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Trueperella pyogenes pyolysin inhibits lipopolysaccharide-induced
inflammatory response in endometrium stromal cells via autophagy-
and ATF6-dependent mechanism
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Abstract
Trueperella pyogenes (T. pyogenes) is a common opportunistic pathogen of many livestock and play an important regulation role
during multibacterial infection and interaction with the host by its primary virulence factor pyolysin (PLO). The purpose of this
study was to investigate the regulation role of PLO which serve as a combinational pathogen with lipopolysaccharide
(LPS) during endometritis. In this study, the expression of bioactive recombinant PLO (rPLO) in a prokaryotic expression system
and its purification are described. Moreover, we observed that rPLO inhibited the innate immune response triggered by LPS and
that methyl-β-cyclodextrin (MBCD) abrogated this inhibitory effect in goat endometrium stromal cells (gESCs). Additionally,
we show from pharmacological and genetic studies that rPLO-induced autophagy represses gene expression by inhibiting
NLRP3 inflammasome activation. Importantly, this study reported that ATF6 serves as a primary regulator of the cellular
inflammatory reaction to rPLO. Overall, these observations suggest that T. pyogenes PLO could create an immunosuppressive
environment for other pathogens invasion by regulating cellular signaling pathways.
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Introduction

Pyolysin, which is a primary virulence factor of T. pyogenes,
is a secreted pore-forming toxin (PFT) that belongs to the
cholesterol-dependent cytolysin (CDC) family [1].
T. pyogenes is an opportunistic pathogen, gram-positive, nor-
mally commensal pathogenic bacterium that can invade

various mammals and nonmammals including livestock, wild-
life animals, and even humans [2, 3]. The diseases suppurative
arthritis, subcutaneous abscess, endocarditis, encephalitis,
mastitis, metritis, and endometritis are related to
T. pyogenes, which can also have serious economic conse-
quences in agriculture [4–6]. The economic losses which
caused by uterine disease is not a small number, it cost
€1.411 billion in EU and $650 million in the USA every year
[7]. Moreover, according to a investigate, the percentage of
cows with endometritis was up to 52% (14/27) in a dairy farm
in Beijing, China [6]. Previous research has investigated the
genes plo, fimA, fimC, fimE, fimG, nanH, nanP, and cbpA in
71 T. pyogenes strains isolated from different animals and
lesions; however, only plo was detected in all strains (71/
71 = 100%); in contrast, 4 strains expressed fimG (4/71 =
5.6%) [8]. Therefore, various putative virulence genes exist,
among which plo is the most common and the primary viru-
lence factor of T. pyogenes [9–11].

Efforts have been made to characterize the role of PLO
during T. pyogenes infection as part of an investigation into
the molecular mechanisms of host protection against patho-
genic invasion [12, 13]. After parturition, the uterus is the
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main target of T. pyogenes invasion; however, endometrial
stromal cells are markedly more sensitive to PLO-mediated
cytolysis than epithelial cells, since disruption of the endome-
trium epithelium is exploited by opportunistic pathogens we
have mentioned [14]. Cholesterol-dependent cytolysin has a
high affinity for cholesterol in the plasma of mammalian cells,
and the same is true of PLO, as inhibition of FDFT1, a primary
enzyme of the mevalonate pathway for the synthesis of cho-
lesterol, significantly reduced the impact of PLO on cell via-
bility [15]. Numerous studies determine whether CDC family
members initiate and instruct innate immunity or adaptive
immunity by pattern recognition receptors [16, 17], and dif-
ferent type of pathogen-associated molecular patterns
(PAMPs) is investigated with LPS serving as a costimulatory
ligands [18], but PLO has not been widely investigated in this
field.

