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Abstract

Background: Population-level estimates of disease prevalence and control are needed to assess 

prevention and treatment strategies. However, available data often suffer from differential 

missingness. For example, population-level HIV viral suppression is the proportion of all HIV-

positive persons with suppressed viral replication. Individuals with measured HIV status, and 

among HIV-positive individuals those with measured viral suppression, likely differ from those 

without such measurements.

Methods: We discuss three sets of assumptions to identify population-level suppression in the 

intervention arm of the SEARCH Study (NCT01864603), a community randomized trial in rural 

Kenya and Uganda (2013-2017). Using data on nearly 100,000 participants, we compare estimates 

from i) an unadjusted approach assuming data are missing-completely-at-random (MCAR); ii) 

stratification on age-group, sex, and community; and, iii) targeted maximum likelihood estimation 

to adjust for a larger set of baseline and time-updated variables.

Results: Despite high measurement coverage, estimates of population-level viral suppression 

varied by identification assumption. Unadjusted estimates were most optimistic: 50% 

(95%CI:46-54%) of HIV-positive persons suppressed at baseline, 80% (95%CI:78-82%) at Year 1, 

85% (95%CI:83-86%) at Year 2, and 85% (95%CI:83-87%) at Year 3. Stratifying on baseline 

predictors yielded slightly lower estimates, and full adjustment reduced estimates meaningfully: 
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42% (95%CI:37-46%) of HIV-positive persons suppressed at baseline, 71% (95%CI:69-73%) at 

Year 1, 76% (95%CI:74-78%) at Year 2, and 79% (95%CI:77-81%) at Year 3.

Conclusions: Estimation of population-level disease burden and control requires appropriate 

adjustment for missing data. Even in large studies with limited missingness, estimates relying on 

the MCAR assumption or baseline stratification should be interpreted cautiously.
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INTRODUCTION:

Accurate population-level estimates of disease prevalence and treatment coverage are 

needed to quantify disease burden and evaluate the success of programs for epidemic 

control. The data available to inform such estimates, however, are often susceptible to 

differential missingness. In other words, the missing-completely-at-random (MCAR) 

assumption rarely, if ever, holds.1-4 The field of HIV prevention and treatment provides an 

illustrative example. Consider the UNAIDS 90-90-90 target for the year 2020: 90% of all 

HIV-positive persons should know their status; 90% of those who know their status should 

be receiving antiretroviral therapy (ART); and 90% of those receiving ART should have 

suppressed HIV viral replication.5 Multiplying these proportions together yields an overall 

target, referred to here as “population-level suppression” - 73% of all HIV-positive persons 

should have suppressed HIV viral replication (Appendix). This target reflects the HIV care 

“cascade” from diagnosis, through treatment initiation and retention, to viral suppression.

While population-level suppression is widely used in assessing HIV care strategies, two 

recent systematic reviews noted the variability in both data quality and statistical approaches 

used for assessment.6,7 In particular, Granich et al.6 remarked on the challenges posed by 

incomplete data and inconsistent methodology, while Sabapathy et al.7 proposed a template 

to standardize data collection and evaluation. In this manuscript, we provide an in-depth 

demonstration of the methods used to estimate population-level suppression in the SEARCH 

Study, a cluster randomized trial in rural Kenya and Uganda (NCT01864603).8,9 We 

approach the missing data problem with a causal framework to define target parameters with 

counterfactuals, state identifiability assumptions sufficient to translate these targets into 

statistical quantities, and estimate the resulting statistical parameters.1-4,10-14 We refer the 

reader to companion papers for details on the trial.8,9

METHODS:

In general, the total number of HIV-positive persons in a population is unknown, and 

individuals with known HIV status are not necessarily representative of the general 

population. If, for example, persons with higher health-seeking behavior are more likely to 

test and less likely to be infected, then an unadjusted estimate of HIV prevalence (i.e. the 

proportion with HIV among those tested) is likely to underestimate the true prevalence of 

