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Itaconate ameliorates methicillin-resistant Staphylococcus 
aureus-induced acute lung injury through the Nrf2/ARE pathway
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Background: Methicillin-resistant Staphylococcus aureus (MRSA) are a critical predisposing factor of sepsis 
in the clinic. As a product of human energy metabolism and immune response, itaconate can effectively 
reduce inflammation in the body. This research employed 4-octyl itaconate (4-OI) to illustrate that itaconate 
exerted anti-inflammatory effects to protect the body from acute lung injury (ALI) induced by MRSA. 
Methods: HE staining and immunohistochemistry are used to evaluate the MRSA-induced ALI in mice. 
WB and qPCR were used to verify the effect of 4-OI on inflammation and oxidative stress caused by MRSA. 
Molecular docking was used to verify the binding sites of 4-OI and Keap1.
Results: We demonstrated that 4-OI treatment increased the survival ratio, attenuated the pathological 
damage, inhibited neutrophil infiltration, and reduced lung bacterial burden in the mouse MRSA pneumonia 
model. 4-OI decreased the expression of inflammatory factors by stimulating the Nrf2 in vivo and  
in vitro. Furthermore, 4-OI exerted its effect by promoting nuclear transport of Nrf2 in vitro. The results 
of molecular docking indicated that 4-OI bound to the pocket of Keap1 and exerted a stable interaction. 
Both Nrf2 inhibitors (ML385) and Nrf2−/− mice abolished the protective effect of 4-OI on MRSA-induced 
inflammation both in vitro and in vivo. 
Conclusions: 4-OI prevents lung damage caused by MRSA bacteremia via activating Nrf2/ARE pathway.
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Introduction

Methicillin-resistant Staphylococcus aureus (MRSA), a 
critical pathogen causing hospital-acquired infections, is 
a major global health problem (1,2). MRSA infection is a 
life-threatening disorder because of the bacteria’s strong 
capacity for antibiotic resistance. Patients with MRSA 

sepsis often suffer from acute lung injury (ALI), hypoxemia, 
and respiratory distress (3,4). Due to the continuous 
emergence of drug-resistant strains, MRSA-induced ALI is 
associated with high mortality and morbidity worldwide (5). 
Therefore, new drugs to treat patients with MRSA-induced 
ALI are urgently needed.
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Itaconate, a product of human energy metabolism and 
immune responses, has strong anti-inflammatory and 
antioxidant effects. Itaconate can also exert antibacterial 
effects by inhibiting isocitrate lyase (6). The anti-
inflammatory activity of itaconate has attracted increasing 
attention, with several studies reporting that itaconate 
dampens the inflammatory response in lipopolysaccharide 
(LPS)-treated macrophages and mice. Itaconate also 
inhibits the expression of cytokines and protects mice from 
ischemia-reperfusion injury (7). As derivatives of itaconate 
that can penetrate biological membranes, dimethyl itaconate 
(DI) and 4-octyl itaconate (4-OI) were found to decrease 
proinflammatory cytokine production in macrophages 
and protect mice against LPS-induced lethality (8). 
Additionally, DI has been shown to exert therapeutic effects 
against fungal infectious diseases, including imiquimod-
induced psoriasis-like skin inflammation (9) and Aspergillus 
fumigatus-induced fungal keratitis in mice (10). However, 
the protective effect of itaconate against Gram-positive 
bacteria (e.g., MRSA)-induced ALI has not been studied.

