 1b and Supplementary Figs. 1c and 2d). We analyzed
potential driver events, focusing on known significantly mutated
genes and structural and copy number variation (CNV) (Fig. 1b
and Supplementary Data 1). Three patients had hyperdiploid
(HRD) copy number profiles with little evidence of translocation
events, and in 12 patients, we observed loss of 13q supported by
at least one level of evidence18,19. Most translocations in MM
involve the highly expressed IGH locus on chromosome 14, with t
(11;14) being the most frequent20 and t(4;14) being associated
with adverse prognosis21–25. We have multiple evidence levels of t
(11;14) in three patients and t(4;14) in one patient.

We detected a median of 55 coding mutations from whole-
exome sequencing (WES) and 6702 total mutations from whole-
genome sequencing (WGS) (Supplementary Data 1). The VAF
distribution was consistent across sequencing platforms for key
driver mutations, including TP53, NRAS, KRAS, and DIS3
(refs. 26–28). We observed VAF changes during disease progres-
sion for several mutations in cancer genes, notably TP53 and
NRAS in Patient 27522. Specifically, TP53-R248Q expands from
0.4% to 33.1%, while NRAS-Q61K recedes from 17.1% to 0.6%
during progression from Primary to Relapse-1 (Supplementary
Fig. 1c and Supplementary Data 1).

Tumor and immune populations influenced by genetic
alterations and treatments during disease progression. We
integrated scRNA-seq data from all 14 patients; after quality control
and cell type detection (“Methods”), we retained 74,986 cells from
11 patients, including 17,267 plasma cells and 57,719 non-plasma
cells. The proportions of plasma and immune cell types vary across
patients and disease stages (Fig. 2a). Plasma cells in primary tumor
samples ranged from 0.9% to 84.1%. Other cell types detected
include B cells (3686), macrophages (16,183), monocytes (4249),
CD4+ T cells (18,250), CD8+ cells (8334), natural killer cells
(6282), and dendritic (DC) cells (735) (Fig. 2a and Supplementary
Fig. 3B). Different patients show a range of cell type compositions,
such as complete loss of NK cells in Patient 27522 at the primary
stage, but presence of 22% NK cells in Patient 77570 at the primary
stage. Different stages from the same patient can also have different
compositions as well. For example, in Patient 59114, CD4+ T cells
change from 36% at Primary to 9% at both pre- and post-trans-
plant, and increase back to 35% at Relapse-1.

Mapping somatic mutations to individual scRNA cells has the
potential to identify tumor cells that cannot be discerned purely
by expression data or subclonal populations with different
mutational patterns29. Overall, we mapped 48 mutations to 198
cells from 14 samples (Supplementary Fig. 2b, c, Supplementary
Data 2 and Methods). Variants in key driver genes, such as NRAS
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G13R mutation, were primarily detected in plasma cells (158
cells) relative to non-malignant cell types (39 cells), which are
much more numerous. The reference allele was detected more
readily across cell types (1212 plasma cells and 5278 non-plasma
cells) (Fig. 2b). We also examined mutations co-residing in the

same cells (Supplementary Fig. 2a), finding co-existing mutations
such as NRAS-G13R with YBX1-F74L/ACAT1-S14N/CLPTM1L-
T33S in the 27522 Relapse-2 sample.

Single-cell expression profiles of plasma cells primarily
clustered by each individual patient, with different disease stages

Fig. 1 Samples, next-generation dataset, and genomics landscape. a Sample type, technology, and treatment timeline broken down by patient. Left
portion shows sample technology (10xWGS, scRNA, Bulk RNA, WES, WGS) and sample type (CD138+ sorted vs. unsorted). Right portion shows each
patient’s treatment timeline. Treatment length corresponds to the number of cycles. SMM smoldering multiple myeloma. b Heatmap shows the landscape
of copy number variations (CNV), structural variants (SV), and driver mutations across 14 patients. Copy number amplification/gain, copy number
deletion/loss, SV, and driver mutations are shown in red, blue, purple, and orange, respectively, with colors indicating the number of techniques supporting
the event. Techniques for copy number events are FISH, 10xWGS, regular WGS, WES, and scRNA-seq. Techniques for SV are FISH, 10xWGS, Bulk RNA-
seq, and scRNA-seq. Techniques for driver mutations are 10xWGS, WES, WGS, and Bulk RNA-seq. Number of techniques supporting an event is 0 if the
only technique supporting the event is from scRNA-seq. Plasma cells percentage inferred from scRNA-seq is shown on the top of the heatmap.
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of the same patient showing high similarity (Fig. 2c and
Supplementary Fig. 4a, b), while expression of non-plasma cells
largely cluster by cell types (Supplementary Fig. 3a). Notably, we
observed the highest correlation between SMM and primary
tumors (0.92 for Patient 47491 and 0.91 for Patient 58408), but
lower and more variable correlation between primary and relapse

samples in other patients, which could reflect treatment as a
factor in altering expression profiles of malignant plasma cells.
Expression profiles also partially clustered by genetic alterations;
Patients 77570 and 83942 both harbor CCND1 translocation, and
their plasma cell expression profiles are more similar than others
(Fig. 2c, Supplementary Data 3 and Methods).
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We also integrated samples from multiple patients by disease
stage (Fig. 2d, top row colored by patient, bottom row colored by
cell type). We observed again that plasma cells tended to cluster
by patient, and found that non-plasma cells clustered by cell type
and included a broader mix of patients. We then identified genes
with variable expression across disease stages in multiple patients.
For example, we found CD4+ T cells from primary tumors show
a higher expression of NFKBIA when compared to SMM. In
Patient 27522, NFKBIA expression was lost during remission, but
regained in relapse. NFKBIA is a negative regulator of NF-kB,
meaning cell types with higher NFKBIA might implicate altered
NF-kB activity. In another example, we found higher expression
of CD69 in CD4+ T cells of remission samples, which was
subsequently lost during relapse. Higher expression of IL1R2 was
observed in primary sample monocytes but was then lost in
remission monocytes. In monocytes found in the Relapse-2
sample of Patient 59114, there was a slight increase in IL1R2
expression, and a similar trend was observed for IL1B expression
in the monocytes of Patient 60359 (Supplementary Fig. 3d).
Together these suggest a role of IL1 signaling during myeloma,
which should be further explored.

To evaluate differences of the tumor microenvironment across
patients, we did another integration including an additional four
samples from healthy donors. Relapse-2 of case 27522 was
excluded because it is the only sample with 5′ sequencing within
the cohort. We then extracted cells from each non-tumor
population for subclustering analysis. Within T cells, we
identified naïve, cytotoxic, memory, and regulatory T cells, as
well as NKT and T delta gamma cells based on typical marker
expression30 (Fig. 2e). For NK cells, we also recapitulated three
populations: CXCR4+, CX3CR1+ and CD56+. While we were
not able to find a common trend for how the tumor
microenvironment evolves with disease progression, there are
interesting cases worth noting. For case 56203, we noted the
presence of regulatory T cells (Tregs) from both primary and
relapse time points, with the primary time point having a higher
proportion of Tregs. In case 59114, we observed the Treg
population in the primary time point. This population was
observed at very low levels in remission and first relapse, but later
re-emerged at the second relapse. Meanwhile, for NK popula-
tions, the primary time point is dominated by the CXCR4+
population, which is replaced by CD56+ population during the
pre-transplant stage. After transplant, the CX3CR1+ NK
population becomes dominant, and the immune profile remains
stable until the first relapse. However, in the second relapse stage,
we found the CX3CR1+ population decreases with the re-
emergence of the CD56+ NK population (Fig. 2e). These
observations show a highly dynamic microenvironment profile
over this patient’s disease course. In case 58408, we observed the
high presence of NKT and CD4+ memory T cells in both SMM
and primary stages, suggesting a parallel evolution model within
the microenvironment.

