Skip to main content
. 2021 May 7;4:78. doi: 10.1038/s41746-021-00445-0

Table 2.

Performance of the TBI prognostic model.

All candidate variables Excluding non-robust variables Excluding non-robust & counterintuitive variables
Sample set Training Validation Test Training Validation Test Training Validation Test

AUC

(SD)

0.9372

(0.0236)

0.7822

(0.0126)

0.8094

0.9080

(0.0249)

0.7877

(0.0177)

0.8046

0.8912

(0.0252)

0.7836

(0.0189)

0.8085

Accuracy

(SD)

0.8522

(0.0327)

0.7500

(0.0169)

0.7536

0.8165

(0.0317)

0.7484

(0.0250)

0.7440

0.8053

(0.0285)

0.7451

(0.0255)

0.7488

F1 score

(SD)

0.8281

(0.0360)

0.7129

(0.0190)

0.7052

0.7855

(0.0344)

0.7104

(0.0299)

0.6864

0.7740

(0.0375)

0.7076

(0.0315)

0.7045

Sensitivity

(SD)

0.8477

(0.0305)

0.7434

(0.0489)

0.7011

0.8008

(0.0319)

0.7394

(0.0527)

0.6667

0.8018

(0.0637)

0.7393

(0.0570)

0.7126

Specificity

(SD)

0.8554

(0.0440)

0.7549

(0.0456)

0.7917

0.8279

(0.0450)

0.7549

(0.0439)

0.8000

0.8078

(0.0238)

0.7494

(0.0443)

0.7750

Precision

(SD)

0.8106

(0.0529)

0.6880

(0.0330)

0.7093

0.7722

(0.0498)

0.6862

(0.0329)

0.7073

0.7500

(0.0252)

0.6813

(0.0329)

0.6966

Performance of the TBI prognostic model trained using all candidate variables, only robust variables, and robust and clinically validated variables. Standard deviation (SD) is calculated over 5 cross-validation folds.