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Background: Tumor mutation burden (TMB) and immune microenvironment are important determinants 
of prognosis and immunotherapeutic efficacy for cancer patients. The aim of the present study was to 
develop an immune signature to effectively predict prognosis and immunotherapeutic response in patients 
with lung squamous cell carcinoma (LUSC). 
Methods: TMB and immune microenvironment characteristics were comprehensively analyzed by multi-
omics data in LUSC. The immune signature was further constructed and validated in multiple independent 
datasets by LASSO Cox regression analysis. Next, the value of immune signature in predicting the response 
of immunotherapy was evaluated. Finally, the possible mechanism of immune signature was also investigated. 
Results: A novel immune signature based on 5 genes was constructed and validated to predict the prognosis 
of LUSC patients. These genes were filamin-C, Rho family GTPase 1, interleukin 4-induced gene-1, 
transglutaminase 2, and prostaglandin I2 synthase. High-risk patients had significantly poorer survival than 
low-risk patients. A nomogram was also developed based on the immune signature and tumor stage, which 
showed good application. Furthermore, we found that the immune signature had a significant correlation 
with immune checkpoint, microsatellite instability, tumor infiltrating lymphocytes, cytotoxic activity scores, 
and T-cell-inflamed score, suggesting low-risk patients are more likely to benefit from immunotherapy. 
Finally, functional enrichment and pathway analyses revealed several significantly enriched immune-related 
biological processes and metabolic pathways.
Conclusions: In the present study, we developed a novel immune signature that could predict prognosis 
and immunotherapeutic response in LUSC patients. The results not only help identify LUSC patients with 
poor survival, but also increase our understanding of the immune microenvironment and immunotherapy in 
LUSC.
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Introduction

Lung cancer is the 4th leading cause of cancer-associated 
death in the world, and 80% of lung cancer patients 
diagnosed with non-small cell lung cancer (NSCLC) (1). 
Lung squamous cell carcinoma (LUSC) is an important 
histological subtype of NSCLC, causing approximately 
400,000 deaths per year worldwide (1,2). Currently, surgical 
resection and chemotherapy are the major treatment for 
NSCLC (2). The prognosis and overall survival (OS) 
rate for LUSC remain poor, which is mainly because 
many patients with LUSC have metastatic disease at 
diagnosis. In recent years, molecular targeted therapy 
and immunotherapy have significantly prolonged the 
survival time of patients with LUSC (3,4). Although 
immunotherapies have made great progress in treating 
LUSC, there are still many problems. Due to the highly 
tumor heterogeneity of LUSC patients, the clinical effects 
of immunotherapy vary widely among LUSC patients (5,6). 
Therefore, it is important to elucidate a more detailed 
molecular mechanism of immunotherapeutic response and 
to find more immunotherapeutic targets.

The principle of cancer immunotherapy is to harness 
the patient’s own immune system to treat cancer (7). 
The mechanism of cancer immune escape is complex, 
and involves tumor gene mutation, tumor-associated 
antigens, various immune cells, and the inflammatory 
microenvironment (8). Tumor gene mutation can produce 
tumor neoantigens that result in the immune system 
being unable to recognize and kill tumor cells (9). Several 
studies have reported tumor mutation burden (TMB) as a 
potential biomarker for immunotherapy in patients with 
NSCLC (10-13). In addition, the changes of the tumor 
microenvironment (TME) can also lead to immune system 
failure (14,15). Immune checkpoints are pivotal regulators 
of the immune escape, and immune checkpoint-based 
immunotherapy has become a promising treatment for 
patients with advanced NSCLC (3,6,16). Currently, the anti-
cytotoxic T-lymphocyte-associated antigen 4 (anti-CTLA-4) 
agent, tremelimumab, and the anti-programmed cell death 
protein 1 (anti-PD-1) agent, nivolumab, have been used to 
treat LUSC in clinical practice (17-19). Therefore, how to 
accurately predict the prognosis of patients and the effect of 
immunotherapy warrant further research.

In the present study, we comprehensively analyzed 
tumor TMB and the immune microenvironment in LUSC. 
Furthermore, an immune signature was constructed and 
validated in multiple independent cohorts, and a reliable 

predictive nomogram model was developed to evaluate 
OS for LUSC patients. Importantly, we found that the 
immune signature could identify LUSC patients most 
likely to benefit from immunotherapy. Overall, our results 
suggest that the immune signature could serve as a potential 
biomarker to predict prognosis and immunotherapeutic 
effect in LUSC patients, and also has the potential to 
guide the personalized therapy of patients. We present 
the following article in accordance with the REMARK 
reporting checklist (available at http://dx.doi.org/10.21037/
atm-21-463).