We also observed that cells from some samples exhibited a
consistent outlier pattern across cell types. This phenomenon is

particularly seen for the Primary samples of Patients 77570 and
83942, two cases with t(11;14) translocation. Specifically, NK cells
and especially CD4+ and CD8+ T cells from 77570 and 83942
overlapped, showing similar overall expression profiles and
further suggesting their shared genetic alterations could shape
similar tumor microenvironment (Fig. 2f and Supplementary
Fig. 3b). For example, both cases are highly enriched in
CX3CR1+ NK cells (Fig. 2e); in CD8+ T cells of these three
samples, there is a higher expression of KMT2A and KMT2C, two
genes belonging to the lysine methyltransferase family, suggesting
epigenetic changes in the T cell population (Fig. 2f, g). There is
strong evidence of t(11;14) (CCND1 translocation) in Patients
77570 and 83942, suggesting further study into the role these
events might play in modifying the tumor microenvironment. We
found high expression of CTSS in the macrophages and
monocytes of Patient 77570 (Supplementary Fig. 3c). CTSS
encodes Cathepsin S, a major endoprotease processing the
MHCII complex prior to antigen presentation. It has been shown
in mouse models that CTSS is necessary for the release of IL1B in
macrophages31, and that macrophage-derived cathepsin S
induces chemoresistance in breast cancer32 and invasion in
pancreatic cancer33; this could implicate the complex interaction
within the tumor microenvironment.

Delineating B cell lineage by gene signature analysis and
genetic alteration mapping. To study B cell lineage and the
transition between normal and malignant plasma cells, we inte-
grated B cells and plasma cells from 21 tumor samples with both
cell types along with four healthy donors (“Methods”). After
integration, we found that clusters separated by cell type (Fig. 3a),
with mature B cells from each patient mapping to the same
cluster as B cells from normal samples. There are three small B
cell clusters (Fig. 3a, b), predominantly from healthy donors, that
exhibit high expression of SOX4, VPREB3, and MME, suggesting
a primitive B cell state34,35. Interestingly, we found plasma cells
from healthy donors mixing with some MM plasma cells, sug-
gesting that these particular MM plasma cells exhibit an expres-
sion pattern similar to normal plasma cells. The rest of the MM
plasma cells largely clustered by patient, as shown previously
(Supplementary Fig 4a).

To investigate whether the malignancy of plasma cells is
implicated from the early B cell stages, we also subset only the B
cell populations for analysis. We found cells from some patient
samples along with two normal samples (090617 and 170531) to
be outliers. We found substantial B cell signatures in the plasma
cells—with high expression of typical plasma cell markers, such as
SDC1 and TNFRSF17—for Patients 56203 and 83942, and to a
lesser degree for 77570, as illustrated by expression of B cell
marker MS4A1 (Supplementary Fig. 4c). It has been previously
reported that a subset of patients with high CCND1 expression
exhibits a B cell phenotype (CD2 group)22, consistent with our
observation for 77570 and 83942. Patient 81012, harboring a
CCND1 translocation, had elevated expression of FYN and

Fig. 2 Integration analysis across 14 multiple myeloma patients revealing distinct cancer populations and immune microenvironments during disease
progression. a Bar plots showing cell type fractions for each sample. Colors indicate cell type. b Single-cell variant allele fractions (VAF) for driver mutations.
Each bubble is colored by the cell type with the associated VAF, and total cells supporting the variant are labeled atop each bubble. c Heatmap showing pairwise
correlation of average expression for malignant cells in each sample. Genomic alterations with either FISH evidence or at least another two levels of evidence
shown above. d t-SNE plots showing the integration of samples from multiple patients for a given time point. Clustering of cells from different time points are
colored by patient (top) or by cell type (bottom). The remission group includes one remission sample, one pre-transplant, and one post-transplant. e Proportion
of T/NK cells within the total T/NK cell cohort for each sample. The proportion of T and NK cells within each sample is shown at the bottom as a color bar. f t-
SNE plot showing CD8+ T cells from all the patients where CD8+ T cells are available. Cells from the primary sample of Patients 77570 and 83942 and
Relapse-2 sample of Patient 27522 are colored specifically. g Expression pattern of KMT2A and KMT2C in CD8+ T cells for each sample.
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SETD7 (Supplementary Fig. 4c), consistent with the previously
reported CD1 group22.

We then identified genes differentially expressed across the B
cell lineage, from primitive B cells to mature B cells and
ultimately to normal and malignant plasma cells. We found four
groups of overexpressed genes that defined each stage (Fig. 3b
and Supplementary Data 4). The Primitive B group included
SOX4 and DNTT, along with several less-investigated genes in
terms of lineage, such as HMGB1 and HMGB2, both of which are
involved in DNA double-strand breakage36,37 and might be
associated with VDJ recombination. The Mature B group was
defined by CD20 (MS4A1) and MHC-associated genes. The third
group showed increased expression along the B cell lineage, with
high expression in both normal and malignant plasma cells. As
expected, ER stress response gene XBP1 was overexpressed since

plasma cells produce high levels of secreted proteins38. The final
group showed high gene expression for malignant plasma cells
only. Typical genes for this category include FRZB, CD40, BIRC3,
and ZBTB38. Our discovery of B cell lineage genes is confirmed
by the observation of increased expression of MHCII-related
genes from primitive B cell to mature B cell stage prior to
differentiation to plasma cells. Further, this observation is
validated in our independent CyTOF experiment, where the
CD38-low, CD45-high, mature population exhibits higher levels
of HLA-DQA1 (Supplementary Fig. 5).

We also analyzed single-cell copy number in B and plasma cells
and found that 17 out of 21 samples showed chromosome 13
deletion (Fig. 3c and Supplementary Fig. 2d). Complete loss of
chromosome 13 is associated with more aggressive malignancy
than partial loss, in part because tumor suppressors such as RB1
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reside there. We identified clusters with deeper chromosome 13
deletion in 83942 Primary, 57075 Relapse-1, and 27522 Relapse-2,
indicating possible homozygous deletion in their plasma cells.
Clusters with deeper deletion tended to be patient and
subpopulation specific, while cells mapping to the same location
as normal plasma cells tended to come from multiple patients and
showed greater variability, including some with neutral CNV.
This suggests deep chromosome 13 deletion is an important
feature in determining the overall expression profile of malignant
plasma cells.

Distinct plasma cell subpopulations remain stable during
transition from SMM to primary. We investigated how clonal
structure evolves from SMM to primary diagnosis in three
patients, 37692, 47491, and 58408 (Fig. 1a). Without exception,
we found that plasma cells grouped into two geometrically dis-
tinct t-SNE subclusters (subpopulations) in both disease stages
(Fig. 4a and Supplementary Fig. 6a, b).

To investigate whether primary plasma cell subpopulations
descended from subpopulations present at SMM, we integrated
data from the two disease stages and examined how the respective
cells cluster. In Patient 58408, we found a good mixture for
clusters 1 and 2 from the two stages, which occurred 4.0 years
apart (Fig. 4b). We then compared genetic alterations and the
expression profiles of these clusters (Fig. 4c), finding clear
chromosome 13 loss in cluster 1 of both the SMM and primary
stage, while cluster 2 of both stages exhibited normal copy
number. Gains on chromosomes 5 and 15 show a similar
concordance (Fig. 4c and Supplementary Fig. 6c). This evidence
collectively suggests that Primary subpopulation 1 probably
descended from SMM subpopulation 1, and likewise for
subpopulation 2 at the two time points.

We repeated this analysis in the other two patients (47491 and
37692) (Supplementary Fig. 6d–h) and found the same pattern. In
Patient 47491, cluster 2 from SMM matches cluster 1 from
primary, and the remaining two clusters are associated with each
other. This is illustrated by the slight gain of chromosomes 5 and
15, as well as clusters overlapping in the integrated t-SNE plot
(Supplementary Fig. 6d, e). Interestingly, B cell and plasma cell-
based trajectory analysis also partially agrees with the expression-
based clustering. For example, trajectory state 4 is mainly
dominated by cells assigned to cluster 2 from SMM and cluster
1 from Primary, while the other two subpopulations take the
other branch and exhibit a higher pseudotime value (Supple-
mentary Fig. 9a–c). For Patient 37692, we also found cluster 1
from SMM and cluster 2 from primary overlapping, while the
other two clusters overlapped (Supplementary Fig. 6f).