Autophagy is an essential intracellular lysosomal degrada-
tive pathway [19] that plays an important role in cellular ho-
meostasis, cell differentiation, development, and diseases
[20–22]. Importantly, autophagy serves as a primary antibac-
terial mechanism as it limits bacterial growth in the cytosol
[23–26] in a process termed “xenophagy” [27]. Recent studies
have demonstrated that sublytic concentrations of PLO can
induce autophagy in eukaryotic cells, as determined by
microtubule-associated protein 1 light chain 3 (LC3) cleavage,
which produces LC3-II [28]. In addition, induction of autoph-
agy by cannabinoid receptor 2 (CB2R) or the polyphenolic
compound resveratrol could inhibit NLRP3 inflammasome-
derived IL-1β secretion through the suppression of mitochon-
drial damage [29, 30]. The NLRP3 inflammasome is a
pattern-recognition receptor (PRR) that functions to target
pathogenic microbes and other endogenous or exogenous
pathogens [31]. In addition to the NLRP3 protein, the adapter
protein apoptosis-associated speck-like protein CARD do-
main (ASC) and caspase-1 are components of the NLRP3
inflammasome [32], and secretion of various pro-
inflammatory cytokines, such as IL-1β, is mediated under
stimulation [33]. The endoplasmic reticulum stress (ERs), also
known as the unfolded protein response (UPR), is a highly
conserved cellular process that plays increasingly recognized
roles in cell growth, proliferation, survival, and prevention of
pathogen invasion [34–36]. Accumulating evidence suggests
that ERs/UPR can transcriptionally activate or regulate the
expression of genes encoding autophagy components [37].

Previous studies have found that under the single treatment
of sublytic concentration of PLO, there is no detectable accu-
mulation of IL-1β, IL-6, or IL-8, which are pro-inflammatory
cytokines, in the supernatant of bovine endometrial stromal
and epithelial cells, though PLO is the mainly virulence factor
of T. pyogenes and the stimulating factor of cellular autophagy
[14]. However, the specific roles and molecular mechanism of
PLO in combination with Escherichia coli LPS remain un-
known. Therefore, the main objectives of the present study

were to investigate the influence of PLO on gESCs under
costimulation with LPS. Our results suggest that the expres-
sion of related cytokines and genes induced by LPS was
blunted by PLO through suppression of the NLRP3
inflammasome. Importantly, autophagy and ATF6 are key
regulators of this process.

Material and methods

Cell lines and bacterial strain

gESCs were immortalized by transfection with human telo-
merase reverse transcriptase (hTERT) and well stored in our
laboratory [38, 39]. HEK 293T were obtained from The Cell
Bank of Type Culture Collection of Chinese Academy of
Sciences (Shanghai, China). gESCs and HEK 293T were cul-
tured in Dulbecco’s modified Eagle medium: nutrient mixture
F-12 (DMEM/F12; Gibco) supplemented with 10% fetal bo-
vine serum (FBS; Gibco) and high-glucose Dulbecco’s mod-
ified Eagle’s medium (DMEM; Gibco) supplemented with
10% FBS, respectively, in a humidified atmosphere with 5%
CO2 at 37 °C. Cells were cultured for 24 h before treatment
unless otherwise mentioned. T. pyogenes strain used in this
study was isolated from a goat abscess by syringe sampling,
and the goat’s life was not affected by the sampling. All ani-
mal procedures were approved under the control of the
Guidelines for Animal Experiments by the Committee for
the Ethics on Animal Care and Experiments of Northwest
A&F University and performed under the control of the
“Guidelines on Ethical Treatment of Experimental Animals”
(2006) No. 398 set by the Ministry of Science and
Technology, China. The identification of T. pyogenes strain
was based on characteristics of the colony, sequence align-
ment of 16S rRNA and hemolysis that described previously
[40]. T. pyogenes was cultured on Brain Heart Infusion (BHI;
Difco) agar plates, which supplemented with 5% FBS, at
37 °C and 5% CO2 in a humidified incubator, or in BHI broth
containing 5% FBS at 37 °C.

Antibodies and reagents

The following primary antibodies were used: rabbit anti-
MAP1LC3B (Sigma, L7543, diluted 1:1000), rabbit anti-
ATF6 (Abcam ab83504, 1:1000), rabbit anti-NLRP3
(Proteintech, 19771-1-AP, 1:1000), and mouse anti-β-actin
(Tianjin Sanjian Biotech, 1:2000). The secondary antibodies
were HRP-conjugated goat anti-rabbit (Zhongshan Golden
Bridge Biotechnology, 1:5000) and HRP-conjugated goat
anti-mouse (Zhongshan Golden Bridge Biotechnology,
1:5000). The reagent: methyl-β-cyclodextrin (Sigma-
Aldrich, C4555) and chloroquine diphosphate salt (Sigma-
Aldrich, C6628) were also used.
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Hemolysis determination

In order to obtain sheep red blood cells (SRBCs), sheep blood
was centrifuged at 1000 rpm for 10 min and removing super-
natant, and then the red blood cells were resuspended with
normal saline which process was repeat twice.