Methods

Multi-omics data preparation

The data of 535 LUSC samples and 90 normal samples of 
RNA-seq expression data, 562 LUSC samples of somatic 
mutation data, and corresponding clinical information 
were collected from The Cancer Genome Atlas (TCGA) 
database and used as the training dataset. Microarray 
datasets GSE19188, GSE29013, GSE30219, GSE73403, 
and GSE37745, including RNA expression data and 
clinical information, were also downloaded from the 
Gene Expression Omnibus (GEO) database and used to 
validate the datasets. The present study did not require 
ethical approval, because all data were downloaded from 
publicly databases. RNA expression data were preprocessed 
as follows: (I) LUSC patients with OS <30 days were not 
included in the present study; and (II) gene expression 
levels were quantified using the transcripts per million 
(TPM) method, and log2 (TPM+1) was used for further 
analysis. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Somatic mutation analysis

The R package “maftools” was performed to analyze, 
summarize, and visualize the somatic mutation data of 
LUSC patients (20). We first described the mutation 
profiles of LUSC patients by using waterfall plot. The 
variant classification, variant type, and SNV (single 
nucleotide variants) class are also summarized. In addition, 
the TMB of each patient was further estimated. 

TME and immune cell analysis

The ESTIMATE algorithm was first used to estimate 
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immune score, stromal score, and estimate score based on 
the mRNA expression data (21). A lower immune score 
represents lower infiltration status of immune cells in tumor 
tissue. Furthermore, the infiltrating immune cells in the 
TME was calculated using the CIBERSORT algorithm (22). 
CIBERSORT calculates the proportions of 22 immune cell 
types, including T-cell types, naïve and memory B cells, 
plasma cells, natural killer (NK) cells, and myeloid subsets. 

Identification of differentially expressed genes (DEGs)

According to the cut-off value of survival analysis, DEGs 
between low and high TMB, low and high immune score, 
and low and high stromal score were identified by using the 
R package “edgeR” (23,24). DEGs that met the criteria of 
false discovery rate (FDR) <0.05 and |log2 fold change| >1 
were used for further analysis. Hub DEGs are the common 
intersection of 3 groups of DEGs (TMB group, immune 
score group, and stromal score group). 

Construction and validation of the immune signature 

Univariate Cox regression analysis was performed to screen 
the prognostic genes of LUSC patients among the hub 
DEGs with P<0.05 as the criterion. On the basis of these 
prognostic genes, the LASSO Cox regression analysis was 
performed to construct the immune signature for LUSC 
by using the R package “glmnet”. Next, the cut-off value 
of the risk score was determined by using the R package 
“survminer”. The survival difference was compared using 
the Kaplan-Meier (K-M) survival analysis combined with 
the log-rank test. The prognostic function of the immune 
signature was validated in the GSE19188, GSE29013, 
GSE30219, and GSE73403 datasets. Risk score was 
calculated with the same immune signature formula from 
TCGA dataset. The K-M method and receiver-operating 
characteristic (ROC) curves were used to evaluate and 
validate the predictive value of the immune signature.

Development and evaluation of the nomogram based on 
the immune signature

To construct a nomogram based on the immune signature, 
we first need to determine independent risk factors for 
patients with LUSC by using univariate and multivariate 
Cox regression analyses. According to the results of the 
multivariate Cox analysis, the nomogram was developed on 
the basis of independent risk factors using the R package 

“rms” to predict survival probability. The fitting degree of 
the nomogram was evaluated by calibrations. ROC curve 
analysis and the concordance index (C-index) were used to 
evaluate the predictive accuracy and discrimination ability 
of the nomogram, respectively. 

Functional enrichment and pathway analyses

To study the molecular mechanisms potentially underlying 
the immune signature, Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analyses was performed using the R package 
“clusterProfiler” (25). Enrichment results satisfying a 
nominal P value <0.05 and an FDR <0.25 were considered 
to be statistically significant.