In Patient 37692, we did not find compelling evidence at the
CNV level, possibly due to limited coverage resulting from a low
number of plasma cells recovered at the SMM stage. A notable
difference regarding Patients 37692 and 58408 is that the
dominant subpopulation (the subcluster with more cells) for
58408 at SMM stage remains dominant at primary stage, while
the minor subpopulation for 47491 and 37692 at SMM becomes
dominant at the primary stage, suggesting differences in the
survival/proliferation of distinct plasma subpopulations. Never-
theless, plasma cell population structures are maintained from
SMM to primary diagnosis, suggesting a stable population
evolution pattern during this transition.

To further understand subpopulation expression profiles, we
investigated expression patterns for Patient 58408. We found
slightly higher expression of canonical B cell markers CD79A and
CD19 in cluster 1 for both time points (Fig. 4c), while expression
of plasma cell markers is similar (Fig. 4c), suggesting plasma cell
subpopulation 1 represents a more ancestral “B cell-like”

phenotype. Given the presence of chromosome 13 deletion in
this cluster, it is possible that malignant transformation of this
clone occurs at the B cell rather than plasma cell stage though this
could also arise through a reprogramming process. We also
conducted an unbiased differential expression analysis and found
high expression of JUN, FOS, FOSB, and JUND in cluster 1
(Fig. 4c). Notably, differential expression for FOS and JUN is also
found within clusters for the other two patients (Supplementary
Fig 6g, h). Expression levels of heat-shock proteins are consistent
between the two clusters, though, suggesting such differential
expression is not due to stress response (Supplementary Fig 6a).
JUN and FOS encode proteins JUN and FOS which dimerize to
assemble the AP-1 transcription factor. AP-1 has been implicated
in a variety of biological processes, including cell proliferation,
differentiation, and apoptosis39.

We found chromosome 13 deletion in cluster 1 in Patient
58408, suggesting a more malignant phenotype. However, we also
detected high levels of JUN and FOS in normal plasma cells,
similar to what we found in this cluster. Based on these
observations, it is difficult to determine whether high AP-1
activity could be an indicator of malignancy, especially given that
the oncogenic role of the AP-1 pathway is very context-
dependent39.

Dynamic gain and loss of plasma cell subpopulations observed
from primary to relapse. We followed plasma cell populations
from the primary diagnosis to relapse and noticed the emergence
of distinct plasma cell subpopulations. In each of six patients with
primary and relapse time points (27522, 56203, 57075, 59114,
60359, and 81012), we observed two or more t-SNE subclusters of
plasma cells, which arose in the context of treatment-related
selective pressure (Fig. 1a). Plasma cell subclusters tended to be
more similar to (i.e. clustered more closely to) each other than
other cell types. The proportion of plasma cells present at the
primary and relapse stages varied across patients, with some
tumors exhibiting a higher proportion at the primary stage and
vice versa; this could reflect sampling variability, patient-to-
patient differences in disease progression and treatment efficacies,
and/or the snapshot nature of data collection (Figs. 1a and 2a).
Next, using single-cell gene expression and copy number changes,
we determined the relationship between plasma cell subpopula-
tions at primary and relapse stages. Within a particular patient,
subclusters with similar expression and copy number patterns at
different time points likely represent the same subpopulation of
cells observed over the course of tumor progression. Three
patients (81012, 56203, and 27522) illustrate this dynamic
population shift in detail.

Patient 81012 displayed variable plasma cell subpopulation
dynamics over the course of progressive disease (Fig. 4d–f). At the
primary stage, we observed two plasma cell subpopulations
(named P.1 and P.2). Later, at relapse, we observed four plasma
cell subpopulations (R.1–R.4). In this case, two new plasma cell
subpopulations emerged at relapse which had not been observed
at the primary stage. Integrated t-SNE mapping showed that the
overall expression profiles of P.1 and R.1 match, that P.2 and R.2
match, and that R.3 and R.4 are distinct new clusters (Fig. 4e).
Trajectory-based analysis also suggests R.3 and R.4 are mainly
present at the end point of state 4 and state 5, respectively
(Supplementary Fig. 9d–f). Looking more closely at expression
markers, P.1 and R.1 showed elevated expression levels of B cell
marker CD79A. P.1, R.1, and R.3 had similar levels of plasma cell
markers (SDC1, TNFRSF17, and SLAMF7). For FOS, one
component within the AP-1 complex, we found the lowest
expression in P.2 and R.2; P.1, R.1, and R.3 exhibit higher
expression, while R.4 shows highest expression. We then took a
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Fig. 4 Patterns of plasma cell subpopulation shift from SMM to Primary (58408) and from Primary to Relapse (81012). a Plasma cell t-SNE subclusters
for Patient 58408 at SMM and Primary time points. b Plasma cell subclusters identified in amapped to the integrated t-SNE of all cells from Patient 58048
SMM and Primary time points. Bottom left: possible explanation for plasma cell subpopulation shift from SMM to Primary. c Copy number and expression
patterns for plasma cells from different time point subclusters and plasma cells from healthy donors. The first row shows copy number changes and
expression of genes associated with genetic alterations detected in Patient 58408. The second and third rows show the expression of B cell markers and
plasma cell markers. The last two rows show differentially expressed genes found between the clusters. d–f Similar illustrations as a–c except for Patient
81012, who progressed from Primary to Relapse-1.
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closer look at R.3 and R.4, since the two populations both exhibit
high levels of FOS but are newly derived based on mapping in
tSNE plot, which suggests the alteration in expression profile
apart from FOS upregulation. We found high expression of
MKI67 and TOP2A, two proliferative markers for R.3 (Supple-
mentary Fig. 7d). Pathway analysis for the genes specifically
upregulated in R.3 points to cell cycle regulation (Supplementary
Fig. 7e), which is also consistent with the upregulated proliferative
marker expression. This population also exhibits the highest
CKS1B expression, the overexpression of which promotes
myeloma cell growth and survival40 and is associated with a
poorer prognosis41. CKS1B overexpression could be caused by
gain at chromosome 1q21 region, but this was not observed in
our analysis, suggesting the change is independent of chromo-
some alteration. R.4 has the highest expression for MEF2C, a
transcriptional factor typically regarded as playing a role in
muscle cell differentiation42. Recently, ATAC-seq profiling
suggested MEF2 family is preferentially enriched in the open
chromatin regions in myeloma cells and MEF2C inhibition
resulted in reduced myeloma cell growth and survival43. At the
copy number level, R.4 exhibits chromosome 19 loss, a feature
absent in all the other subpopulations (Fig. 4f). Together, the
evidence suggests that the newly arisen R.3 and R.4 both exhibit
enhanced growth and survival, though through different
mechanisms of regulation.

Patient 56203 progressed from the primary stage, with three
plasma cell subpopulations (P.1, P.2, and P.3), to the relapse
stage, with two plasma cell subpopulations (R.1 and R.2)
(Supplementary Fig. 8a). P.1, R.1, and R.2 showed similar levels
of chromosome 13 loss, while R.1 and R.2 demonstrated
chromosome 17 loss, which distinguished the relapse clusters
from the primary clusters. Following drug therapy and ASCT,
primary cluster P.1 showed similarity to the two subpopulations
present at relapse, while primary clusters P.2 and P.3 appear to
have been lost (Supplementary Fig. 8a).

However, tumor subpopulation relationships during disease
progression can be more complex than Patients 81012 and 56203
illustrated, as seen in the four time points of Patient 27522
(Fig. 5). The primary time point plasma cells comprise four
distinct subpopulations (P.1–P.4) (Fig. 5a). Subpopulations P.1,
P.2, and P.3 each show partial loss of chromosome 13, while P4
does not (Fig. 5d). Projection of P.1–P.4 from Patient 27522 onto
the integrated cross-sample B cell and plasma cell t-SNE map
shows two groupings of P.4, both of which map distantly from P.1
to P.3, largely confirming the original sample-level clustering as
well as indicating a high level of population complexity (Figs. 3a
and 5b).