Increasing evidence has indicated that nuclear factor-
erythroid 2 (NF-E2)-related factor 2 (Nrf2) and its 
downstream gene, heme oxgenase-1 (HO-1) and NAD(P)
H:quinone oxidoreductase 1 (NQO1), play important 
roles in the anti-inflammatory activity of many natural 
compounds. As a cell protective enzyme, HO-1 mainly 
catalyzes the catabolism of heme into ferrous iron, carbon 
monoxide and biliverdin. The degradation of the heme 
helps prevent its pro-oxidation effect. Biliverdin and its 
reduced bilirubin have effective ROS scavenging activity to 
resist oxidative stress. NQO1 can catalyze the reduction of 
quinone to hydroquinone, prevent quinone from forming 
semihydroquinone through a one-electron reduction 
reaction, and ultimately reduce the ROS generated by the 
oxidation of semihydroquinone. NQO1 can also prevent 
environmental stressors from causing oxidative damage 
to DNA and protect endogenous play an important role 
in antioxidants. For example, falcarindiol protects against 
LPS-induced acute intestinal inflammation through the 
Nrf2/HO-1 pathway (11). Angelica sinensis also activates 
Nrf2/HO-1 and inhibits interleukin 1 beta (IL-1β) and 
tumor necrosis factor alpha (TNF-α) in LPS-induced 
RAW264.7 cells (12). Similarly, 4-OI promotes the nuclear 
localization of Nrf2 and thereby decreases IL-1β expression 
in LPS-treated macrophages and mice (9). However, it is 
unknown whether the anti-inflammatory effect of itaconate 
on MRSA-ALI is dependent on the Nrf2/ARE pathway.

This study was conducted to evaluate the molecular 
mechanisms by which 4-OI alleviates MRSA-ALI. The 
hypothesis that itaconate attenuates MRSA-ALI by 
activating the Nrf2/ARE pathway was tested using an 
MRSA-ALI mouse model, Nrf2-knockout (Nrf2−/−) mice, 
and Nrf2 inhibitors (ML385).

We present the following article in accordance with the 
ARRIVE reporting checklist (available at http://dx.doi.
org/10.21037/atm-21-1448).

Methods

Reagents and antibodies

Lipoteichoic acid (LTA) from S. aureus (CAS#56411-57-5)  
and dihydroethidium were obtained from Sigma-Aldrich 
(St. Louis, MO, USA). The following drugs were purchased 
from MedChemExpress (Monmouth Junction, NJ, USA) 
to treat cells or animals: ML385 (Cat# HY-100523), 
4-OI (Cat# HY-112675), and corn oil (Cat#HY-Y1888). 
Antibodies against GAPDH, Keap1, Nrf2, HO-1, and nitric 
oxide synthase (iNOS), and Cell Counting Kit-8 (CCK-8) 
were described in our previous report (13).

Bacterial strains and growth conditions

MRSA strain ATCC43300 was cultured and harvested as 
previously described (14). Briefly, this strain was grown to 
mid-log phase (OD 600 nm) in Luria-Bertani (LB)  with 
shaking at a rate of 200 rpm in a constant temperature 
incubator at 37 ℃. MRSA bacterial suspension was 
centrifuged, and the bacteria were resuspended in sterile 
phosphate-buffered saline (PBS). The bacterial suspension 
was diluted with sterile PBS and then plated onto LB agar 
to determine the bacterial concentration; the plated agar 
was stored in 50% glycerol at −80 ℃.

Animals

C57BL/6 wild-type (WT) mice were obtained from 
Jiangnan University (Wuxi, Jiangsu, China). Male Nrf2-
knockout (Nrf2−/−) mice (8 weeks old, 18–25 g) were 
acquired from the Model Animal Research Center (Nanjing, 
China). Experiments were performed under a project 
license (No.: JN.No20191230c0400901) granted by ethics 
committee board of Jiangnan University, in compliance 
with China national or institutional guidelines for the care 
and use of animals.
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MRSA-induced ALI mice model 

WT mice were grouped as follows (n=5): (I) intraperitoneal 
injection with saline solution (control), (II) intraperitoneal 
injection with 3×108 colony-forming unit/mouse MRSA 
bacteria (MRSA), and (III) intraperitoneal injection of 
MRSA and 4-OI (MRSA+4-OI). 4-OI was dissolved in 
the vehicle (dimethyl sulfoxide: corn oil =1:9). At 1 h after 
intraperitoneal injection of 4-OI (25 mg/kg) in mice, MRSA 
was intraperitoneally (i.p.) injected to construct an ALI 
model (13). 

Nrf2−/− male mice were grouped as follows (n=5): Nrf2−/− 
control, Nrf2−/− MRSA, and Nrf2−/− MRSA + 4-OI. The 4-OI 
administration and MRSA bacteria were the same as those 
in WT mice. The mice in all groups were euthanized after 6 
hours of treatment to obtain the experimental samples.