Statistical analysis

Statistical analysis was performed with R software (R 
Foundation for Statistical Computing, Vienna, Austria). 
Survival analysis was performed using the K-M method and 
the log-rank test in GraphPad Prism (GraphPad Software, 
San Diego, California, USA). Two-sided t-test was used to 
analyze the difference of continuous variables between 2 
groups. P<0.05 was considered statistically significant.

Results

Tumor mutation analysis in LUSC

The somatic mutation profiles of LUSC patients were 
analyzed by using the R package “maftools”. The results 
showed that TP53 (77%), TTN (68%), CSMD3 (40%), 
MUC16 (36%), and RYR2 (35%) mutations were the top 
5 mutated genes, and the TP53 mutation was the most 
mutated gene in LUSC patients (Figure 1A). As shown 
in Figure 1B, missense mutations, single-nucleotide 
polymorphisms, and C>T were the most common mutation 
variant classification, variant type, and SNV class in LUSC, 
respectively. In addition, the co-occurrence association 
between mutated genes are shown in Figure S1. Pathway 
enrichment analysis suggested that these mutated genes 
were significantly associated with the TP53, Ras, Notch, 
Wnt, and Hippo signaling pathways (Figure 1C). TMB is 
an important biomarker of response to immunotherapy 
in NSCLC. Furthermore, the TMB value was calculated 
and was used to analyze the correlation with OS and 
pathological stages. Patients with low TMB had significantly 
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Figure 1 Summary of the LUSC mutation information. (A) Landscape of mutation profiles in LUSC; (B) classification of different mutation 
types; (C) pathway enrichment analysis of mutated genes; (D) Kaplan-Meier survival analysis of TMB; (E) TMB levels in different tumor 
stages. LUSC, lung squamous cell carcinoma; TMB, tumor mutation burden.
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poorer survival than LUSC patients in the high TMB group 
(P<0.05) (Figure 1D). Finally, we also found that the TMB 
levels were positively associated with pathological stages 
(P<0.05) (Figure 1E).

TME characterization analysis in LUSC

The stromal, immune, and ESTIMATE scores of the 
TME were calculated based on the mRNA expression 
profiles using the ESTIMATE algorithm. We first studied 
the prognostic role of stromal, immune, and ESTIMATE 
scores on LUSC patient outcomes. As shown in Figure 
2A,B,C, lower stromal, immune, or ESTIMATE scores 
have a longer survival time than those with higher levels 
(P<0.05). Next, we investigated the relationship between 
TME scores and pathological stages. However, stromal, 
immune and ESTIMATE scores were not found to be 
significantly different in different pathological stages (Figure 

S2A,B,C). Immune cell infiltration is closely associated 
with cancer progression and clinical outcomes; therefore, 
we further analyzed immune cell difference to explore the 
TME in LUSC. The results of the CIBERSORT analysis 
suggested that there were significant differences for naïve B 
cells, plasma cells, resting memory T-cell CD4+, memory-
activated T-cell CD4+, regulatory T cells (Tregs), T-cell 
gamma delta, resting NK cells, monocytes, macrophage M0, 
macrophage M1, macrophage M2, activated dendritic cells, 
and neutrophils (Figure 2D). In addition, we also found 
some of these immune cells have potential correlations 
(Figure S2D).

Construction of the immune signature for prognosis in 
LUSC

As TMB and TME play an important role in LUSC 
prognosis, the TME- and TMB-related immune signature 

Figure 2 Tumor microenvironment characterization analysis in LUSC. Kaplan-Meier survival analysis of stromal score (A), immune score (B), 
and ESTIMATE score (C). (D) Immune cell proportions in LUSC. NK, natural killer.
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Figure 3 Immune signature constructed for the prognosis of LUSC. (A) Identification of hub differentially expressed genes; (B) LASSO Cox 
analysis; (C) Distribution of the risk score, survival data, and the mRNA expression of immune signature; (D) Kaplan-Meier survival analysis 
of the immune signature. Kaplan-Meier survival analysis of the immune signature in stage I (E), stage II (F), stages III and IV (G).
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Figure 4 Validation of the immune signature in multiple Gene Expression Omnibus lung squamous cell carcinoma cohorts. (A–D) Kaplan–
Meier survival analysis of immune signature in the GSE19188, GSE29013, GSE30219, and GSE73403 datasets. (E-H) Time-dependent 
receiver-operating characteristic analysis of immune signature in the GSE19188, GSE29013, GSE30219, and GSE73403 datasets. AUC: 
area under curve.

expression of all LUSC patients are shown in the Figure 3C.  
We found that the low-risk group had a significantly better 
prognostic outcome than the patients in the high-risk 
group (P<0.0001) (Figure 3D). In addition, we also analyzed 
the prognosis of patients at each tumor stage separately. 
A similar result was confirmed; low-risk patients have a 
longer survival time than high-risk patients (all P<0.001)  
(Figure 3E,F,G). 