HIV in the population, even in the context of community-wide testing, as was implemented 

in recent Universal-Test-and-Treat trials.9,15-18
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Likewise, measurement of plasma HIV RNA levels (viral loads) among HIV-positive 

individuals is generally incomplete and often depends on factors associated with viral 

suppression. For example, if viral loads are only measured at HIV clinic visits, then viral 

suppression among measured individuals will overestimate suppression among all HIV-

positive persons, including newly diagnosed individuals who are not yet in-care and 

previously diagnosed individuals who are out-of-care. These familiar missing data 

challenges can be illustrated with a directed acyclic graph or another causal modeling 

approach (Figure 1).14,19-24

Overcoming these challenges requires knowledge of the data generating process. Consider 

the 16 communities in the intervention arm of the SEARCH Study. After a door-to-door 

census, we conducted community-wide testing annually through multidisease health fairs, 

followed by out-of-facility testing for residents who did not attend the fair.25,26 We linked 

participants over successive years with a fingerprint biometric. Prior diagnosis of HIV and 

ART use were ascertained through linkage to clinic records.8,27 A re-census was conducted 

3 years after follow-up to determine interim deaths, out-migrations, and in-migrations.9

With this measurement scheme in mind, we describe the methods used in Petersen et al.8 

and Havlir et al.9 to characterize viral suppression in the intervention arm at study baseline 

t=0, and annually thereafter t={1,2,3}. These cross-sectional analyses provide snapshots of 

population-level suppression among an open cohort of adult (≥15years) residents (allowing 

for entry due to age and in-migration, and exit due to death or outmigration). We note 

estimating viral suppression among a closed cohort of known baseline HIV-positive 

residents is a distinct goal, resulting in a different causal parameter, identifiability 

assumptions, and estimation approach.8,9

Causal parameters

Let HIV t
∗ be an indicator that an individual is HIV-positive at time t, irrespective of whether 

serostatus is measured. Likewise, let Suppt∗ be a possibly unmeasured indicator of HIV viral 

suppression (<500cps/mL) at time t. Population-level suppression is the conditional 

probability of viral suppression given HIV-positive status: ℙ(Suppt∗ = 1 ∣ HIV t
∗ = 1), or 

equivalently, the joint probability of being HIV-positive with suppression, divided by the 

probability of being HIV-positive (i.e. HIV prevalence): ∕ℙ(HIV t∗ = 1)
ℙ(Suppt∗ = 1 , HIV t∗ = 1) .

Ideally, anyone not already known to be HIV-positive (i.e. previously HIV-negative or HIV-

unknown) would be tested at time t. Of course, this is never the case; further, missingness 

inherently depends on underlying HIV status - the status of an HIV-negative individual who 

does not test at time t is unknown, whereas the status of an HIV-positive individual not seen 

at time t might be known from prior testing. The problem is intensified after multiple rounds 

of community-wide testing, which provide multiple opportunities for prevalent HIV-positive 

persons to be diagnosed. To avoid this inherent dependence, we define Δt
HIV  as an indicator 

that an individual was seen at community-wide testing and had “known” HIV status at time t 
- due to a negative test result at time t, or a positive result at or before time t. We define 

observed HIV status as HIV t = Δt
HIV × HIV t

∗.

Balzer et al. Page 3

Epidemiology. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As with HIV testing, viral load measurement is incomplete; HIV-positive persons on whom 

viral load is measured may differ systematically from HIV-positive persons who are missing 

this measure. Define Δt
Supp as an indicator of viral load measurement at time t, and define 

observed viral suppression as Suppt = Δt
Supp × Suppt∗.

Three sets of identifiability assumptions

In the above, population-level suppression was expressed in terms of underlying indicators 

of HIV seropositivity and viral suppression: ∕ℙ(HIV t∗ = 1)
ℙ(Suppt∗ = 1 , HIV t∗ = 1) . We now 

present three sets of identifiability assumptions to write the numerator and denominator in 

this expression as parameters of the observed data distribution (see eAppendix 1 for proofs).