A hemolytic assay was performed nearly as previously de-
scribed [13, 14]. Briefly, SRBCs were prewashed three times
with PBS and diluted to 2% (v/v). For the first assay, MBCD
(methyl-β-cyclodextrin) at different concentrations was incu-
bated with SRBCs for 12 h, and then rPLO was administered
for 1 h. To investigate cholesterol function in the process of
hemolysis mediated by purified rPLO, rPLO was diluted to
different concentrations and incubated with or without choles-
terol at a concentration of 8 μg/μl for 1 h. Then, SRBCs were
challenged with the mixture for 1 h at room temperature, the
mixture was centrifuged at 1000 rpm for 10 min, and 150-μl
samples of the supernatants were transferred into a 96-well
polystyrene microplate. One arbitrary unit (AU) indicates
rPLO at a final concentration of 2 ng/μl in this assay. The
optical density at a wavelength of 405 nmwasmeasured using
a microplate reader. The experiments were performed in trip-
licate and repeated three times independently.

Small interference RNA transfection

A small interfering RNA (siRNA) targeting ATG5 (si-ATG5:
GCUUCGAGAUGUGUGGUUUTT) was designed as previ-
ously described [41]. In this study, gESCs were cultured in a
6-well cell culture plate, and when the gESCs reached 70%
confluence, siRNA oligo at a final concentration of 50 nM
was used to transfect the cells with TurboFect transfection
reagent (R0531, Thermo Fisher Scientific) supplemented with
Opti-MEM (31985088, Gibco), and cells were cultured in the
normal cell culture medium mentioned above for 48 h. Then,
the cells were subjected to the corresponding processing. The
nega t i v e con t r o l s iRNA (s i -NC: UUCUCCGA
ACGUGUCACGUTT) used in this experiment was provided
by GenePharma (Shanghai, China).

Interference cell line construction

To knockdown expression of the ATF6 (GenBank accession
number: XM_018046547.1) gene, three pairs of oligonucleo-
tides against atf6 and a pair oligonucleotide that expressed a
scrambled sequence (Table 1) were designed with a website
(http://rnaidesigner.thermofisher.com/rnaiexpress) and
synthesized by TSINGKE Biological Technology (Beijing,
China). Sequences of the designed oligonucleotides are
shown in Table 1. As described in a previously published
article by our group [42], lentiviral vectors containing three
short hairpin RNA (shRNA) sequences targeting the gene and
a scrambled shRNA lentiviral vector were constructed. Next,

the vectors above and lentivirus packaging vectors that
encoded Gag-Pol, Rev, Tat, and a G protein were co-
transfected into HEK 293T cells using TurboFect transfection
reagent according to the manufacturer’s procedure. The cul-
ture medium was replaced after 12 h, and another 48 h was
needed to package lentivirus; thereafter, the supernatant was
collected and used to infect gESCs. Finally, the cells were
harvested and used to determine ATF6 protein levels by
Western blotting.

Western blotting

Whole-cell protein extraction from gESCs using a KGP2100
Kits (KeyGEN Biotech, China) was performed according to
the manufacturer’s protocol. The protein concentrations of the
cell lysates were determined using a bicinchoninic acid assay
(KGPBCA; KeyGEN Biotech). The total cellular protein as
degraded with 5× sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) loading buffer by boiling in wa-
ter for 10 min. Samples containing an equal quantity of total
cellular protein were resolved by 12% SDS-PAGE, and the
separated proteins were transferred onto PVDF membranes.
The membranes were blocked with 5% nonfat milk in Tris-
buffered saline containing 0.5% Tween 20 (TBST) for 1–2 h
and incubated with the indicated primary antibodies diluted in
TBST overnight at 4 °C. Then, horseradish peroxidase (HRP)-
conjugated secondary antibodies were administered and incu-
bated for 1 h at room temperature. Finally, the protein bands
were visualized with a gel imaging system (Tanon Biotech,
Shanghai, China) and quantified with Quantity One software
(Bio-Rad Laboratories, Hercules, CA, USA).