Bronchoalveolar lavage fluid (BALF)

The lung tissue of the mice was lavaged with sterile 
precooled PBS through the trachea. The BALF solution 
was centrifuged to obtain the supernatant. The protein 
concentration in the supernatant was determined using a 
bicinchoninic acid (BCA) kit (Beyotime, Shanghai, China). 
The total number of cells was determined by flow cytometry 
(BD C6, BD Biosciences, Franklin Lakes, NJ, USA).

Acquisition and treatment of bone marrow-derived 
macrophages

Bone marrow flushed from the femurs and tibias of WT 
C57BL/6 male mice were plated in Dulbecco’s Modified 
Eagle’s Medium (Hyclone, Logan, UT, USA) supplemented 
with 10% fetal bovine serum (Gibco, Grand Island, NY, 
USA), 1% penicillin-streptomycin (Gibco), and 10 ng/mL  
macrophage colony-stimulating factor (PeproTech, 
Rocky Hill, NJ, USA) for 6 days. Bone marrow-derived 
macrophages (BMDMs) were treated with 4-OI (62.5 µM) 
or ML385 (20 µM) for 4 hours and then challenged with 
LTA (20 µg/mL) for 4 hours.

Content of myeloperoxidase (MPO) and malondialdehyde 
(MDA) 

Lung tissue was homogenized, and MPO and MDA were 
detected according to the manufacturer's instructions.

Histopathology

Lung tissues were fixed in 4% paraformaldehyde and 
embedded in paraffin. Hematoxylin and eosin (HE) staining 
was performed to observe lung tissue damage in the mice. 
The histological ALI scoring system, as described by 
Matute-Bello, was used (15).

Immunohistochemistry

Lung tissues were cut into 3-μm sections from the embedded 
tissue, deparaffinized, and hydrated, and sodium citrate 
solution was used for antigen retrieval (Solarbio, Beijing, 
China). The sections were treated with specific serum 
proteins and immunostained with anti-MPO antibodies 
at a dilution of 1:100 (ab62141, Abcam, Cambridge, UK). 
After washing the sections with PBS, the sections were 
incubated with biotinylated immunoglobin G (IgG) at 
37 ℃ for 30 minutes. Finally, the sections were incubated 
in horseradish peroxidase-streptavidin for 30 minutes  
at room temperature, and the color reaction was developed 
using diaminobenzidine. The relative content of MPO in 
the lung tissue sections was determined by Image Pro Plus, 
as reported previously (13).

Determination of the bacterial load in lung tissue

To determine the bacterial load in the lung tissue, the lung 
tissues of mice were homogenized and diluted with sterile 
saline (1:104, 105, 106). Diluted lung tissue homogenate 
(100 µL) was inoculated into LB agar plates and incubated 
overnight at 37 ℃. The bacterial load in the lung tissue was 
determined by counting the number of bacteria on the LB 
agar plates at different concentrations (colony-forming unit/g).

Survival rates 

To determine the effect of 4-OI on the survival time of 
MRSA-infected mice, WT and Nrf2−/− mice were divided 
into groups and treated as described above (n=7–10/group) 
The survival time was recorded every day. Surviving mice in 
all groups were euthanized after 7 days. 

Cell culture and treatment

RAW264.7 cells were purchased from the American Type 
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Culture Collection (Manassas, VA, USA) and treated with 
4-OI (62.5, 125, and 250 µM) or ML385 (20 µM) for 4 hours, 
which was followed by challenge with LTA (20 µg/mL) for  
4 hours. RAW264.7 cells were cultured in RPMI-1640 
medium (Hyclone, Logan, UT, USA) supplemented with 
10% fetal bovine serum (Gibco, Grand Island, NY, USA) and 
1% penicillin streptomycin (Gibco). RAW264.7 cells were 
grown in an incubator containing 5% CO2 at 37 ℃.

Determination of reactive oxygen species (ROS)

RAW264.7 cells were seeded at a density of 1×106/well in 
96-well plates. The cells were divided into the following 
groups: control, LTA, and LTA+4-OI (62.5 µM). RAW264.7 
cells were treated with 4-OI (62.5 µM) for 4 hours and  
then challenged with LTA (20 µg/mL) for 4 hours. 
Dihydroethidium (10 μM) was added to a 96-well plate 
containing RAW264.7 cells, which were incubated in the 
dark for 30 minutes. After washing the cells with PBS, 
fluorescence images were obtained using a Nikon TE-2000 
microscope (Tokyo, Japan).