Validation of immune signature in multiple GEO LUSC 
cohorts
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prognostic value among different LUSC populations, 
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training cohort, the K-M survival curves of 4 independent 
GEO cohorts all suggested that high-risk patients have 
significantly poorer prognosis than low-risk patients 

(GSE19188: P=0.0004, GSE29013: P=0.0104, GSE30219: 
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respectively (Figure 4E). In addition, we also found that the 
AUCs for 1- and 3-year OS were relatively high, while the 
AUCs for 5-year OS was low in the GSE29013, GSE30219, 
and GSE73403 cohorts (Figure 4F,G,H). Although the 
sample size was small, our immune signature clearly 
distinguished low- and high-risk patients. 
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Table 1 Univariate and multivariate Cox regression analysis in The Cancer Genome Atlas lung squamous cell carcinoma

Variables
Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

Age (≥60/<60 years) 1.147 (0.756–1.741) 0.518 1.310 (0.805–2.130) 0.277

Sex (male/female) 1.140 (0.806–1.612) 0.458 1.357 (0.915–2.014) 0.129

Stage (III + IV/I + II) 1.680 (1.199–2.352) 0.002 1.163 (0.672–2.013) 0.589

TNM_T (3+4/1+2) 1.753 (1.249–2.460) 0.001 1.268 (0.757–2.126) 0.367

TNM_M (M1/M0) 1.965 (0.624–6.194) 0.249 1.640 (0.496–5.422) 0.417

TNM_N (≥1/0) 1.279 (0.948–1.727) 0.107 1.297 (0.898–1.873) 0.165

Risk (high/low) 2.705 (1.981–3.694) <0.001 2.786 (1.975–3.931) <0.001

CI, confidence interval; HR, hazard ratio.

Figure 5 Development of a nomogram based on immune signature. (A) Development of a nomogram to predict overall survival (OS). (B) 
Calibration curve of the OS of lung squamous cell carcinoma patients. (C) Time-dependent receiver-operating characteristic curves of the 
nomogram comparing 1-, 3-, and 5-year OS. (D,E,F) Time-dependent ROC curves of the nomogram comparing 1-, 3-, and 5-year OS in 
the GSE29013, GSE73403, and GSE37745 datasets, respectively. AUC, area under curve; OS, overall survival.
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was found to be similar to tumor stage (Figure 5A). The 
calibration plot showed good performance between 
the outcomes predicted by the nomogram and actual 
observations (Figure 5B). The C-index for the nomogram 
was 0.696 with 1000 bootstrap replicates. The AUCs of the 
nomogram for 1-, 3-, and 5-year OS were: 0.658, 0.677, 
and 0.671, respectively. Finally, we applied the same method 
to validate the nomogram in 3 independent GEO cohorts. 
The AUCs for 1-, 3-, and 5-year OS were: 0.913, 0.874, 
and 0.726, respectively for the GSE29013 cohort; 0.760, 
0.695, and 0.841, respectively, for the GSE73403 cohort; 
and 0.680, 0.685, and 0.659, respectively, for the GSE37745 
cohort (Figure 5D,E,F). Therefore, these results indicate 
that our nomogram could be used to accurately predict OS 
in LUSC patients. 

Immune signature predicted immunotherapeutic benefits 
in LUSC

Immunotherapy has become an important therapeutic 
method for LUSC patients. To evaluate the predictive 
abil i ty of  the immune signature for the effect  of 