Unadjusted: Suppose we are willing to assume that HIV prevalence among those seen at 

time t is representative of HIV prevalence among those not seen, and that viral suppression 

among HIV-positive persons with viral loads measured at time t is representative of 

suppression among HIV-positive persons without measured viral loads. More formally, 

suppose we make the following randomization assumptions as applied to missing data:
1-4,10-14 HIV t

∗ ⊥ Δt
HIV  and Suppt∗ ⊥ Δt

Supp ∣ HIV t = 1. If these assumptions hold, the 

numerator of population-level suppression is identified as

ℙ(Suppt∗ = 1, HIV t∗ = 1) = ℙ(Suppt = 1 ∣ Δt
Supp = 1, HIV t = 1) × ℙ(HIV t = 1 ∣ ΔtHIV = 1),

and denominator as ℙ(HIV t
∗ = 1) = ℙ(HIV t = 1 ∣ Δt

HIV = 1).27 Taking the ratio of these 

yields the unadjusted statistical parameter:

ℙ(Suppt = 1 ∣ Δt
Supp = 1, HIV t = 1) . (Eq1)

Baseline adjustment: We can weaken the above assumptions on the missingness process 

by conditioning on baseline covariates. Specifically, let B denote mutually exclusive and 

exhaustive strata defined by age group, sex, and community of residence. Now suppose 

within each strata b, HIV prevalence among those seen at time t is representative of 

prevalence among those not seen, and within each strata b, suppression among HIV-positive 

persons with viral loads measured at time t is representative of suppression among HIV-

positive persons without measured viral loads. More formally, we assume 

HIV t
∗ ⊥ Δt

HIV ∣ B and Suppt∗ ⊥ Δt
Supp ∣ HIV t = 1, B.

Under these assumptions on missingness, we obtain the following identifiability result, 

corresponding to a hypothetical, dynamic intervention to first ensure knowledge of HIV 

status and then to ensure measurement of viral loads among HIV-positive persons:28-31
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ℙ(Suppt∗ = 1, HIV t
∗ = 1)

= ∑b ℙ(Suppt = 1 ∣ Δt
Supp = 1, HIV t = 1, B = b) × ℙ(HIV t = 1 ∣ Δt

HIV

= 1, B = b) × ℙ(B = b)
(Eq2)

In words, this is the strata-specific probability of viral suppression, given measurement and 

HIV-positive status; multiplied by the strata-specific probability of being HIV-positive, given 

measurement; and then standardized with respect to the distribution of strata. Identification 

of the denominator, population-level prevalence, follows from above:

ℙ(HIV t
∗ = 1) = ∑b ℙ(HIV t = 1 ∣ Δt

HIV = 1, B = b) × ℙ(B = b) (Eq3)

By taking the ratio of the numerator (Eq2) to the denominator (Eq3), we obtain a baseline-

adjusted statistical parameter corresponding to population-level suppression under the above 

assumptions.

For the conditioning sets to be well defined, we also require the positivity assumption.11,32 

Irrespective of age, sex, and community, there must be a positive probability of being seen 

with known HIV status ℙ(Δt
HIV = 1 ∣ B) > 0, and for every strata in which some proportion 

of HIV-positive persons are seen, there must be a positive probability of viral load 

measurement: ℙ(Δt
Supp = 1 ∣ HIV t = 1, B) > 0.

Time-varying adjustment: While stratifying on certain baseline characteristics weakens 

our assumptions on missingness, there may be many other variables potentially impacting 

testing, underlying HIV status, and viral suppression among HIV-positive persons. In 

particular, ART use is a key determinant of viral suppression and may also be predictive of 

viral load measurement.