Real-time quantitative polymerase chain reaction 

The lung tissue or cells were fully dispersed in TRIzol 
reagent (CWBIO, Beijing, China), and RNA was obtained 
according to the manufacturer’s instructions. PrimeScript 
RT kit (Takara, Shia, Japan) and SYBR Mix (Yeasen, 
Shanghai, China) were used for the reverse transcriptase 
reaction and quantitative polymerase chain reaction (qPCR), 
respectively. The primer sequences are listed in Table 1. 

Western blot analysis

The methods of extracting, separating, and transferring 

proteins from the lung tissues and cells have been previously 
described (13). Cytoplasmic and nuclear proteins were 
extracted using nuclear and cytoplasmic extraction reagents 
(Thermo Fisher Scientific, Waltham, MA, USA). The bands 
were visualized using an electrochemiluminescence system 
(Millipore, Billerica, MA, USA).

Molecular modeling

The three-dimensional structure of 4-OI was obtained 
f rom PubChem (ht tps : / /pubchem.ncb i .n lm.n ih .
gov/#query=3133-16-2). Keap1 (PDB ID: 1U6D) was 
downloaded from the RCSB protein database (https://www.
rcsb.org/) and imported into AutoDock 4.2. Keap1 was 
cleaned and hydrogenated, and water was removed using 
Pymol software. Finally, a flexible program was selected for 
docking to evaluate the interaction sites and forces.

Statistical analysis

All data are expressed as the mean ± SD. Differences between 
the 2 groups of data were compared by t-test. Cumulative 
survival rates were determined using the log-rank test. 
Differences were considered statistically significant a P 
value <0.05. GraphPad Prism 9.0 software (GraphPad, Inc., 
La Jolla, CA, USA) was used to draw the histograms and 
survival curves.

Results

4-OI attenuated MRSA-induced ALI in mice

HE staining results showed that the alveolar wall was 
deformed, and numerous inflammatory cells had infiltrated 
the alveolar space after MRSA infection. The lung injury 

Table 1 Primer sequences of qPCR

mRNA name Sequence (5'-3') forward Sequence (5'-3') backward

HO-1 CAAGCCGAGAATGCTGAGTTCATG GCAAGGGATGATTTCCTGCCAG

Nrf2 TTCAGCCAGCCCAGCACATC CGTAGCCGAAGAAACCTCATTGTC

NQO-1 TTCTGTGGCTTCCAGGTCTT AGGCTGCTTGGAGCAAAATA

TNF-α CATGAGCACAGAAAGCATGATCCG AGCAGGAATGAGAAGAGGCTGAG

IL-1β GCAACTGTTCCTGAACTCAACT ATCTTTTGGGGTCCGTCAACT

IL-6 ACAACCACGGCCTTCCCTACTT CACGATTTCCCAGAGAACATGTG

GADPH AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA



Annals of Translational Medicine, Vol 9, No 8 April 2021 Page 5 of 15

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(8):712 | http://dx.doi.org/10.21037/atm-21-1448

score showed that 4-OI attenuated the aforementioned 
pathological changes in lung tissue caused by MRSA  
(Figure 1A,B). MRSA infection caused inflammatory 
cells to migrate into the alveoli, whereas 4-OI reduced 
the infiltration of inflammatory cells into the lung tissue 
(P=0.0179; Figure 1C). The protein content in the BALF, 
an indicator of lung vascular permeability, was significantly 
higher in the MRSA group than in the control group, 
whereas 4-OI decreased the total protein level in the BALF 
(Figure 1D). To further evaluate the effect of 4-OI on 
MRSA-induced lung neutrophil infiltration, we tested the 
activity and content of MPO in the lung tissue. The results 
showed that MPO activity was lower in the MRSA + 4-OI 
group than in the MRSA group (P=0.01429; Figure 1E). 
The results of MPO immunohistochemistry also showed 
that 4-OI treatment significantly reduced the infiltration 
of pulmonary neutrophils in the MRSA+4-OI group 
(P=0.0181; Figure 1F,G). Additionally, 4-OI treatment 
effectively reduced the number of bacteria in the lung 
organs (P=0.0452) (Figure 1H). Importantly, 4-OI treatment 
significantly increased the survival rate of mice(Figure 1I).