Real-time quantitative PCR

Total RNA was extracted from cultured cells using RNAiso
Plus (TaKaRa, China), and the same amount of total RNAwas
used to synthesize cDNA by reverse transcription using Evo
M-MLV RT Kit with gDNA Clean for qPCR (Accurate
Biotechnology Co., Ltd., Hunan, China). Then, qPCR was
performed on a Bio-Rad CFX96 (Bio-Rad Laboratories,
Inc.) system using SYBR® Premix Ex Taq II (TaKaRa,
China) with a 20 μl reaction system. The melting peaks were
determined by melting curve analysis to ensure product spec-
ificity, and the amplification efficiency of all specific primers
was determined by standard curve, which suggested efficien-
cies of no less than 90%. The expression of each gene deter-
mined with three technical replicates and biological duplicates
was quantified by 2−ΔΔCt method and is reported relative to
expression of the housekeeping gene glyceraldehyde-3-
phosphate dehydrogenase (GAPDH). Primer sequences are
listed in Table 2.
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Statistical analysis

The results are presented as the mean ± standard error of the
mean (SEM), and each experiment was performed indepen-
dently at least three times. GraphPad Prism 6.0 software
(GraphPad Software Inc., San Diego, CA, USA) was used in
this study for data analysis by two-way ANOVA or one-way
ANOVA. The P < 0.05 value was considered to be significant.

Results

Cholesterol and methyl-β-cyclodextrin repressed the
hemolytic activity of rPLO

To authenticate the hemolytic activity of the purified pyolysin
(PLO) (Fig. supplement), a hemolytic assay was performed.
rPLO at different dilutions was incubated with or without
cholesterol for 1 h, after which suspended sheep red blood
cells were challenged with abovementioned mixtures for an-
other 1 h to assess hemolysis (Fig. 1a). MBCD, which can
bind cellular cholesterol, is a specific inhibitor of PLO-

mediated lysis of immune cells [14]. To verify that the recom-
binant protein acted as a cholesterol-dependent cytolysin with
another method, a sheep red blood cell suspension was
pretreated with MBCD and then challenged with PLO.
Hemolysis was measured with a microplate reader, which
showed that hemolysis in the group treated with MBCD was
significantly decreased compared to that in the group without
MBCD treatment (Fig. 1b). Together with the results of se-
quencing analysis (not shown), this finding shows that the
recombinant protein that we expressed and purified was
T. pyogenes pyolysin.

rPLO induced inflammatory mediators to different
extents

We next aimed to explore the responses of gESCs upon chal-
lenge with rPLO at sublytic concentrations. Therefore, gESCs
were incubated with rPLO at different concentrations of 3 h,
and cell proliferation was examined by the CCK-8 colorimet-
ric assay to determine the experimental dose of rPLO (Fig. 2a)
that does not induce significant cell death but carries out its
biological function. Previous results have shown that PLO

Table 1 Primers for shRNA-ATF6

shRNA Sequences (loop in bold letters) (5′-3′)

shRNA-1 GATCCGCAGTTGGATGCAGCAAATGATTCAAGAGATCATTTGCTGCATCCAACTGCTTTTTTG

AATTCAAAAAAGCAGTTGGATGCAGCAAATGATCTCTTGAATCATTTGCTGCATCCAACTGCG

shRNA-2 GATCCGCAGCACCCAAGACTCAAACATTCAAGAGATGTTTGAGTCTTGGGTGCTGCTTTTTTG

AATTCAAAAAAGCAGCACCCAAGACTCAAACATCTCTTGAATGTTTGAGTCTTGGGTGCTGCG

shRNA-3 GATCCGCTTAGAGGCAAGGTTAAAGGTTCAAGAGACCTTTAACCTTGCCTCTAAGCTTTTTTG

AATTCAAAAAAGCTTAGAGGCAAGGTTAAAGGTCTCTTGAACCTTTAACCTTGCCTCTAAGCG

shRNA-NC GATCCTTCTCCGAACGTGTCACGTTTCAAGAGAACGTGACACGTTCGGAGAATTTTTTG

AATTCAAAAAATTCTCCGAACGTGTCACGTTCTCTTGAAACGTGACACGTTCGGAGAAG

Table 2 Primers for real-time quantitative PCR (RT-qPCR)

Gene Forward (5′-3′) Reverse (5′-3′)