Define ARTt as an indicator of ART initiation prior to time t, and let Xt denote the remaining 

observed variables that are potentially predictive of both viral suppression and its 

measurement: the full set of baseline demographics (e.g. age, sex, marital status, education, 

occupation, alcohol use, mobility, wealth index, and community) together with prior HIV 

testing and suppression. While viral suppression without ART is possible, the UNAIDS 

target is focused on ART-induced suppression (Appendix).5 Therefore, we set Suppt∗ to zero 

for persons not on ART. We further assume complete measurement of ART use, 

acknowledging that if ART use is incompletely captured, this assumption will lead to 

underestimation of suppression. Finally, for HIV-positive persons who have initiated ART, 

we assume that conditional on baseline and time-updated covariates Xt, suppression among 

those with a measured viral load at time t is representative of suppression among those with 

a missing viral load. More formally, we assume Suppt∗ ⊥ Δt
Supp ∣ ARTt = 1, Xt.

We also require the positivity assumption; all HIV-positive individuals who have initiated 

ART have a positive probability of having their viral load measured, regardless of their 
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baseline and time-updated covariates: ℙ( Δt
Supp = 1 ∣ ARTt = 1, Xt) > 0 a.e.. Under these 

assumptions, we have the following identifiability result corresponding to a hypothetical 

intervention to ensure viral load measurement among ART initiators:28

ℙ(Suppt∗ = 1, HIV t
∗ = 1)

= ℙ(ART t = 1) × ∑xt ℙ(Suppt = 1 ∣ Δt
Supp = 1, ART t = 1, Xt = xt) × ℙ(Xt

= xt ∣ ART t = 1)
(Eq4)

where the summation generalizes to an integral for continuous covariates. In words, this is 

the proportion of individuals who have started ART (and are, by implication, HIV-positive) 

in the total population (including both HIV-positive and HIV-negative persons) multiplied by 

the adjusted probability of being suppressed, given prior ART initiation.

For the denominator of HIV prevalence, we also consider an expanded adjustment set Lt, 

consisting of all baseline demographics and prior HIV testing. For the subgroup without a 

prior HIV diagnosis, we assume that conditional on Lt, HIV prevalence among those tested 

at time t is representative of HIV prevalence among those not tested, or more formally, 

HIV t
∗ ⊥ Δt

HIV ∣ Lt, HIV t − 1 = 0. We further assume positivity; previously undiagnosed 

persons have some chance of being tested regardless of their Lt values: 

ℙ(Δt
HIV = 1 ∣ HIV t − 1 = 0, Lt) > 0 a.e.. Under these assumptions, we have the following 

identifiability result corresponding to a hypothetical intervention to ensure HIV status is 

known:28

ℙ(HIV t
∗ = 1) = ℙ(HIV t − 1 = 1) +

ℙ(HIV t − 1 = 0) × ∑lt ℙ(HIV t = 1 ∣ Δt
HIV = 1, Lt = lt, HIV t − 1 = 0)

× ℙ(Lt = lt ∣ HIV t − 1 = 0)
(Eq5)

where the summation generalizes to an integral for continuous covariates. In words, this is 

the proportion of the population previously known to be HIV-positive plus the adjusted 

proportion of the population newly known to be HIV-positive.

Taking the ratio of the numerator (Eq4) to the denominator (Eq5) yields a fully adjusted 

statistical parameter for population-level suppression under the above assumptions.

Estimation approaches

The unadjusted parameter (Eq1) can be estimated with the empirical proportion of the 

population with measured viral suppression. The baseline-adjusted parameter (Eq2÷Eq3) 

can also be estimated with empirical proportions. Specifically, we would generate covariate 

strata-specific estimates by taking empirical means, and then combine by standardizing 

across strata. A similar approach was used in the PopART (HPTN 071) Universal-Test-and-

Treat trial with stratification factors including sex, age group and community.17,33,34 This 

approach corresponds to G-computation when fully-saturated regressions are used to 

estimate the conditional probability of the outcome, given measurement and the adjustment 

set (i.e. the “outcome regression”).28,35,36 It is further equivalent to inverse-weighting when 
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fully-saturated regressions are used to estimate the conditional probability of measurement, 

given the adjustment set (i.e. the “propensity score”).37-39

When the adjustment set is higher dimensional, such as for our fully-adjusted parameter 