4-OI reduced inflammation and oxidative stress induced 
by MRSA in mice

Real-time qPCR results showed that MRSA infection 
significantly increased the messenger RNA (mRNA) 
expression of TNF-α, IL-1β, and IL-6 in the lung tissue, 
while 4-OI treatment reduced the expression of these genes 
(Figure 2A,B,C). MDA content is an important indicator 
of the degree of tissue cell membrane peroxidation. We 
determined the concentration of MDA in the lung tissues 
and found that 4-OI significantly reduced the MDA content 
that had been increased by MRSA infection (Figure 2D). 
Notably, 4-OI upregulated the mRNA expression of Nrf2 
and its downstream genes (NQO1 and HO-1) in MRSA-
infected mice (Figure 2E,F,G).

4-OI inhibited LTA-induced inflammatory response and 
oxidative stress injury in RAW264.7 cells

The  CCK-8  a s s ay  r e su l t s  showed  tha t  4 -OI  a t 
concentrations of 62.5, 125, and 250 μM did not affect 
the viability of RAW264.7 cells (Figure 3A). As iNOS is 
an important inflammatory mediator, we evaluated the 
effect of 4-OI on the iNOS content after LTA challenge in 
RAW264.7 cells. Western blotting showed that 4-OI (62.5, 
125, and 250 μM) significantly inhibited iNOS expression 

in RAW264.7 cells stimulated by LTA (P=0.0244, 0.0474, 
0.0434; Figure 3B,C). In RAW264.7 cells, LTA significantly 
increased the mRNA expression of TNF-α, IL-1β, and 
IL-6; various doses of 4-OI (62.5, 125, and 250 μM) 
reduced the expression of these proinflammatory cytokines  
(Figure 3D,E,F). Dihydroethidium probes were used to 
detect the level of ROS in cells and results showed that 4-OI 
(62.5 μM) decreased the cellular ROS content (Figure 3G). 
These results indicate that 4-OI reduced the expression 
of proinflammatory cytokines and oxidative stress damage 
induced by LTA in RAW264.7 cells.

4-OI activated Nrf2/ARE pathway in LTA-stimulated 
macrophages

Nrf2 mRNA level in RAW264.7 cells decreased after 
LTA stimulation, whereas 4-OI (62.5, 125, and 250 μM) 
significantly increased Nrf2 expression. High expression 
of Nrf2 caused by 4-OI treatment increased the mRNA 
expression of downstream NQO1 and HO-1 (Figure 4A,B,C).  
Western blotting showed that 4-OI significantly increased 
the protein expression of Nrf2 and HO-1 in a dose-
dependent manner (Figure 4D,E,F). 

Under oxidative stress conditions, the interaction between 
Keap1 and Nrf2 in the cytoplasm is disrupted, allowing 
Nrf2 to dissociate into the nucleus. Therefore, we tested the 
expression of the Keap1 protein in the cells and found that 
4-OI reduced Keap1 expression (Figure 4G). Furthermore, 
treatment with 4-OI increased the nuclear translocation of 
Nrf2 compared to that in the control and LTA stimulation 
groups (Figure 4H,I). Molecular docking analysis also showed 
that 4-OI inhibited the formation of hydrogen bonds with 
TYR-426 and ARG-442 in Keap1 (Figure 4J,K).