IL-1β GGTGTTCTGCATGAGCTTCG TTGTCCCTGATACCCAAGGC

TNF-α CTCCTCATCCCCTTCTGGTTT GGCCTCACTTCCCTACATCC

ICAM-1 CGACTAGACCAGCGGGATTG CTGGCCGTAGAGCACATTCA

SAA3 GACATTCCTCAGGGAAGCTGG TGAAGAGCCTCTCTGATCACTT

COX-2 GAGTGTAGGATTCGACCAGTAT CCTTGAAGTGGGTAAGTATGTAG

IL-6 CCTCTTCACAAGCGCCTTCA TGCTTGGGGTGGTGTCATTC

NLRP3 CCGTCCTAAGCACCAACCAT TTGTGGTGCAAGAGTCCCTC

ASC CATGATGAGCAAGGGCGCTA ATCAACGACTGTGACCCGTG

Caspase-1 GGAGAGAAAGGACCGCACTC AGTCCCACAGATCCCATCCA

GAPDH GATGGTGAAGGTCGGAGTGAAC GTCATTGATGGCAACGATGT
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cannot induce upregulated IL-1β expression [14]; in this
study, IL-1β expression was slightly downregulated by
rPLO (Fig. 2b). Stimulation of gESCs with or without rPLO
triggered similar changes in the expression of TNF-α, SAA3,
and ICAM-1 (Fig. 2c–e). In contrast, IL-6 expression was
slightly upregulated relative to that in the control group (Fig.
2f), and COX-2 expression was significantly elevated and
even higher than that induced by LPS, which served as a
positive control in this experiment (Fig. 2g). Together, these
results indicated recombinantly expressed virulence factor
from the opportunistic pathogen T. pyogenes, rPLO, could
not induce a general inflammatory response. There are two
possible explanations for this phenomenon: T. pyogenes
does not activate the host inflammatory response to promote
continued infection, or T. pyogenes may create an
environment with low sensitivity for pathogen invasion.

rPLO partially inhibited inflammatory mediator
expression in the presence of LPS

As mentioned above, E. coli and T. pyogenes are two primary
pathogenic microbes in postpartum endometritis. Therefore,
we aimed to investigate the response of gESCs to these main
virulence factors together. Intriguingly, rPLO at sublytic con-
centrations abrogated the upregulation of IL-1β, TNF-α,
SAA3, and ICAM-1 mediated by LPS in gESCs (Fig. 3a–d).
However, rPLO did not entirely repress induction of these
genes by LPS, as we observed that their expression was sig-
nificantly higher in the costimulation group than in the control
group. However, the expression of IL-6 was similar in the
costimulated group and the group stimulated with LPS alone

(Fig. 3e). In contrast, the expression of COX-2 in the
costimulated group was slightly elevated compared with that
in the LPS-stimulated group (Fig. 3f).

MBCD has been proven to be a specific inhibitor of PLO.
Therefore, MBCD was used in this experiment to confirm the
results described above. As previously described [15], MBCD
was incubated with gESCs before LPS and rPLO stimulation.
MBCD pretreatment rescued the downregulation of IL-1β,
TNF-α, and SAA3 induced by rPLO (Fig. 4a–c). As shown
for the first time, stimulation with rPLO and LPS together
demonstrated that rPLO repressed innate immune response
activation by LPS, and MBCD, a specific inhibitor of rPLO
that bind the membrane, could abrogate this phenomenon,
suggesting rPLO as an immunosuppressive factor to ensure
multiple pathogen colonization within the host. Therefore, we
speculate that the signaling pathway that regulates IL-1β was
directly or indirectly by rPLO.

rPLO repressed the NLRP3 inflammasome by
autophagy

We then asked which pathway rPLO induces to regulate the
effects of LPS on gESCs. As shown by the results of this
study, we have demonstrated that the expression of IL-1β
was inhibi ted (Fig. 3a) ; meanwhile , the NLRP3
inflammasome can be inhibited by autophagy, which then
suppresses NLRP3 inflammasome-mediated IL-1β secretion
in macrophages [29, 30]. Thus, we naturally speculated that
rPLO suppresses IL-1β through inhibition of the NLRP3
inflammasome. In fact, NLRP3 was downregulated by rPLO
(Fig. 5a–b), and the expression of ASC and Caspase1,

Fig. 1 Functional verification of purified rPLO. a rPLO at different
dilution was incubated with or without 8 μg/μl cholesterol for 1 h, and
a 2% sheep red blood cell suspension was challenged with the
abovementioned mixture for 1 h. One AU indicates a final concentration
of 2 ng/μl rPLO in this assay. bMBCDat different dilutionwas incubated

with a 2% sheep red blood cell suspension for 12 h, after which rPLOwas
added and incubated with the mixture for 1 h. The optical density at a
wavelength of 405 nm was measured using a microplate reader. Error
bars represent SEM of three independent experiments, *P < 0.05
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components of multiprotein inflammasome complexes, was
also downregulated at the mRNA level (Fig. 5b).