(Eq4÷Eq5), alternative approaches are needed to smooth over values of the covariates with 

weak support.32 We could, for example, use logistic regression with two-way interactions to 

estimate the propensity scores for inverse-weighting. This approach was used in a sensitivity 

analysis in the Ya Tsie Universal-Test-and-Treat trial (also called the Botswana Combination 

Prevention Project).18,40

Another approach is targeted maximum likelihood estimation (TMLE), which offers 

efficiency gains over inverse-weighting and allows for flexible adjustment for a large set of 

covariates through machine learning.24,41. We refer the reader to 42,43 for an introduction to 

TMLE and to 44 for a detailed comparison with other methods, such as parametric G-

computation and augmented inverse-weighting. Briefly, TMLE combines estimates of 

outcome regression with estimates of the propensity score to achieve a number of desirable 

properties. TMLE is double robust - it is consistent if either the outcome regression is 

consistently estimated or the propensity score is consistently estimated. TMLE is also a 

substitution estimator, potentially improving robustness under strong confounding or rare 

outcomes.44-47

In eAppendix 2, we provide step-by-step descriptions of the unadjusted estimator, 

parametric G-computation, inverse-weighting estimator, and TMLE to adjust for missing 

outcomes.

Implementation

In the SEARCH Study, the primary approach used TMLE to estimate the fully adjusted 

parameter (Eq4÷Eq5). Within TMLE, Super Learner was implemented to estimate the 

outcome regressions and propensity scores (i.e. the conditional probability of measurement, 

given the adjustment set).48 Super Learner is an ensemble, machine learning method that 

uses cross-validation to build the optimal combination of predictions from a library of 

candidate algorithms. For ease of interpretation, reduced computational burden, and to avoid 

over-fitting, our Super Learner library was limited to logistic regressions (with various 

screening algorithms), generalized additive models (with various screening algorithms), and 

the mean (corresponding to the unadjusted estimator). We implemented TMLE fully 

stratified on community, allowing the outcome regressions and propensity scores to vary by 

community. Full implementation details, including computing code, are available in 

eAppendix 3.

For comparison, we also present the use of empirical proportions to estimate the unadjusted 

parameter (Eq1), and the baseline-adjusted parameters (Eq2÷Eq3) controlling for sex, age 

group (15-19 years, 20-29 years, 30-39 years, 40-49 years, 50-59 years, and 60+ years), and 

community.
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We obtained statistical inference with influence curve standard errors, treating the 

community as the unit of independence. We conducted analyses in R v.3.6.1 (Vienna, 

Austria) with the ltmle_v1.1-0 and SuperLearner_v2.0-25 packages.49-51

Ethical considerations

The SEARCH Study was approved by the ethics committees at the University of California, 

San Francisco; the Kenya Medical Research Institute; and Makerere University School of 

Medicine in Uganda. As previously described,9 oral informed consent was provided 

participation in the census and health fairs; written informed consent was provided to receive 

ART outside of country guidelines.

RESULTS

The baseline characteristics of the study participants have been described elsewhere.8,9,25 In 

brief, approximately one-third of the 79,818 residents enumerated in the baseline census 

were from each study region, and nearly half of participants were aged 15-30 years; men 

constituted 45% (eTable 1). HIV status was determined on 89% (71,402) of residents at 

baseline (Table 1). After baseline, knowledge of HIV serostatus remained high with 77% of 

residents (69,175/90,047) seen at Year 1, 75% (71,577/95,599) at Year 2, and 81% 

(80,390/99,186) at Year 3. There were no obvious demographic differences between the 

enumerated population and those with known HIV serostatus (eTable 1).