ML385 abolishes the anti-inflammatory effect of 4-OI in 
LTA-induced macrophages

ML385 interacts directly with the Nrf2 protein by binding to 
the Neh1-binding region of Nrf2, preventing binding of the 
Nrf2-MAFG complex to the anti-oxidant response element 
(ARE) sequence and reducing transcriptional activity. 
ML385 abolished the effect of 4-OI on the promotion 
of the expression of Nrf2 and HO-1 (Figure 5A,B,C).  
Additionally, ML385 upregulated the expression of 
proinflammatory cytokines (TNF-α, IL-1β, and IL-6) in the 
ML385+4-OI group (Figure 5D,E,F). ML385 also abolished 
the effect of 4-OI on the promotion of the expression of 
Nrf2 and HO-1 and down-regulation of pro-inflammatory 
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Figure 1 4-OI alleviated MRSA-induced injury symptoms in the ALI mouse model. (A) HE staining (magnification, ×200, bar =50 μm; n=5). 
(B) Mouse lung injury score. (C) Total number of cells in BALF (n = 5). (D) Protein contents in BALF (n=5). (E) MPO activities in the lungs. 
(F) MPO immunohistochemistry (magnification, ×200, bar =50 μm; n=5). (G) Semiquantitative analysis of MPO immunohistochemistry. (H) 
MRSA bacterial burden in lung tissue. (I) Cumulative survival curves of MRSA-induced sepsis mice (n=7–10/group). Data are represented 
as the mean ± standard deviation (*, P<0.05, **, P<0.01, and ***, P<0.001). MRSA, methicillin-resistant Staphylococcus aureus; ALI, acute lung 
injury; BALF, bronchoalveolar lavage fluid; MPO, myeloperoxidase.
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Figure 2 4-OI reduced inflammation and oxidative stress induced by MRSA in vivo. (A) TNF-α mRNA levels. (B) mRNA levels of IL-1β. (C) 
mRNA levels of IL-6. (D) MDA content in lung tissue. (E) mRNA levels of Nrf2. (F) mRNA levels of HO-1. (G) mRNA levels of NQO1. 
Data represent the mean ± standard deviation. Mice in each group =5 (*, P<0.05; **, P<0.01; and ***, P<0.001). 4-OI, 4-octyl itaconate; 
MRSA, methicillin-resistant Staphylococcus aureus; TNF-α, tumor necrosis factor alpha; MDA, malondialdehyde.
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factors in BMDMs (Figure 5G,H,I,J,K,L). Taken together, 
these results show that Nrf2 contributes to the anti-
inflammatory effect of 4-OI in LTA-induced macrophages.

Knockout of Nrf2 gene eliminated the protective effect of 
4-OI on MRSA-induced ALI in mice

To confirm the role of Nrf2 in the protective effect of 

4-OI against MRSA-induced ALI in mice, we used Nrf2−/− 
mice for further validation. 4-OI treatment did not reverse 
the changes in the alveolar structure and infiltration 
of inflammatory cells in Nrf2−/− mice (Figure 6A,B).  
Additionally, 4-OI did not reduce the protein concentration 
(Figure 6C) or total cell number (Figure 6D) in the BALF 
or the MPO content of the lung tissue (Figure 6E,F,G). 
Furthermore, genetic ablation of Nrf2 increased the 
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Figure 3 4-OI reduced inflammation and oxidative stress in LTA-induced RAW264.7 cells. (A) CCK-8 assay detected cell viability. (B,C) 
Western blotting of iNOS and statistical analysis. (D) TNF-α mRNA levels. (E) mRNA levels of IL-1β. (F) mRNA levels of IL-6. (G) 
Dihydroethidium staining to detect ROS levels. Data represent the mean ± standard deviation of 3 independent experiments (*, P<0.05; 
**, P<0.01; and ***, P<0.001). NS, no significant difference; 4-OI, 4-octyl itaconate; LTA, lipoteichoic acid; TNF-α, tumor necrosis factor 
alpha.

LTA + 4-OI LTA + 4-OILTA + 4-OI

Con
tro

l

62
.5 

μM

12
5 μ

M

25
0 μ

MLT
A

Con
tro

l

62
.5 

μM

12
5 μ

M

25
0 μ

MLT
A

Con
tro

l

62
.5 

μM

12
5 μ

M

25
0 μ

MLT
A

2.0

1.5

1.0

0.5

0.0TN
F-
α  

m
R

N
A

 e
xp

re
ss

io
n 4

3

2

1

0

IL
-β

 m
R

N
A

 e
xp

re
ss

io
n

10

8

6

4

2

0

IL
-6

 m
R

N
A

 e
xp

re
ss

io
n

**
***

*

*** **
**

**
*

**

NS

LTA + 4-OI4-OI

Con
tro

l

62
.5 

μM

12
5 μ

M

25
0 μ

M

Con
tro

l

62
.5 

μM

12
5 μ

M

25
0 μ

MLT
A

150

100

50

0

C
el

l v
ia

bi
lit

y 
(%

)