To further ascertain the key role of autophagy in this
process, we chose chloroquine (CQ) as an inhibitor of au-
tophagy. We pretreated gESCs with CQ at an appropriate
dose and then costimulated with gESCs with rPLO and
LPS as described above. These results were in line with
our speculation, as the expression of IL-1β, TNF-α,
SAA3, and ICAM-1 under CQ pretreatment was significant-
ly upregulated (Fig. 5e). Meanwhile, to genetically prove
the critical role of autophagy in this process, the siRNA
technique was employed, and the expression of ATG5,
which is involved in elongation and closure of the isolation
membrane to form autophagosomes [43], was effectively
suppressed (Fig. 6a). The upregulation of LC3-II and re-
pression of NLRP3 occurred in an ATG5-dependent man-
ner (Fig. 6b–d). Although IL-6 was still upregulated by
rPLO in the siATG5-treated group, this effect was partially
abrogated (Fig. 6e).

Together, these results demonstrate the key role of the
rPLO-triggered autophagy process in cell responses to rPLO
repression of the NLRP3 inflammasome.

ATF6 is vital to the progression of rPLO-mediated in-
hibition of inflammatory mediators

The ATF6 arm of the UPR is a vital ER stress transduction
pathway that has previously been connected with pathogenic
attack [44]. Therefore, it was naturally hypothesized in one
study that ATF6 plays a role in protection against pore-
forming toxins [44] and that ATF6 regulates the cellular re-
sponse during rPLO attack. To test this hypothesis, we first
investigated whether ATF6 was activated by rPLO. As
shown, significant upregulation of ATF6 was observed in
the group-administered rPLO administration (Fig. 7a). Cell
lines expressing scramble control (shN) and short hairpin
ATF6 (shATF6) with a GFP protein flag were constructed
(Fig. 7b), and the efficiency of knockdown in the cell lines

Fig. 2 Screening applicable working concentration of rPLO and relative
inflammatory response genes expression under rPLO stimulation. a
gESCs were challenged with control medium or medium containing
rPLO at the indicated concentration in a gradient for 3 h. Cell viability
was evaluated byCCK-8 assay. b–g. gESCswere challengedwith control

medium or medium containing 0.1 μg/ml rPLO or 0.5 μg/ml LPS for 3 h.
mRNA levels of targets normalized to the levels of GAPDH were deter-
mined by RT-qPCR. Error bars represent the SEM of three independent
experiments; ns indicates “no significance”; *P < 0.05, **P < 0.01,
***P < 0.001
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Fig. 3 The expression of relative inflammatory response genes under the
costimulation of rPLO and LPS. a–f gESCs were challenged with control
medium and medium containing 0.5 μg/ml LPS, or 0.1 μg/ml rPLO and

0.5 μg/ml LPS costimulation for 3 h. mRNA levels of targets normalized
to the levels of GAPDH were determined by RT-qPCR. Error bars
represent the SEM of three independent experiments, *P < 0.05

Fig. 4 MBCD abrogated inhibitory effect of partly inflammatory
response genes expression that rPLO induced. a–c gESCs were
preincubated with MBCD for 12 h, after which cells were challenged
with control medium and medium containing 0.5 μg/ml LPS, or

0.1 μg/ml rPLO and 0.5 μg/ml LPS costimulation for 3 h. mRNA
levels of targets normalized to the levels of GAPDH were determined
by RT-qPCR. Error bars represent the SEM of three independent
experiments, *P < 0.05
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Fig. 5 Autophagy andNLRP3 participated in regulating of rPLO induced
inflammatory response genes expression. gESCs were challenged with
control medium andmedium containing 0.1 μg/ml rPLO, 0.5 μg/ml LPS,
or costimulation for 3 h. a The cell samples were analyzed by Western
blotting with anti-LC3, anti-NLRP3 and anti-β-actin (loading control)
antibodies. The protein levels of target proteins relative to the protein