We then looked at subpopulations from Remission (RM),
Relapse-1 (RL1), and Relapse-2 (RL2) separately from Primary.
At Relapse-2, we observed three subpopulations of plasma cells
(RL2.1, RL2.2, and RL2.3), with chromosome 13 and chromo-
some 16 loss in RL2.1, partial loss of chromosome 13 in RL2.3,
and t(4;14) translocation in both RL2.1 and RL2.3. RL2.2
remained copy number neutral at chromosome 13 and chromo-
some 16 (Fig. 5d). Further, we looked for somatic mutations
detected from WES data in our scRNA-seq-seq data and noted
the occurrence of reference (blue dots) and mutant (red dots)
alleles in cells with read coverage. Mutant alleles were detected
exclusively in RL2.1, but never in RL2.2 or RL2.3 (Fig. 5e).
Somatic events observed in these cells included NRAS G13R
mutation and t(4;14) translocation (inferred from FGFR3 and
WHSC1 upregulation) (Fig. 5d and Supplementary Fig. 8b). All
three clusters expressed high levels of standard plasma cell
markers, such as SDC1, SLAMF7 (CS1), and TNFRSF17 (BCMA),
while FGFR3 and WHSC1 were primarily expressed in the
malignant (RL2.1) and the “transitional” malignant (RL2.3)

populations. CD27, a marker associated with normal plasma
cells44, CD79A, a member of the B cell antigen receptor complex,
and CD19, a marker for B cell development were exclusively
detected in RL2.2, supporting the normal “B cell-like” classifica-
tion (Fig. 5d and Supplementary Fig. 7c). RL2.2 is composed of
cells with either high expression of IgA or IgG, while the patient
exhibited IgA in isotype identification, which suggests some
plasma cells from this subpopulation are normal. These data
represent the confirmed observation that combining mutation
and CNV/SV mapping and single-cell expression data enables
precise identification of cell subpopulations in MM that are either
rare or undergoing transitional states, with important clinical
implications.

In summary, Relapse-2 comprises three distinct subpopula-
tions, one malignant (RL2.1, with somatic mutations and deep
chromosome 13 deletion), one “B cell-like” (RL2.2, with strong B
cell marker expression), and one “transitional” (RL2.3, without
somatic mutations detected but with shallow chromosome 13
deletion). We then traced the origin of these three subpopulations
by integrating Relapse-2 with the Remission and Relapse-1 time
points.

Based on an integration of Remission (RM), Relapse-1 (RL1),
and Relapse-2 (RL2), we found four groups of cells, which are
colored by their time point-specific clusters (Group 1: mostly
RL2.1; 2: mostly RL2.2; 3: mostly RL2.3; 4: exclusively RL1.1)
(Fig. 5c). Some cells from both Remission and Relapse-1 mapped
with RL2.2 (Group 2); it is likely that part of these cells are non-
malignant plasma cells based on the expression of IgA and IgG.
Likewise, other groups of cells from Remission and Relapse-1
mapped with RL2.3 (Group 3). There was one major subpopula-
tion of cells from RL1 that mapped on its own without any clear
connection to the previous or later time points (Group 4). Finally,
cells present at Remission mapped with the malignant sub-
population RL2.1 (Group 1). This subpopulation was not seen at
Relapse-1, potentially due to low cell count or sampling
variability. According to B cell marker expression (CD79A,
CD19, CD27), the cell population at Remission shows a “B cell-
like” pattern, but the co-clustering of Remission cells to multiple
relapse populations indicates there is still some malignancy
lurking at Remission. Taken together, one interpretation is there
were cells present at remission that evaded treatment and
survived to seed the relapse. Expression and copy number
changes seen in Relapse-1 split according to their grouping with
Relapse-2 and Remission on the integrated map, justifying the use
of three clusters for downstream analysis although sample-level
clustering did not resolve such clusters (Fig. 5f).

Haplotype-based mutation analysis increases resolution of
clonal evolution subclustering. We examined how cell type and
tumor clonal composition change over time and focus here on
Patients 58408 and 27522 to illustrate such evolution. In Patient
58408, the population share of CD4+ and CD8+ T cells dropped
from being the two most observed cell types at SMM, with
monocytes later emerging as the most prevalent cell type at the
primary stage (Fig. 2a). Within the plasma cells, we previously
described a relatively stable transition of two subpopulations from
SMM to Primary (Fig. 4a–c), with both hyperdiploidy (HRD) and
chromosome 13 deletion detected at the SMM and primary dis-
ease stages. Using a mutation VAF-based approach, we observed
little genomic change over the 4.0 years separating SMM and
Primary (Fig. 6a, b and Supplementary Data 5). We detected
mutated driver genes (HIST1H1E-S172T and NOTCH1-D2201V)
in the main subclone at both time points.

In Patient 27522, we observed NK cells only at the relapse
stages (Fig. 2a), and the population share of CD4+ T cells

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22804-x ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:2559 | https://doi.org/10.1038/s41467-021-22804-x | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Fig. 5 Detailed analysis of plasma cell subpopulation shift for Patient 27522. a t-SNE mapping of plasma cell subclusters for Patient 27522 at Primary,
Remission, Relapse-1, and Relapse-2 disease stages. Colors indicate different subclusters within each time point. b Plasma cell subclusters identified in
amapped to the integrated t-SNE of b and plasma cells from all samples plus healthy donors (as in Fig. 3a). c Plasma cell subclusters identified in amapped
to the integrated t-SNE of all cells from Patient 27522 Remission, Relapse-1, and Relapse-2 disease stages. d Subcluster level copy number changes and
expression of malignant cell markers, B cell markers, plasma cell markers, and differentially expressed genes. e Somatic mutations mapped onto Relapse-2
t-SNE (blue, reference allele only; red, variant allele detected; grey, no coverage). f Possible explanation for plasma cell subpopulation shift from Primary to
Relapse-2.
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expanded following remission. The overall proportion of plasma
cells observed declined over time with treatment from being a
prominent cell type at the Primary stage to later being only a
minor cell type. Patient 27522 had one primary and two relapse
samples with t(4;14) and del(13q). NRAS- G13, NRAS-Q61, and
DIS3-T773 were secondary mutations in the primary sample and
TP53-R248 was detected at relapse (Fig. 6c, d and Supplementary
Data 5). The TP53 subclone showed higher VAF at relapse
compared to other subclones, implying relevance to subclonal
expansion. As previously shown with plasma cell subpopulation
analysis, we detected somatic mutations only in Relapse-2 cluster
1 (RL2.1, green) (Fig. 5e).

The primary sample of Patient 27522 displayed two NRAS
hotspot mutations at G13 (chr1:114716124, C>G) and Q61
(chr1:114713909, A>T). We noted that the Q61 mutation was
nearly lost (VAF) at relapse and wanted to know if the Q61
mutation occurred in a secondary subclone of the G13 subclone
or if G13 and Q61 occurred independently. We utilized
10xWGS45 to address this question. Compared to previous tumor
clonality methods which rely mainly on somatic VAFs46–50,

linked reads have the advantage of placing variants in their
haplotype context and providing direct observations of the
relationship between proximal somatic mutations at distances not
captured by short reads alone. Surrounding germline variation
showed that these two mutations occurred on the same
haplotype, but they did not co-occur in linked reads covering
both positions (n= 4), leading us to interpret that they arose
independently in distinct subclones, not sequentially in the same
subclone (Fig. 6e).