immunotherapy, we explored the correlation between 
the immune signature and the expression of immune 
checkpoints, the fraction of immune cells, and other 
immunotherapy biomarkers in LUSC. As shown in Figure 
6A,B,C, the expressions of PDCD1, CD274, and CTLA-4 
significantly increased in the low-risk group compared with 
the high-risk group, indicating a potentially enhanced effect 
of corresponding antibodies in patients with a low-risk 
score. MLH1, a key protein involved in DNA mismatch 
repair, was closely related to immunotherapy (26,27). 
Interestingly, the expression level of the MLH1 gene was 
also significantly decreased in the patients with a high-risk 
score (Figure 6D). We further analyzed the immunotherapy-
related biomarkers in TCGA LUSC cohort. Patients with 
a high-risk score were characterized by significantly lower 
tumor-infiltrating lymphocytes and cytotoxic activity scores 
(Figure 6E, F). The T cell-inflamed gene expression profile 
(GEP) was used and showed a higher inflamed score in the 
low-risk group (Figure 6G). The tumor immune dysfunction 
and exclusion (TIDE) score was also significantly higher 
in the low-risk group compared with the high-risk group 
(Figure 6H).

Figure 6 Immune signature predicted the immunotherapeutic benefits in lung squamous cell carcinoma. (A,B,C,D) mRNA expression 
of PDCD1, CD274, CTLA-4, and MLH1 in the low-risk and high-risk groups. (E) Distribution of tumor-infiltrating lymphocytes. (F) 
Distribution of cytotoxic activity scores. (G) Distribution of T-cell-inflamed GEP. (H) Distribution of TIDE score. GEP, gene expression 
profile; TIDE, tumor immune dysfunction and exclusion.
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Functional enrichment and pathway analyses

To better understand the molecular mechanism of immune 
signature in LUSC, functional enrichment analysis was 
performed based on GO biological process and KEGG 
pathway gene sets by using “clusterProfiler” in R package. 
As expected, DEGs were found to be enriched in immune-
related biological processes, such as leukocyte migration 
and chemotaxis, neutrophil chemotaxis, chemokine-
mediated signaling pathway, and the positive regulation of 
the ERK1 and ERK2 cascade (Figure 7A). These biological 
processes suggest that they have a positive role in the 
enrichment of tumor-associated immunity. Furthermore, 
the KEGG pathway analysis showed that the immune 
signature was significantly associated with the metabolism 
of xenobiotic by cytochrome P450, cytokine–cytokine 
receptor interaction, bile secretion, the peroxisome 
proliferators-activated receptor (PPAR) signaling pathway, 
and cholesterol metabolism (Figure 7B). We speculated that 
metabolic pathways may be the intermediate link between 
tumor cells and immune cells, therefore influence tumor 
progression. 

Discussion

In the present study, we comprehensively analyzed TMB 
and TME in LUSC. We found that tumor mutation and 
immune microenvironment play an important role in the 

progression and prognosis of LUSC. Furthermore, we 
constructed and validated an immune signature based on 
5 genes (FLNC, RND1, IL4I1, TGM2, and PTGIS), which 
was able to predict the prognosis and immunotherapeutic 
response for LUSC patients. The immune signature 
showed that patients with a high-risk score had a 
significantly poor prognostic outcome than those with a 
low-risk score at each tumor stage. Multiple independent 
GEO datasets demonstrated that the nomogram that 
integrated the immune signature with tumor stage gave 
the best performance in predicting the survival of LUSC 
patients. Furthermore, patients with a low-risk score had a 
potentially high response rate to immunotherapy. Finally, 
functional enrichment and pathway analyses suggested 
several significantly enriched immunological biological 
processes and various metabolism pathways, which might 
help to explain the potential molecular mechanisms of the 
immune signature.

Currently, it is widely accepted that tumorigenesis is the 
result of the gradual accumulation of gene mutations. As 
gene mutation plays an important role in tumors, it is also a 
biomarker and drug target for diagnosis and therapy (28). In 
the present study, the mutation variant classification, variant 
type, and SNV class of LUSC patients were summarized. 
The missense mutation is the most common mutation 
variant classification. We also found that TP53 mutation 
(77%) as the most mutated gene in LUSC patients. 
Additionally, mutated genes were enriched in the TP53, 

Figure 7 Functional enrichment and pathway analyses. (A) GO biological process enrichment analysis of the immune signature; (B) KEGG 
pathway enrichment analysis of the immune signature. KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology.
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Ras, Notch, Wnt, and Hippo signaling pathways, which are 
potential drug targets for LUSC treatment. Furthermore, 
high TMB could induce the creation of neoantigens and 
is associated with increased tumor immunogenicity and 
response to immunotherapy. For this reason, TMB has 
been considered a predictive biomarker for immunotherapy 
efficacy. In TCGA LUSC dataset, TMB levels were 
significantly associated with tumor stages. Patients with low 
TMB had significantly poorer survival than LUSC patients 
with high TMB. 