Viral loads were measured for 76% of baseline HIV-positive residents (Table 1). Missing 

viral loads were more common at baseline due to early assay failures.26 Despite ~95% 

coverage of viral load measurement for the remaining years, baseline and time-varying 

characteristics differed for HIV-positive persons with measured versus missed HIV RNA 

levels (Table 2). In particular, HIV-positive women were more likely to have their viral load 

measured than HIV-positive men. After baseline, adolescents (15-24years) were more likely 

to be missed than older adults (25+years). Viral load measurement also differed notably by 

the time-varying characteristics; HIV-positive persons who were previously aware of their 

status, had evidence of starting ART, or had a history of suppressing viral replication were 

more likely to have their viral load measured than their counterparts.

Estimates of population-level suppression varied meaningfully depending on the 

identifiability assumptions employed (Figure 2). At baseline, the unadjusted approach 

suggested that half of all HIV-positive residents had suppressed viral replication (50%; 

95%CI: 46-54%). Stratifying on age group, sex, and community slightly reduced the 

estimate to 49% (95%CI: 45-54%). The lowest estimate of 42% (95%CI: 37-46%) was 

obtained after adjusting for the full set of baseline and time-varying characteristics.

Deviations were pronounced in subsequent years (Figure 2). The unadjusted approach 

suggested that 80% (95%CI: 78-82%) of all HIV-positive residents were suppressed at Year 

1, 85% (95%CI: 83-86%) at Year 2, and 85% (95%CI: 83-87%) at Year 3. Estimates 

adjusted for baseline covariate-strata were similar: 79% (95%CI: 77-81%) at Year 1, 84% 

(95%CI: 82-86%) at Year 2, and 84% (95%CI: 83-86%) at Year 3. Fully adjusted estimates 
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were meaningfully lower: 71% (95%CI: 69-73%) at Year 1, 76% (95%CI: 74-78%) at Year 

2, and 79% (95%CI: 77-81%) at Year 3.

DISCUSSION:

In an open cohort of nearly 100,000 residents in rural Kenya and Uganda, we compared 

three approaches for missing outcomes: (i) an unadjusted approach, the empirical proportion 

among those measured; (ii) stratification on age group, sex, and community; and (iii) TMLE 

with Super Learner to adjust for the full set of baseline and time-varying covariates. Despite 

low levels of missingness, estimates diverged by identifiability assumptions. The unadjusted 

approach consistently yielded the highest estimates; the fully adjusted approach consistently 

yielded the lowest estimates.

In the SEARCH Study, HIV serostatus and HIV RNA viral levels were obtained through 

multidisease testing at health fairs with follow-up for non-participants.25 Unlike clinic-based 

ascertainment, this approach reaches HIV-positive persons who are in-care or who are out-

of-care.9,16-18 As a result, the MCAR assumption may seem reasonable.1-4 However, 

deviations between the unadjusted estimates and adjusted ones suggest there were 

meaningful differences in the population measured and population missed with respect to, 

among other factors, prior diagnosis, ART use, and viral suppression.

Both adjusted approaches were built on causal assumptions that (distinct subsets of) 

observed participant characteristics were sufficient to control for the common causes of 

measurement and health outcomes.1-4 When assuming baseline covariates were sufficient, 

we fully stratified on sex, age group, and community; as a result, this was equivalent to a 

fully non-parametric approach for the outcome regression in G-computation and to a fully 

non-parametric approach for the propensity score in inverse-weighting. Beyond age, sex, and 

community, there were, however, additional differences between those with measured versus 

missing viral loads, including differences in post-baseline variables; specifically, persons 

without prior diagnosis, ART initiation, or viral suppression were less likely to have their 

viral load measured. Therefore, the primary approach in the SEARCH Study was to weaken 

the assumptions on the missingness process by conditioning on a larger set of baseline and 

time-updated covariates.8,9,27 We estimated the fully adjusted statistical parameter using 

TMLE with Super Learner.