Targeted protein assay confirms differential AP-1 expression
populations in plasma cells. To better understand how hetero-
geneity within a single tumor may be reflected in the functional
roles of plasma cell subpopulations, we sought to identify com-
mon patterns of pathway enrichment across the subpopulations
of multiple tumors (“Methods”). We first divided the plasma cell
fractions into a total of 115 discrete subpopulations based on
differential gene expression. We then performed pathway
enrichment analysis on the differentially expressed genes (DEGs)

Fig. 6 Linked-read DNA sequencing maps somatic mutations to germline haplotypes and clonal evolution maps. a Variant allele frequency clustering of
subclonal populations from Patient 58408 SMM and Primary samples. b Somatic mutation VAF-based clonality models for Patient 58408. c Variant allele
frequency clustering of subclonal populations from Patient 27522 Primary, Relapse-1, and Relapse-2 samples. d Somatic mutation VAF and haplotype-
based clonality model for Patient 27522. e Barcode analysis of two NRAS somatic mutations showing both mutations occurred on Haplotype 2 did not co-
occur, suggesting an independent subclonal relationship. Each set of linked reads represents a particular pattern of support for the two somatic NRAS
mutations. The number of observed barcodes refers to total barcodes demonstrating the same pattern of NRAS somatic mutations.
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of each subpopulation. Correlation analysis of enrichment results
resolved three groups with highly similar enrichment profiles
(Supplementary Fig. 10a). Group 1 subpopulations share
enrichment for pathways related to translation regulation,
including nonsense-mediated mRNA decay, and protein targeting
to membrane. These findings are consistent with previous work
showing the relevance of active translation27 to myeloma
pathogenesis. Group 2 is enriched in various metabolic pathways
as well as cellular stress response. These pathways may signify
differential interaction with the immune microenvironment.
Group 3 shares enrichment of cell cycling and proliferation
pathways, which may represent highly proliferative subgroups of
their respective tumors. Expression of proliferative markers such
as MKI67 and TOP2A are upregulated in the group as well
(Supplementary Fig. 10b).

In addition to database-driven pathway enrichment, we
identified pathways in which DEGs are known key players.
Strikingly, out of 13 cases in which enough plasma cells were
detected in each sample to perform subpopulation analysis, we
observed 7 cases with tumor subpopulations showing differen-
tially expressed members of the heterodimeric AP-1 transcription
factor complex, which we call AP-1-high subpopulations. High
expression of AP-1 was not solely associated with a specific
chromosome alteration event, but the AP-1-high subpopulation
was usually enriched for CNV events. There is also a positive
correlation between the expression of single cell and bulk RNA-
seq expression for FOS (r= 0.43) and JUN (r= 0.56) across
samples (Supplementary Fig. 11a). We then evaluated the
expression of FOS and JUN across subclusters and across
samples, finding that at least one plasma cell subpopulation
within each sample exhibits high expression of FOS or JUN in all
cases, regardless of AP-1 expression differences or the number of
subclusters within that sample (Fig. 7a). The preservation of the
AP-1-high population across samples suggests this population
potentially plays a role in the pathogenesis of myeloma.

Given that external stress could potentially affect AP-1
component expression, we also checked the expression of heat-
shock proteins. Case 58408 exemplified the consistent expression
patterns of plasma cell subclusters and normal plasma cells seen
across patients (Supplementary Fig. 7a and “Methods”). Addi-
tionally, we checked single-cell-related QC parameters. Although
AP-1-high populations exhibit a higher number of expressed
genes, number of unique molecule identifiers, and percentage of
mitochondria (Supplementary Fig. 7b), when cells are stratified
based on the number of expressed genes, the QC-related AP-1
differential expression pattern is unique to plasma cells
(Supplementary Fig. 7c and “Methods”), suggesting the QC
parameter differences do not evidently contribute to the observed
differential expression of AP-1 components.

Given the frequently observed AP-1 differences within plasma
cell populations, we further investigated whether and how
differences in the AP-1 pathway could lead to biological
differences in plasma cell subpopulations. We performed CyTOF
experiments with four additional MM patient samples, three of
which had good cell viability. We designed two target panels to
separate relevant cell types, quantify signaling pathways (e.g.
JAK–STAT, NK-kB), and investigate interleukin activity51,52. As
expected, we found distinct clusters with differential expression of
JUN and FOS (Supplementary Fig. 11b). In fact, a closer look at
sample 81,198 indicates the two populations with differential AP-
1 expression are evident after t-SNE dimension reduction using
only cell surface markers (Fig. 7b).

We then combined results from scRNA-seq and CyTOF
experiments for a deeper analysis of AP-1 targets (Fig. 7c). We
noticed the expression of H3F3B and ZBTB20, which are
downstream targets of FOS based on ENCODE experiment

ENCSR000EYZ53,54, are concordant with AP-1 expression within
plasma cell populations. H3F3B encodes H3.3, a variant of
histone H3. Ectopic overexpression of H3.3 is sufficient to induce
senescence-associated heterochromatin foci (SAHF), an impor-
tant marker for cellular senescence55. ZBTB20 reportedly plays a
role in B cell terminal differentiation; its expression in plasma cell
lines induces cell survival and blocks cell cycle progression56.
Apart from this, we also found that MCL1, a marker for survival,
and CDKN1A, a cell cycle inhibitor, are slightly upregulated in the
AP-1-high population, suggesting a potential association between
AP-1-high expression and cell survival. Enhanced survival,
decreased cell proliferation, as well as the presence of SAHF, all
suggest a senescent phenotype for the AP-1 upregulated
population. We also found higher expression of IL6ST in the
AP-1-high population. IL6ST is a signal transducer shared by IL-
6 family cytokine members and is implicated in the progression of
various cancer types57,58. IL-6, one of the ligands for IL6ST, and
IL1B were upregulated in Patients 81198 and 31570. Given that
both samples have undergone prior treatment, it is possible that
different populations of plasma cells respond to treatment
differently by producing differential amounts of cytokines,
especially those involved in senescent-associated-secretory profile.

It should be noted that, while FOS and JUN are co-
dysregulated for a specific cluster in most cases, there are
situations where only one of the molecules is dysregulated while
the other one is much less obvious. For example, in sample 83942,
where no AP-1 differences among clusters are observed, we found
all the clusters exhibit low expression of FOS while JUN
expression is high. A more interesting case is for sample 81198,
where the AP-1-high population exhibits higher upregulation of
JUN compared to FOS. In this sample, the AP-1-high population
exhibits downregulated CD138 expression and upregulated IL32
expression compared to AP-1-low population. Hypoxia could
downregulate CD138 expression in myeloma cells59 and induce
IL-32 in myeloma cells60, suggesting AP-1 high population has a
more obvious hypoxic signature. Meanwhile, JUN has been
shown to stabilize HIF1A in a transcriptionally independent
manner61. It is likely that JUN stabilizes HIF1A, promoting the
expression of a series of downstream targets, including IL-32, a
phenomenon not expected for a cluster where only FOS is high.
In summary, different components within the AP-1 complex
could play different roles in shaping the downstream effector,
contributing to diverse phenotypes of plasma cells.

Discussion
In this study, we applied a combination of conventional and
single-cell technologies to systematically study MM in 14 patients
with different treatments at multiple stages of disease progression.
We performed scRNA sequencing for ~75K single cells, including
both malignant and non-malignant cells, to better understand the
transcriptome profiles of these tumors and their interactions with
the microenvironment. Varying compositions of cell types over
the disease course (e.g. fluctuation of numbers of CD4+ T cell
numbers in Patient 59114 discussed above) support the view that
the tumor microenvironment is fluid and plays an active role in
inter-tumor heterogeneity, as well as disease progression. Patients
with the same genetic alterations tended to have both plasma cells
and immune cells clustered together. For example, in our two
patients with t(11;14), we noted distinct T cell clusters in the
tumor microenvironment as well as upregulation of lysine
methyltransferase genes KMT2A and KMT2C in CD8+ T cells.
After integrating the data from inferred plasma cells and B cells
from healthy donors, we were able to catalog a lineage from
primitive B cells to mature B cells and ultimately to normal or
malignant plasma cells. Many genes related to this lineage were
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identified, including known genes like XBP1, as well as additional
genes requiring further characterization. The overall result indi-
cates that single-cell transcriptome profiling of B cells and plasma
cells could be used to trace the origin of MM, and we identified
some patients with plasma cells that exhibit a B cell signature.