2.5

2.0

1.5

1.0

0.5

0.0

iN
O

S
/G

A
P

D
H

NS

NS

NS

NS
*

***
LTA (μg/mL)

4-OI (μM) 

iNOS (131 kDa) 

GAPDH (36 kDa)

20 20 20 200

62.5 125 2500 0

A B C

D E F

Control LTA LTA + OI (62.5 μmol/mL)

100 μm100 μm100 μm

G

bacterial load in the lungs, and 4-OI could not reverse 
this condition (Figure 6H). Importantly, 4-OI intervention 
did not improve the survival rate of MRSA-induced septic 
Nrf2−/− mice (Figure 6I).

Discussion

In this study, we showed that 4-OI can alleviate MRSA-

induced ALI by reducing the expression of proinflammatory 
cytokines and oxidative stress genes. The results of 
molecular docking and western blotting also showed that 
4-OI decreased Keap1 levels and activated the Nrf2/ARE 
pathway to exert anti-inflammatory and antioxidant effects. 
Our study revealed that 4-OI is an effective therapeutic 
agent for MRSA-induced lung inflammation (Figure 7).

MRSA is the main pathogen causing acute pneumonia (16),  
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chronic obstructive pulmonary disease, fibrosis (17) and 
other respiratory diseases in hospitals. The renal toxicity of 
vancomycin makes it difficult to effectively treat respiratory 
diseases caused by MRSA. As bacterial resistance continues 
to increase, the mortality rate of MRSA bacteremia has 
reached more than 20% (18). 

Inflammation is an organism’s defense response to 
irritants and pathogens (19). During the inflammatory 
response caused by Gram-positive bacteria, a large amount 
of inflammatory cell infiltration aggravates tissue damage 
by causing the release of inflammatory cytokines (20). 
Neutrophils are the first immune cells recruited to the 
injury site. Anti-inflammatory treatment is considered a 
promising method for treating the early stages of sepsis 
(21,22). Previous studies have shown that itaconate, a 
product of human energy metabolism and the immune 
response, plays an indispensable role in inflammation. 
However, in the pathological process of MRSA-ALI, the 
continuous inflammatory response exceeds the regulatory 
ability of itaconate. However, 4-OI can enter cells where it is 
hydrolyzed into itaconate. Recent studies have demonstrated 
that 4-OI can exert anti-inflammatory effects and reduce  
oxidative stress effects in various cell types (23-25). As 
an important cell affected by 4-OI, macrophages play an 
important role in the process of oxidative stress. In this 
study, we also found that MRSA can cause a mortality rate 
of more than 50%. 4-OI can effectively improve the survival 
rate of MRSA mice. After being stimulated by MRSA, 
both the content of MPO in lung tissue and the number 

of neutrophils localized by MPO increased significantly. 
4-OI can significantly reduce the increase of MPO in 
MRSA mice. It has been reported that 4-OI reduces IL-
1β and IL-6 (not including TNF-α) activity in LPS-
treated mouse macrophages and exerts anti-inflammatory 
effects (8). However, it should be noted that 4-OI reduces 
TNF-α expression in LTA-treated RAW264.7 and MRSA-
treated mice. In addition, by activating Nrf2, 4-OI reduces 
the production of proinflammatory cytokines in human 
macrophages and peripheral blood mononuclear cells 
derived from patients with systemic lupus erythematosus (1).  
In conclusion, our results confirm that 4-OI treatment 
can reduce the mortality of MRSA-treated mice. 4-OI 
treatment can also reduce the inflammatory response and 
oxidative stress damage of MRSA-treated mice and LTA-
treated macrophages.