It is important to note, however, that the primary approach still relied on non-testable 

assumptions. If there is an unmeasured cause of measurement and health outcomes, none of 

the identifiability assumptions will hold and the wished-for causal parameters will diverge 

from the statistical estimands. In the SEARCH Study, we aimed to minimize this divergence 

by conditioning on a large set of baseline and time-varying variables and assessing the 

plausibility of assumptions with experts in HIV prevention. During estimation, we further 

aimed to avoid unsubstantiated assumptions and minimize bias due to model 

misspecification by using TMLE with Super Learner. This approach will provide a 

consistent point estimate if either the outcome regression or the propensity score is 

consistently estimated and will provide consistent inference (i.e. valid confidence intervals) 

when both are consistently estimated at sufficiently fast rates and satisfy the relevant 
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empirical process conditions.52,53 Recent extensions to obtain double robust inference, while 

of interest, were not implemented in the current analyses.

While it is well recognized that estimates can only be interpreted causally if the 

identifiability assumptions hold, similar challenges apply when interpreting estimates 

adjusting for missing data.14 Specifically, our estimates are only truly representative of 

population-level metrics if the missingness assumptions hold13 and there is sufficient data 

support. These challenges, however, should not inspire inaction; instead, we often need to 

use available data to obtain timely estimates of disease burden and control under minimal 

assumptions, which are transparently stated and carefully evaluated.

In the running example, the identification choice had implications for policymaking and 

targeting resources. Both the unadjusted and baseline-adjusted approaches suggested the 

UNAIDS 90-90-90 target (73%-suppression) was surpassed within one year of the 

intervention and the UNAIDS 95-95-95 target (86%-suppression) was nearly achieved by 

the trial’s close.5 In contrast, the estimates controlling for time-updated covariates indicated 

the 90-90-90 target was achieved after two years, but there still was a substantial gap to the 

95-95-95 target.

In summary, estimates of population-level HIV viral suppression continue to be the 

benchmark in assessing programmatic success in epidemic control. In four cross-sectional 

analyses of nearly 100,000 participants in the intervention arm of the SEARCH Study, we 

demonstrated the impact of missing data assumptions that can occur even in large studies 

with high measurement. While we focused on a specific example – estimating population-

level HIV viral suppression - our results have broad applicability to missing data problems, 

commonly encountered in public health and medicine.3,4,10-13 We recommend adjustment 

for a large set of baseline and time-varying covariates that potentially influence both 

measurement and underlying status; TMLE with Super Learner is one approach to 

performing such adjustments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix:: UNAIDS 90-90-90 target and population-level suppression

For the moment assume complete measurement, and let HIVt be an indicator of HIV-positive 

serostatus at time t; Dxt be an indicator of having an HIV diagnosis by time t; ARTt be an 

indicator of antiretroviral therapy (ART) use at time t, and Suppt be an indicator of 

suppressed viral replication at time t. The UNAIDS 90-90-90 targets are a series of 

proportions or conditional probabilities:5

% of all HIV-positives who are diagnosed (first-90):

ℙ(Dxt = 1 ∣ HIV t = 1) =
ℙ(Dxt = 1, HIV t = 1)

ℙ(HIV t = 1)

% of diagnosed who are on ART (second-90):

ℙ(ARTt = 1 ∣ Dxt = 1, HIV t = 1) =
ℙ(ARTt = 1, Dxt = 1, HIV t = 1)

ℙ( Dxt = 1, HIV t = 1)

% on ART who are currently suppressed (third-90):

ℙ(Suppt = 1 ∣ ARTt = 1, Dxt = 1, HIV t = 1) =
ℙ(Suppt = 1, ARTt = 1, Dxt = 1, HIV t = 1)

ℙ(ARTt = 1, Dxt = 1, HIV t = 1)

Multiplying together the three “90s” yields the proportion of all HIV-positive persons who 

are currently suppressed (i.e. population-level suppression):

ℙ(Suppt = 1 ∣ HIV t = 1) =
ℙ(Suppt = 1, ARTt = 1, Dxt = 1, HIV t = 1)

ℙ(HIV t = 1)

Since each numerator and denominator is a population-level proportion, we can equivalently 

express the targets as follows: first-90=(number previously diagnosed)/(number HIV-

positive), second-90=(number on ART)/(number previously diagnosed), third-90=(number 

virally suppressed)/(number on ART), and population-level suppression=(number virally 

suppressed)/(number HIV-positive).