Gene mutation can also lead to the change of TME that 
results in the immune system being unable to recognize and 
kill tumor cells (29). Tumor-infiltrating immune cells are 
important parts of the TME, and can promote or inhibit 
tumor formation and development (30). We found that high 
stromal, immune, or ESTIMATE scores were significantly 
correlated with poor survival in TCGA LUSC patients. 
In addition, the relative proportions of immune cells 
were further investigated. B cells, plasma cells, memory-
activated CD4+ T cells, Tregs, and macrophage M1 are 
increased in tumor tissues compared with normal tissues, 
while resting memory CD4+ T cells, NK cells, macrophage 
M2, and neutrophils are significantly decreased. These 
results suggest that the differences in tumor-infiltrating 
immune cells contribute to LUSC growth, progression, and 
invasion.

Most of the 5 genes in the immune signature have been 
reported to be involved in cancer progression. FLNC, a 
member of the actin-binding filamin protein family, is 
associated with lymphatic invasion and metastasis (31). 
FLNC is an important component of the cytoskeleton, 
and plays a role in cell adhesion and migration (32). 
However, to date, the role and mechanism of FLNC in lung 
cancer have not been demonstrated. The Rho GTPase 
family belongs to the RAS superfamily that is involved 
in cancer formation and progression (33). A recent study 
demonstrated that Rho GTPase 1 (RND1) restrains 
the activation of Ras–mitogen-activated protein kinase 
signaling pathway and tumor initiation and progression, 
which is a highly activated oncogenic pathway involved 
in the progression of lung cancer. Nevertheless, the 
effect of RND1 in lung cancer has not been reported. 
Interleukin 4-induced gene1 (IL4I1), which encodes the 
secreted L‐amino acid oxidase protein, was first detected 
in B lymphocytes (34). As IL4I1 is widely expressed in 
tumor-associated macrophages and T lymphocytes, it is 
associated with immune escape (35). Transglutaminase 
2 (TGM2) exerts multiple physiological functions and 

is associated with cancer cell survival and metastatic 
behavior (36). It has been reported that TGM2 promotes 
the migration and invasion of lung cancer cells (37).  
The expression of PTGIS was found to be correlated with 
lung cancer patient survival (38). In a mouse model, the 
transgenic overexpression of PTGIS significantly decreased 
lung tumor formation and tumor burden (39,40).

Immunotherapy has achieved some success in the 
treatment of  NSCLC, including LUSC and lung 
adenocarcinoma. However, only a proportion of patients 
benefit from immunotherapy. Therefore, understanding 
the mechanism of the varied therapeutic responses to 
immunotherapy is critical to improving personal diagnoses 
and precision medicine. PD-L1 expression is an important 
biomarker that can predict the response to anti-PD-1/PD-
L1 therapies. CTLA-4 is critical for the control of CD4+ 
T cell function and is primarily involved in the priming 
phase of immune response. In the present study, we studied 
the correlation between the immune signature and other 
immunotherapeutic biomarker to evaluate the predictive 
ability of the immune signature for LUSC immunotherapy. 
We found that the expressions of PDCD1, CD274, and 
CTLA-4 were significantly increased in the low-risk group 
compared with the high-risk group, indicating a potentially 
enhanced effect of corresponding antibodies in patients 
with a low-risk score. In addition, patients with a low-risk 
score were characterized by a significantly higher tumor-
infiltrating lymphocytes and cytotoxic activity scores. 
Therefore, patients with a low-risk score could derive more 
benefit from immunotherapy than patients with a high-risk 
score.

However, the present study has some limitations. First, 
the data for evaluating immunotherapy were download from 
TCGA dataset, instead of the real immunotherapy cohort. 
Second, the sample size of the present study was relatively 
small, and the immune signature needs larger sample 
sizes to increase its reliability. Third, immune signature-
related functional experiments are needed to elucidate the 
molecular mechanism. Therefore, future research is still 
needed to address these issues. 

Conclusions

In the present study, we developed and validated an 
immune signature to effectively predict survival and 
immunotherapeutic response in patients with LUSC. Our 
immune signature may help to guide personalized medicine 
for LUSC patients.
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