We investigated how plasma cell population structure evolves
from SMM to primary diagnosis to relapse by integrating somatic
alterations mapping, cell lineage marker gene expression, and
differential gene expression. Although previous studies have
characterized the stability of the SMM to primary transition, we
traced specific plasma cell subpopulations across disease stages to
illustrate this process and extended the analysis to highlight
dynamic changes from diagnosis to relapse. Our analysis
delineates the plasma cell subpopulation structure during MM
disease progression. By integrating scRNA-seq and genomic
alterations, we built plasma cell evolution models representing
transitions between disease stages and highlighted co-evolution
with the tumor microenvironment. In contrast to malignant cells,
non-malignant cells clustered by cell type, independent of their
tumor of origin and disease stage. However, detailed character-
ization of individual immune cell types showed some patients
with distinct expression profiles, suggesting a potential interplay
between the genomic landscape and an altered
microenvironment.

We identified distinct subpopulations of plasma cells in most
samples and observed three major patterns of subpopulation shift
during disease progression: stable, gain, and loss. Stable pattern is
seen in all three patients from SMM to primary, while gain and
loss of subpopulations are found from primary to relapse. We
extend conventional mutation VAF-based tumor evolution
inference models by directly observing subclonal relationships
using single-cell and single-molecule mutation mapping. In the
future, mutation mapping should provide more useful informa-
tion as scRNA-seq technology keeps evolving. We believe muta-
tion and CNV mapping carried out in conjunction with gene
expression clustering strategies may be generalizable to other
cancer types to trace the origins of malignant cells.

Plasma cells from different populations within the same sample
usually exhibit differential expression for components within the
AP-1 complex, e.g., JUN and FOS. Tracing the co-differentially
expressed genes, together with ChIP-seq data analysis, revealed
potential downstream targets which contribute to enhanced sur-
vival but decreased proliferation of the AP-1-high population.
CyTOF experimentation revealed a similar pattern in FOS and
JUN expression. The presence of additional DEGs from the
CyTOF panel, such as IL6 and IL1B, potentially suggests a greater
inflammatory response happening in the AP-1 high population.

Future study designs will enable us to compare greater num-
bers of patients within the same treatment regimen to better
understand effects of treatments on tumor and immune cells. In
addition to single-cell transcriptomics, integrating single-cell
proteomics will bolster our ability to comprehensively investigate
disease progression and treatment response in MM.

Methods
Patient cohort. Fourteen patients with MM, 10 male and 4 female Caucasians,
were included in the analysis. All patients were diagnosed and treated at
Washington University and provided consent in the written form for the usage of
their samples for research purposes. The median age at diagnosis was 63 (range
46–69). Eight patients had IgG isotype, 4 being kappa light chain and 4 being
lambda light chain, 2 had IgA kappa isotype, 2 had light chain only disease (1
kappa and 1 lambda), and 2 were non-secretory. Five were International Staging
System Stage 1, two were Stage 2, three were stage 3, and four were unreported. The
median plasma cell burden by flow cytometry in bone marrow at diagnosis was
24% (range 4–63). By standard fluorescence in situ hybridization (FISH), one
patient had t(4;14), three had t(11;14), and two showed del(17p). Four additional
patients were included for validation. Two patients have IgG isotype, one being
kappa light chain and one being lambda light chain. One has IgA lambda isotype.

One patient has light chain disease (lambda). A more detailed description for
patient clinical information could be referred from Supplementary Data 1.

Processing. Research bone marrow aspirate samples were collected at the time of
the diagnostic procedure. The protocol has been approved by the Washington
University Institutional Review Board. All relevant ethical regulations, including
obtaining informed consent from all participants, were followed. Bone marrow
mononuclear cells (BMMCs) were isolated using Ficoll-Paque. BMMCs were
cryopreserved in a 1:10 mixture of dimethyl sulfoxide and fetal bovine serum.
Upon thawing, whole BMMCs were used for scRNA-seq (unless otherwise speci-
fied), 10xWGS, and RNA-seq, as described below. Plasma cells were separated from
a sub-aliquot by positive selection using CD138-coated magnetic beads in an
autoMACs system (Miltenyi Biotec, CA) and used for WGS, IDT exome, and
RNA-seq, as described below. Skin punch biopsies were performed at the time of
the diagnostic bone marrow collection to serve as normal controls for WGS.
Although many studies use peripheral blood mononuclear cells (PBMCs) as a
control, abnormal B cells and circulating tumor cells frequently contaminate the
peripheral blood of patients with MM. Therefore, using PBMCs may lead to
omission of genetic events potentially important in disease pathogenesis.

Single-cell library prep and sequencing. Utilizing the 10x Genomics Chromium
Single Cell 3′ v2 or 5′ Library Kit and Chromium instrument, approximately 17,500
cells were partitioned into nanoliter droplets to achieve single-cell resolution for a
maximum of 10,000 individual cells per sample. The resulting cDNA was tagged
with a common 16nt cell barcode and 10nt Unique Molecular Identifier during the
RT reaction. Full-length cDNA from poly-A mRNA transcripts was enzymatically
fragmented and size selected to optimize the cDNA amplicon size (approximately
400 bp) for library construction (10x Genomics). The concentration of the 10x
single-cell library was accurately determined through qPCR (Kapa Biosystems) to
produce cluster counts appropriate for the HiSeq4000 or NovaSeq6000 platform
(Illumina). In all, 26 × 98 bp (3′ v2 libraries) or 2 × 150 bp (5′ libraries) sequence
data were generated targeting between 25 and 50K read pairs/cell, which provided
digital gene expression profiles for each individual cell. For all the samples included
in this study, only Patient 27522 Relapse-2 was processed with the 5′ Library Kit.

10xWGS. The normal skin samples were processed with a standard Qiagen DNA
isolation kit resulting in 10–50 kb DNA fragments. In all, 250K tumor cells were
processed with the MagAttract HMW DNA extraction kit (Qiagen) resulting in
100–150 kb DNA fragments. Six hundred to 800 ng of normal DNA was size
selected on the Blue Pippin utilizing the 0.75% Agarose Dye-Free Cassette to
attempt to remove low molecular weight DNA fragments. The size selection
parameters were set to capture 30,000–80,000 bps DNA fragments (Sage Science).
The resulting size selected DNA from the normal samples and the HMW DNA
from the tumor cells were diluted to 1 ng/µL prior to the v2 Chromium Genome
Library prep (10x Genomics). Approximately 10–15 DNA molecules were
encapsulated into nanoliter droplets. DNA molecules within each droplet were
tagged with a 16nt 10x barcode and 6nt unique molecular identifier during an
isothermal incubation. The resulting barcoded fragments were converted into a
sequence ready Illumina library with an average insert size of 500 bp. The con-
centration of each 10xWGS library was accurately determined through qPCR
(Kapa Biosystems) to produce cluster counts appropriate for the HiSeqX/Nova-
Seq6000 platform (Illumina). In all, 2 × 150 sequence data were generated targeting
30× (normal) and 60× (tumor) coverage providing linked reads across the length of
individual DNA molecules.

Standard WGS. Manual libraries were constructed with 50–2000 ng of genomic
DNA utilizing the Lotus Library Prep Kit (IDT Technologies) targeting 350 bp
inserts. Strand-specific molecular indexing is a feature associated with this library
method. The molecular indexes are fixed sequences that make up the first 8 bases of
read 1 and read 2 insert reads. The concentration of each library was accurately
determined through qPCR (Kapa Biosystems). In all, 2 × 150 paired end sequence
data generated ~100 Gb per normal and ~200 Gb per tumor sample that lead to
~30× (normal) and 60× (tumor) haploid coverage.