Therefore, one could directly estimate population-level suppression, as we demonstrated 

here, or instead estimate each 90-90-90 target and multiply. These two approaches should 

yield identical results, as demonstrated in our previous work.8,9,27 However, deviations 

between the direct estimate and the multiplied-one can occur when making the missing-

completely-at-random (MCAR) assumption.1-4 Specifically, under MCAR, the 

denominators of the third-90 and population-level suppression become conditional on 

having a viral load measured, which is almost always a subset of the population on ART and 

a subset of the population who is HIV-positive.
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Figure 1: 
Simplified directed acyclic graph to represent the challenges posed by incomplete HIV 

testing. Demographics and prior testing are common causes of current testing (the 

hypothetical intervention node) and underlying HIV status (possible unobserved), both of 

which impact observed HIV status. Analogous challenges arise due to incomplete 

measurement of suppression among HIV-positive persons.
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Figure 2: 
Estimates of population-level HIV viral suppression at the time of annual testing in the 

intervention arm of the SEARCH trial. Estimates were obtained with the empirical mean 

among those measured (“Unadjusted”), stratifying on sex, age group and community 

(“Baseline adjustment”), and using targeted maximum likelihood estimation (TMLE) with 

Super Learner to adjust for both baseline and time-varying characteristics (“Time-varying 

adjustment”). Horizontal dashed line at 73% suppression indicates UNAIDS target; vertical 

lines indicate 95% confidence intervals.
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Table 1:

Number and coverage of residents contributing to unadjusted estimates of population-level HIV viral 

suppression at the time of annual testing. Each column is a subset of the former. Changes in annual population 

size are due to additions from in-migrants and aging-in, and due to subtractions from death and outmigration. 

Years refer to time since study baseline, which varied by community (Year 0 ranging from June 2013 to June 

2014).

Resident
(≥15 years)

HIV serostatus
known

HIV-positive
serostatus

Viral load
measured

Viral replication
suppressed

Year 0 79818 71402 7009 5332 2659

Year 1 90047 69175 6526 6137 4906

Year 2 95599 71577 6687 6276 5316

Year 3 99186 80390 6991 6738 5737
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Table 2:

Select baseline and time-varying characteristics of HIV-positive residents by year and by viral load 

measurement. Metrics in N (%).

Total Female Male 15-24
years

25+
years

Prior

diagnosis
a

Prior

ART use
b

Prior

Supp.
c

Year 0

Tested 5332 3599 (67) 1733 (33) 687 (13) 4645 (87) 3856 (72) 3149 (59)

Missed 1677 1060 (63) 617 (37) 226 (13) 1451 (87) 1081 (64) 847 (51)

Year 1

Tested 6137 4100 (67) 2037 (33) 729 (12) 5408 (88) 5917 (96) 5591 (91) 2276 (37)

Missed 389 238 (61) 151 (39) 54 (14) 335 (86) 310 (80) 225 (58) 92 (24)

Year 2

Tested 6276 4168 (66) 2108 (34) 782 (12) 5494 (88) 6153 (98) 5970 (95) 4637 (74)

Missed 411 247 (60) 164 (40) 89 (22) 322 (78) 333 (81) 230 (56) 141 (34)

Year 3

Tested 6738 4603 (68) 2135 (32) 1023 (15) 5715 (85) 6480 (96) 6376 (95) 5108 (76)

Missed 253 135 (53) 118 (47) 54 (21) 199 (79) 222 (88) 173 (68) 143 (57)

Abbreviations: “ART”=antiretroviral therapy; “Supp”=Suppression.

a
Positive HIV test or Ministry of Health record of HIV care before the start of the community-specific health fair at year t.

b
ART use, as determined through Ministry of Health records or suppressed HIV RNA, before the start of the community-specific health fair at year 

t.

c
Suppressed HIV RNA before the start of the community-specific health fair at year t.
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