The transcription factor Nrf2 plays a key role in 
regulating inflammation and oxidative stress (26-28). 
Activation of the Nrf2/ARE pathway increases the 
production of downstream enzymes, such as HO-1 and 
NQO1, thereby protecting the body from oxidative stress. 
In the resting state, Nrf2 binds to Keap1 in the cytoplasm, 
and Keap1 controls the expression of Nrf2 (26). When 
stimulated by the external environment, Nrf2 can eliminate 
the binding of Keap1 and enter the nucleus to function as 
a transcription factor (29,30). Itaconic acid esters increase 
the degradation of cysteine residues on Keap1, leading to 
further activation of Nrf2 (26). A recent study found that 
4-OI can alleviate H2O2-induced ROS generation and cell 

Figure 4 4-OI activated Nrf2 by reducing Keap1 and increasing Nrf2 protein content in LTA-induced macrophages. (A) mRNA levels of 
Nrf2. (B) mRNA levels of NQO1. (C) mRNA levels of HO-1. (D) Western blotting histograms for Nrf2, Keap1, and HO-1 proteins. (E,F,G) 
Statistical analysis of Nrf2, HO-1, and Keap1 levels in (D) histograms. (H) Western blot histograms of Nrf2 proteins in the cytoplasm 
and nucleus. (I) Statistical analysis of Nrf2 levels in (H) histograms. (J) Overall schematic of molecular docking. (K) Binding sites of 4-OI 
and Keap1. Data represent the mean ± standard deviation of 3 independent experiments (*, P<0.05; **, P<0.01; and ***, P<0.001). NS, no 
significant difference; 4-OI, 4-octyl itaconate; LTA, lipoteichoic acid.

J K
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Figure 5 Nrf2 inhibitors abolished the anti-inflammatory effect of 4-OI in LTA-induced macrophages. (A) Western blotting of Nrf2 
and HO-1 levels in RAW264.7 cells. (B) Statistical analysis of Nrf2 level in (A) histograms. (C) Statistical analysis of HO-1 level in (A) 
histograms. (D,E,F) mRNA levels of TNF-α, IL-11β, and IL-6 were quantified by real-time qPCR in RAW264.7 cells. (G) Western blotting 
of Nrf2 and HO-1 levels in BMDMs. (H) Statistical analysis of Nrf2 level in (G) histograms. (I) Statistical analysis of HO-1 level in (G) 
histograms. (J,K,L) mRNA levels of TNF-α, IL-11β, and IL-6 were quantified by real-time qPCR in BMDMs. Data represent the mean 
± standard deviation of 3 independent experiments (*, P<0.05; **, P<0.01; and ***, P<0.001). NS, no significant difference; 4-OI, 4-octyl 
itaconate; LTA, lipoteichoic acid; BMDMs, bone marrow-derived macrophages.
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Figure 6 Knockout of Nrf2 gene eliminated the protective effect of 4-OI on MRSA-induced ALI. (A) HE staining (magnification, ×200, 
bar =50 μm; n=5). (B) Mouse lung injury score. (C) Total number of cells in BALF. (D) Protein contents in BALF (n=5). (E) Activity of MPO 
in lungs (n = 3). (F) MPO immunohistochemistry (magnification, ×200, bar =50 μm; n=5). (G) Semiquantitative analysis of MPO content 
by immunohistochemistry. (H) Determination of MRSA bacterial burden in lung tissue. (I) Effect of 4-OI on survival curves of MRSA-
induced sepsis in Nrf2−/− mice (n=7–10/group). Data represent the mean ± standard deviation (*, P<0.05; ***, P<0.001). NS, no significant 
difference. MRSA, methicillin-resistant Staphylococcus aureus; 4-OI, 4-octyl itaconate; ALI, acute lung injury; MPO, myeloperoxidase; BALF, 
bronchoalveolar lavage fluid.
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death in SH-SY5Y cells by disrupting the binding of Keap1-
NRF2 (31). Many studies have shown that 4-OI activates 
Nrf2/HO-1 to reduce oxidative stress damage caused by 
various stimuli. This study is the first to predict the binding 
sites of 4-OI and Keap1 through molecular docking. 4-OI 
can activate the Nrf2/HO-1 pathway and promote the 
nuclear translocation of Nrf2 to resist inflammation and 
oxidation.

Conclusions

We proved that 4-OI promotes nuclear translocation of 
Nrf2 by binding to the amino acid residues of Keap1, 
thereby activating the Nrf2/ARE pathway to protect against 
MRSA-induced ALI. Thus, 4-OI is a potential therapeutic 

anti-inflammatory agent.
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