IDT exome. A 700 ng aliquot of the existing WGS library was used for the exome
capture. Five libraries were pooled at an equimolar ratio yielding a ~3.5 µg library
pool prior to the hybrid capture. The library pools were hybridized with the xGen
Exome Research Panel v1.0 reagent (IDT Technologies) that spans a 39 Mb target
region (19,396 genes) of the human genome. The concentration of each captured
library pool was accurately determined through qPCR (Kapa Biosystems) to pro-
duce cluster counts appropriate for the NovaSeq6000 platform (Illumina). In all,
2 × 15 bp sequence data were generated ~50 Gb per library targeting a mean depth
of coverage of 500×.

RNA-seq. Total RNA was isolated from ~700K cells utilizing the AllPrep DNA
extraction kit (Qiagen). ERCC RNA Spike-In Mix 1 was added to 100–250 ng of
total RNA as outlined by the manufacturer (Ambion, Life Technologies). The
ERCC control mix is a set of external RNA controls that enable performance
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assessment for gene expression experiments. The cDNA library was prepared with
the TruSeq Stranded Total RNA Sample Prep with Ribo-Zero Gold kit (Illumina).
The concentration of each cDNA library was determined through qPCR (Kapa
Biosystems). In all, 2 × 150 reads were generated on the HiSeq4000/NovaSeq6000
instrument (Illumina) generating ~83 million read pairs/sample.

Dataset description. The data corpus is comprised of 14 patients having various
combinations of sample types, time points, data types, and treatment modalities
(Fig. 1a). Most patients have 10xWGS data for skin normal and pre-treatment
state, with several having relapse data, as well. Patients 59114 and 81012 underwent
relatively long treatment periods before relapse (Supplementary Data 1). Treatment
ranges from none for seven patients (three of which have an SMM sample) to
multi-cycle regimens of several two-drug and three-drug cocktails, for example in
Patient 27522. There are nine patients having at least one time point with both
WES and WGS data. Some patients, such as 27522 also have regular whole-exome
and whole-genome shotgun data at several time points. All WES and WGS data are
generated with CD138+ sorted population (tumor cells) within bone marrows.
Two patients have data from a first and a second relapse (Relapse-1 and Relapse-2),
with Patient 59114 having an additional complement of pre-/post-transplant
samplings. To ensure samples matched across time points, we compared germline
VAFs at 24 loci (Supplementary Fig. 1b and Supplementary Data 1).

Somatic mutation detection. Somatic variants were called by our Somatic-
Wrapper pipeline, which includes four established bioinformatic tools, namely
Strelka, Mutect, VarScan2 (2.3.83), and Pindel (0.2.54)62–65. We retained SNVs and
INDELs using the following strategy: keep SNVs called by any two callers among
Mutect, VarScan, and Strelka and INDELs called by any two callers among
VarScan, Strelka, and Pindel. For these merged SNVs and INDELs, we applied
coverage cutoffs of 14X and 8X for tumor and normal, respectively. We also filtered
SNVs and INDELs with a high-pass VAF of 0.05 in tumor and a low-pass VAF of
0.02 in normal. The SomaticWrapper pipeline is freely available from GitHub at
https://github.com/ding-lab/somaticwrapper.

Copy number and structural variation detection. We used BIC-seq2 (ref. 66), a
read-depth-based CNV calling algorithm to detect somatic CNVs using standard
WGS tumor samples and paired skin 10xWGS data (human genome GRCh38
reference). The procedure involves (1) retrieving all uniquely mapped reads from
the tumor and paired skin BAM files, (2) removing biases by normalization
(NBICseq-norm_v0.2.4), (3) detecting CNV based on normalized data (NBICseq-
seg_v0.7.2) with BIC-seq2 parameters set as–lambda=90–detail–noscale–control.
In WES data, we used CNVkit (v0.9.4)67 to compare our tumor samples to a
background panel of normals. For scRNA-seq data, we used inferCNV (v0.8.2)15.

Since we analyzed copy number alteration data from multiple different
platforms and varying tumor purity levels, we used five ordered categories to
describe copy number changes: deletion < loss < neutral < gain < amplification. The
CNV category cutoffs (log2 copy number ratio) were −1, −0.25, 0.2, and 0.7, based
on BIC-seq2 and CNVkit documentation. For scRNA based copy number, we
transformed the inferCNV results to the log2 scale and set cutoffs at −1, −0.4, 0.3,
and 0.7.

Somatic structural variants (SVs) were detected by Manta68 using tumor/
normal sample pairs of standard WGS and paired skin 10xWGS. To filter false-
positive SVs, we removed events with somatic score <30 and junction somatic score
<30. We used bulk RNA and single-cell RNA data to confirm if translocation
events showed overexpression compared with non-translocation samples. We
collected translocation and gene expression results relevant to MM based on
literature (Supplementary Data 7).

Analysis of 10xWGS data. The proprietary Long Ranger system (v2.2.2) from 10x
Genomics was used for preliminary analysis, including demultiplexing cDNA
libraries into FASTQ files and aligning reads to the human genome reference
GRCh38 (GRCh38-2.1.0). To call variants using Long Ranger, we used–vcmode
with GATK (version 3.7.0-gcfedb67)69. Long Ranger phasing quality metrics were
extracted from the summary output file associated with each sample. For haplotype
analysis of somatic variants, we relied on phase information of germline variation
from surrounding loci on the same set of linked reads.

Ancestry analysis. We used a reference panel of genotypes and clustering based
on principal components to identify the likely ancestry of our 14 MM individuals,
with an additional 856 Multiple Myeloma Research Foundation (MMRF) cases
(including 31 multiple time point cases). We randomly selected 10,000 coding
SNPs from minor allele frequency >0.02 from the 1000 Genomes Project70. From
that set of loci, we measured the depth and allele counts of each sample’s bam using
the tool bam-readcount (version 0.8.0). Genotypes were called using these criteria:
0/0 if reference count ≥8 and alternate count <4; 0/1 if reference count ≥4 and
alternate count ≥4; 1/1 if reference count <4 and alternate count ≥8; and ./.
(missing) otherwise. After filtering markers with vacancies >5% in our MM sam-
ples, 6349 markers were left for analysis. We performed principal component
analysis (PCA) on the 1000 Genomes samples to identify the top 20 principal
components. We then projected our MM samples onto the 20-dimensional space

representing the 1000 Genomes data. To predict the likely ancestry of our MM
samples, we built a random forest classifier using these 20 principal components,
which has known ancestry information for each sample. Using an 80/20% split
between training and test data, our classifier had 99.6% test accuracy (https://
github.com/ding-lab/ancestry). We then predicted the likely ancestry of our MM
samples based on this classifier.

Analysis of bulk RNA-seq data. Gene expression was estimated using Kallisto
(v0.43.1)71 and gene fusions were detected using STAR-Fusion (v1.4.0)72. We used
GRCh38_v27_CTAT_lib_Feb092018 from the STAR-fusion website as the human
reference and corresponding GENCODE annotation sets.