level of β-actin were determined by densitometry. b–d mRNA levels of
targets normalized to the levels of GAPDH were determined by RT-
qPCR. P < 0.05. e gESCs were preincubated with CQ at 20 μM for 3 h,
after which using rPLO and LPS costimulation for another 3 h, and
relativemRNA levels were determined byRT-qPCR. Error bars represent
the SEM of three independent experiments, *P < 0.05 and **P < 0.01
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was determined by Western blotting (Fig. 7b). In ATF6 KD
cells, LC3-II was not upregulated upon rPLO or rPLO and
LPS stimulation compared to that in unstimulated cells (Fig.
7b). In contrast, LC3-II was significantly elevated in shN-
expressing cells after the same treatment protocol (Fig. 7b).
To further characterize the role of ATF6 in this process, we
infected shN- and shATF6-expressing cells with LPS or LPS
and rPLO together. In parallel with the change in LC3-II,
rPLO-induced NLRP3 downregulation was dependent on
ATF6 (Fig. 7c), and the result in shN cells was consistent with
the data in Fig. 5a. Expression of the genes whose repression
is shown in Fig. 3a–d displayed a similar tendency to be in-
creased in shATF6-expressing cells (Fig. 7d), except IL-6 and
COX-2, which were previously examined in this study and
whose expression could not be inhibited by rPLO (Fig. 7d).
Thus, these data suggest that ATF6 is essential for rPLO-

mediated regulation of the related cell response by inhibition
of autophagy and NLRP3 inflammasome activation.

Discussion

The virulence of most bacterial relies on secreted effectors that
arose from the long evolutionary fight between host and path-
ogen, which modulate eukaryotic cell signal transduction.
These effectors employ sophisticated strategies to manipulate
host cellular signaling networks and thereby elude host de-
fenses [45]. Mounting evidence has shown that PLO is a pri-
mary virulence effector during T. pyogenes infection. In addi-
tion, expression of the plo gene was widespread (100%) in
T. pyogenes isolated from different domestic animals [8],
which generates much interest in exploring this pathogenic

Fig. 6 ATG5 participated in regulating of rPLO induced inflammatory
response genes expression. gESCs were transfected with the small
interfering RNAs (siRNAs) siNC and siATG5 and then challenged with
control medium or medium containing 0.1 μg/ml rPLO for 3 h. a The
efficiency of siATG5-mediated interference at the mRNA level was de-
termined by RT-qPCR and normalized to the GAPDH level. b The cell

samples were analyzed by Western blotting with anti-LC3, anti-NLRP3,
and anti-β-actin (loading control) antibodies. The protein levels of target
proteins relative to the protein level of β-actin were determined by den-
sitometry. c–e. Targeted gene expression normalized to the GAPDH level
were determined by RT-qPCR. Error bars represent the SEM of three
independent experiments, *P < 0.05, **P < 0.01, and ***P < 0.001
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mechanism of PLO. Because T. pyogenes is a common path-
ogenic bacterium of endometritis [6] and stromal cells are
highly sensitive to PLO [14], endometrial stromal cells were
naturally used in this study.

Here, we constructed a recombinant plasmid containing the
full-length gene encoding mature PLO and used it to express
and purify the rPLO protein. As indicated, purified rPLO in-
duced SRBCs hemolysis in a concentration-dependent man-
ner, and cholesterol preincubation with rPLO treatment or
MBCD (methyl-β-cyclodextrin) preincubation with SRBCs
inhibited its hemolytic activity. Although purified rPLO did
not upregulate numerous cytokines, which is in line with stud-
ies demonstrating stromal and epithelial cell supernatants did
not accumulate detectable amounts of cytokines during rPLO
treatment [14], interestingly, the expression of cytokines in-
duced by LPS was inhibited by rPLO. The large majority of
research on this topic has found that multiple confounding
postpartum conditions make it difficult to disentangle the
mechanisms linking fertility with endometritis, and a model
of endometritis using E. coli and T. pyogenes was developed
[46]. However, as of yet, whether the two virulence factors of
pathogen mentioned above engage in synergy or antagonism
remains unknown. LPS is recognized by the pattern recogni-
tion receptor TLR4, after which a cellular signaling pathway is
activated to induce IL-1β and other cytokine secretion [47].
Therefore, costimulation with pathogenic LPSwas used in our
study, and we suggest that rPLO inhibits IL-1β, TNF-α, SAA3,
and ICAM-1 expression induced by LPS. We noted that de-
livery of OspF, an effector protein of the Shigella type III
secretion system (TTSS) into host cells, modulated host sig-
naling pathways and reduced cytokine secretion by dephos-
phorylating cellular mitogen-activated protein kinases
(MAPKs) [48]. Drawing parallel the model of the immune
preventive mechanism of OspF, it is plausible to assume that
rPLO represses some signaling pathways to exert its