Analysis of scRNA-seq data. For single-cell RNA-seq analysis, the proprietary
software tool Cell Ranger (v2.1.1) from 10x Genomics was used for demultiplexing
sequence data into FASTQ files, aligning reads to the human genome (GRCh38),
and generating gene-by-cell UMI count matrix. The R package Seurat (v2.0) was
used for all subsequent analysis73. First, a series of quality filters was applied to the
data to remove those barcodes which fell into any one of these categories: too few
genes expressed (possible debris), too many UMIs associated (possible more than
one cell), and too high mitochondrial gene expression (possible dead cell). The
cutoffs for these filters were as recommended by the Seurat package. Next, the data
were normalized and scaled and dimensional reduction was performed using PCA.
The cells were then clustered using graph-based clustering (default of Seurat)
approach. Cell types were assigned to each cluster by manually reviewing the
expression of marker genes. The marker genes used were CD79A, CD79B, MS4A1
(B cells); CD8A, CD8B, CD7, CD3E (CD8+ T cells); CD4, IL7R, CD7, CD3E (CD4+
T cells); NKG7, GNLY (NK cells); MZB1, SDC1, IGHG1 (Plasma cells); FCGR3A
(Macrophages); CD14, LYZ (Monocytes); FCER1A, CLEC10A (Dendritic cells); and
AHSP1, HBA, HBB (Erythrocytes). All cells that were labeled as erythrocytes were
removed from subsequent analysis.

scRNA-seq data integration. Different scRNA gene expression matrices were
integrated using the Seurat (v2.0) R package. We controlled for batch effects using
the CCA method and the data were integrated using the top 1000 variable genes
from each sample and the first 15 CCs. Cell types were assigned based on manual
review of marker gene expression (as described above). Cells with inconsistent cell
type assignments between the integrated and individual analyses were filtered out.
In some cases, the inconsistencies arose from evident clustering issues (for
example, when reviewing marker gene expression, two subclusters were obvious
within one cluster). Such instances were manually resolved and the cells were
rescued. All differential gene expression analyses were carried out using the
FindMarkers function of the Seurat package. The default Wilcoxon test was used
and hits with adjusted p value < 0.05 were deemed significant.

scRNA-seq correlation analysis. After integration, for each cell type, we com-
pared the gene expression to other types to identify the significant highly expressed
genes (adjusted p value < 0.05 and log fold change >0). Then their average
expressions in each sample were calculated. Their pairwise correlations were then
estimated.

Clustering of subpopulations of plasma cells based on pathway enrichment.
We used DEGs (fold change >1.5 and FDR < 0.1) to resolve subclusters in plasma
cells for each sample. We then performed pathway enrichment analysis using
ReactomePA (available at https://github.com/YuLab-SMU/ReactomePA) on the
DEGs of each sample subcluster. This was followed by Pearson correlation across
the subcluster-associated enrichment q-values (log-transformed FDR) for 910
pathways that were significantly enriched (FDR < 0.05) in at least one subcluster.
Finally, we hierarchically clustered sample subclusters by their resulting correlation
R values to identify pathway enrichment clusters. Highlighted pathways were
selected for each pathway enrichment cluster based on prevalence within the
cluster and average q value of its members.

10Xmapping. scRNA data provide an unprecedented resource for studying tumor
heterogeneity and clonal evolution. Connecting somatic mutations to individual
cells can help to better understand these aspects and have the potential to identify
tumor cells which cannot be unveiled purely based on expression data or is difficult
to be separated by expression alone. Here, we developed a mapping tool
(10Xmapping), which can identify reads supporting the reference allele and variant
allele covering the variant site in each individual cell by tracing cell and molecular
barcode information in the bam file. The tool is freely available at https://github.
com/ding-lab/10Xmapping. For mapping, we used high-confidence somatic
mutations from WES data; mutations were combined if data from multiple time
points existed.

Single-cell RNA CNV detection and clustering. To detect large-scale chromo-
somal CNVs using single-cell RNA-seq data, inferCNV (version 0.8.2)15 was used
to obtain relative expression intensity of plasma cells in comparison to a set of
reference “normal” cells, including B cells, T cells, erythrocytes, NK cells, etc.
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Cutoff= 0.1 was used for revealing CNV signals. inferCNV took the raw expres-
sion matrix generated from Seurat after several filtering steps, as described above.
Subsequently, samples were clustered on inferCNV expression data for 30 genes
implicated in MM. Cells for each sample underwent a dimensionality reduction
using PCA and t-SNE before clustering. Cells were then clustered with the
DBSCAN algorithm. Optimal values for epsilon and minimum points were selected
via a grid search. Parameters resulting in the highest Silhouette coefficient were
ultimately selected.

Trajectory-based analysis of B cells/plasma cell lineage. For trajectory analysis,
B and plasma cells as a whole were extracted from each case (across time points),
respectively. B cell and plasma cells were then imported into Monocle2 (ref. 74).
Parameters for the analysis were consistent with the tutorial (http://cole-trapnell-
lab.github.io/monocle-release/docs/#constructing-single-cell-trajectories), except
that (1) cell type is set as the variable for differential expression text and (2) to
select genes used for ordering, we set 1e−10 as the q value cutoff. We used the
function “plot_cell_trajectory” to visualize B cells and plasma cell subcluster pro-
jection in the trajectory. To calculate the proportion of different plasma cell sub-
clusters within each state, B cells and plasma cells that do not belong to any
subclusters were removed. The rest of the cells were first normalized by the total
number of cells within a time point and then plasma cell subcluster proportions
were calculated within each state of interest.

Quality control cross-check for plasma cells subclusters with different AP-1
expression. To check whether stress response during sample preparation could
shape plasma cell subclusters with different AP-1 component expressions, the
expression of a number of heat-shock proteins was checked. To check whether
other sources of batch effects could affect the structure of plasma cell subclusters,
we checked QC parameters including the number of genes expressed (nGene), the
number of unique molecular identifiers (nUMI), and the percentage of mito-
chondrial cells detected (percent.mito). Based on different levels of those para-
meters across subclusters, we further divided cells based on numbers of genes
expressed (≥1000 or <1000) and checked the AP-1 component expression across
different cell types.

CyTOF. Thawed bone marrow suspensions were stained with two panels of metal-
conjugated antibodies as listed in Supplementary Data 6. The concentrations of the
antibodies were either based on the suggestions from the manufacturer (Fluidigm)
or based on titration experiments. We used two distinct protocols for cell staining.
For panel 1, we included a series of signaling molecules specifically, such as the
ones from JAK–STAT pathway and NF-kB pathway75. Within this panel, we used
three conditions by adding either PBS, PVO4, or TNFα to stimulate samples. Final
concentrations for PVO4 and TNFα are 125 μM and 20 ng/mL, respectively. For
panel 2, we included a series of interleukins and interleukin receptors. The
inclusion of the aforementioned targets are based on their dysregulation in
MM76,77. We included two components within AP-1 complex, JUN and FOS, in
panel 2 as well. To stimulate the production of cytokines, we used three conditions
by adding either PBS, R848, or TNFα. Final concentrations for R848 and TNFα are
5 μg/mL and 20 ng/mL, respectively. Protein transporter inhibitors were added to
each condition 2 h after the beginning of stimulation, and co-incubation lasted for
another 2 h. Gating and data analysis were done using WUSTL Cytobank. Live,
single cells are selected by gating out cells/debris with outlier cisplatin and DNA
intercalator staining. To perform t-SNE analysis, we used the scaled expression of
cell surface marker, including CD34, CD123, CD38, CD3, CD4, CD8, CD19,
CD138, CD14, CD16, CD11c, and CD56.

AP-1 targets were identified using ChIP-seq data (ENCODE accession number
ENCSR000EYZ)78,79. We included four additional myeloma patient samples for
expression profiling via CyTOF experiment. For each CyTOF run, a sample from a
healthy donor would be included. Expressions of cell surface markers are used for
t-SNE. Cells from patient samples which do not overlap those from healthy donors
on t-SNE plot are further checked for their expression of CD138, CD38, and CD45.
Accordingly, the qualified cells are termed as plasma cells.

Subclonal analysis. The R package SciClone48 algorithm was used to define clonal
architecture, and tumor phylogeny was illustrated using Fishplot80.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All sequencing data (10xWGS, WGS, WES, Bulk RNA-seq, and scRNA-seq) used in this
study can be accessed at the NCBI under accession code PRJNA694128. CyTOF data
have been deposited with the FlowRepository under accession number FR-FCM-Z3EP.
For ancestry analysis in Supplementary Fig. 1b, data were also provided by The Multiple
Myeloma Research Foundation (MMRF) CoMMpass (Relating Clinical Outcomes in
MM to Personal Assessment of Genetic Profile) Study (NCT01454297). The MMRF
CoMMpass study could be accessed with dbGaP Study Accession: phs000748.

Code availability
For 10Xmapping pipeline, code can be accessed at https://github.com/ding-lab/
10Xmapping81. For ancestry prediction, code can be accessed at https://github.com/ding-
lab/ancestry82.
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