virulence. A recent study suggested that autophagy is activat-
ed and that the NLRP3 inflammasome is inhibited as a pro-
tective mechanism in experimental autoimmune encephalo-
myelitis [30], which is in line with our findings that rPLO
activates autophagy and represses the NLRP3 inflammasome
at the mRNA and protein levels. Here, we used the autophagy
inhibitor CQ, which blocks the fusion of autophagosomes and
lysosomes to inhibit the autophagic process [49], to demon-
strate that autophagy is employed by the effect of rPLO in
inhibiting NLRP3 inflammasome activation and cytokine ex-
pression. This observation was not unexpected given that
SdhA, a critical effector for Legionella pneumophila intracel-
lular growth that functions to prevent host cell death, sup-
presses host innate immune detection by inhibiting AIM2
inflammasome activation and IL-1β secretion [50].

As highlighted in previous reports, a series of signaling
pathways [28], such as the phosphorylation of ERK and p38
and autophagy, are activated by PLO. However, it is not yet
clear whether the ERs-UPR axis, which affects the cytotoxic
activity of LPS [51–53], is activated during rPLO stimulation
of cells. In this study, we first demonstrate that ATF6, one
pathway in the ERs-UPR axis, participates in regulating the
function of PLO. Importantly, not only was ATF6 activated
during rPLO stimulation but also rPLO-induced autophagy
was affected in the ATF6 knockdown (KD) cell line. In our
experiment, ATF6 was used as a regulator to control rPLO-
induced autophagy; meanwhile, the NLRP3 repressive func-
tion of rPLO was also inhibited in the ATF6-KD cell line, and
relative cytokine and gene expression profiles were also evi-
dence of the effects of ATF6. Indeed, the link between the
UPR and autophagy has been partly investigated [54], and
the UPR can regulate autophagy through multiple pathways.
Considering the change in LC3-II expression between the
shN- and shATF6-expressing groups, ATF6 could influence
one or al l of processes in autophagy, including
autophagosome formation, fusion of the autophagosome with
the endosome or lysosome, and lysis of the autophagosome
inner membrane. This observation is not unexpected given
that the ERs-UPR is a conservative cellular process; however,
ATF6 has emerged as a regulator of cell recognition of rPLO
or signal transduction only in the pathogen invasion process.

In conclusion, our results have characterized autophagy
and the regulatory effect of ATF6 on the mechanism of
PLO virulence in infected cells (Fig. 8). While PLO could
employ cellular autophagy, we first demonstrated that au-
tophagy and ATF6 jointly controlled cytokine and gene
expression under costimulation with rPLO and LPS. Thus,
these findings broaden our understanding of T. pyogenes
pathogenesis and provide new insights into the mecha-
nisms of rPLO-mediated infection of endometrial stromal
cells. However, the mechanism by which PLO triggers
autophagy and the mechanisms by which other signaling
pathways participate in cellular reactions to PLO remain

�Fig. 7 ATF6 participated in regulating of rPLO induced inflammatory
response genes expression. a gESCs were challenged with control
medium and medium containing 0.1 μg/ml rPLO for 0 h, 3 h, and 6 h,
and then the cells were harvested for Western blotting analysis with anti-
ATF6 and anti-β-actin (loading control) antibodies. ATF6 levels relative
to β-actin levels were determined by densitometry. b Lentivirus vector
encoding ATF6 shRNA (pCD-513B-U6-shATF6) was constructed and
transfected into HEK 293T cells. Then, the packaged shATF6 lentivirus
was used to transfect gESCs after replacement of the complete culture
medium with medium containing supplemental polybrene at 8mg/ml.
Twelve hours later, complete culture medium was used to culture the
cells for 48 h. As shown above, the cells were observed by inverted
fluorescence microscopy; then, the cells were harvested for Western blot-
ting to determine the efficiency of the lentivirus vector. C. gESCs-shN
(native vector) and gESCs-shATF6 were treated with rPLO and LPS for
3 h, and then the cells were harvested for RT-qPCR. mRNA levels of
target genes were normalized to those of GAPDH. Error bars represent
the SEM of three independent experiments, *P < 0.05, **P < 0.01, and
***P < 0.001
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poorly understood. Fortunately, our team is engaged in
much work.
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