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Despite a boost of recent progress in dynamic single-cell measure-
ments and analyses in Escherichia coli, we still lack a mechanistic
understanding of the determinants of the decision to divide.
Specifically, the debate is open regarding the processes linking
growth and chromosome replication to division and on the molec-
ular origin of the observed “adder correlations,” whereby cells
divide, adding roughly a constant volume independent of their
initial volume. In order to gain insight into these questions, we
interrogate dynamic size-growth behavior of single cells across
nutrient upshifts with a high-precision microfluidic device. We
find that the division rate changes quickly after nutrients change,
much before growth rate goes to a steady state, and in a way that
adder correlations are robustly conserved. Comparison of these
data to simple mathematical models falsifies proposed mecha-
nisms, where replication–segregation or septum completions are
the limiting step for cell division. Instead, we show that the accu-
mulation of a putative constitutively expressed “P-sector divisor”
protein explains the behavior during the shift.

cell division | cell growth | E. coli | single-cell biology |
mathematical modeling

To divide, a cell needs to coordinate the allocation and
duration of multiple processes, including metabolism, main-

tenance of cellular compartments, and faithful replication and
segregation of chromosomes (1–5). Hence, an accurately timed
decision to divide may have primary importance for survival and
fitness. Achieving this accuracy likely requires a combination of
upstream scheduling and downstream control, many aspects of
which are only partially known (2, 6–8).

Classic work has addressed cell-size control based on popula-
tion measurements (5), drawing conclusions that are increasingly
challenged by recent findings (7, 9–12). In particular, we do not
know if there is one fixed rate-limiting process setting division,
and, in this case, if it is related to chromosome synthesis and
segregation or to cell-surface-related processes. Recent work on
the behavior of single cells has identified clear phenomenological
patterns by which cells decide to divide. These can be charac-
terized as correlation patterns between size-growth variables,
such as added or multiplicative growth (13–17). Nearly all of
the available work has focused on steady-state (balanced growth)
single-cell data and established that cell size is not the only vari-
able entering the decision to divide (18) and that cells follow a
remarkably simple and robust pattern for setting division (13, 19–
21), characterized by low or no correlations between the added
size over one cell cycle and the size at birth (near-“adder” corre-
lations). However, we still largely ignore both the time hierarchy
(or more complex scheduling plan) and the molecular players at
the basis of the observed near-adder behavior.

More generally, models founded on different mechanisms
for division control can give rise to equivalent predictions in
steady growth. Steady conditions only allow the exploration of
correlations (or, more generally, joint distributions) between
quantities involved in cell-size control (15). For instance, the
evidence of the adder behavior comes from the observation of
a lack of correlation between added size and initial size at the
single-cell level (20). In order to discriminate between alterna-
tive mechanisms, one needs to go beyond correlations and to
explore causal relationships between the variables involved in
size control. Exploring the dynamics of size control in nonsteady
conditions, e.g., during a nutrient shift, has the potential to allow
one to disentangle alternative models based on different causal
relationships.

Near-adder behavior, also observed between consecutive ini-
tiations (9, 22), may derive from accumulation and trigger of
an “initiator” protein-setting replication initiation (16, 23, 24).
The initiation of replication is known to be affected by a critical
ATP-bound DnaA. While some molecular mechanisms involved
in DNA opening and replisome assembly have been identified,
it is still not known how they contribute to setting the timing
of initiation of DNA replication in different growth conditions
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or how they can contribute to cell-cycle progression in single
cells (10, 25, 26). In particular, additional players and processes,
such as the alarmone ppGpp and DNA supercoiling, are impli-
cated (27, 28), and DnaA itself might not even be rate-limiting
for replication initiation in all growth conditions (29). The fur-
ther assumption that chromosome replication–segregation limits
cell division would explain the observed near-adder correlations
between divisions (16), but this is also the subject of intense
debate, as there is still no agreement on whether the initiation
process itself may be rate-limiting for cell division (7–9, 16, 22,
30, 31). Independently from the chromosome cycle, cell division
(and its adder correlations) could be set by the accumulation
of a putative “divisor” factor, possibly related to the FtsZ divi-
sion ring (9, 32) or to the synthesis of the septum (31). Finally,
both the division and initiation processes could be scheduled
upstream by yet-unidentified central cell-cycle regulators (2, 10),
and downstream control processes could condition cell division
to the completion of a set of necessary processes (7, 8).

In order to shed more light on cell-division dynamics, one
needs to access conditions where nutrient-imposed growth rate
and division rate are decoupled, and look at the behavior of
single cells. To this end, we followed the growth-division dynam-
ics of cells undergoing nutrient upshifts in a high-resolution
microfluidic device. In this device, cells can be kept in steady-
state growth and go from minimal M9 medium with glucose to
the same medium supplemented with casamino acids. In these
shifts, the change of amino acid levels was shown to alter the
amount of free ppGpp, affecting translation and transcription
of ribosomal promoters (33). However, the division-rate dynam-
ics and the division-control behavior of single cells remain to be
characterized. Our results identify the time scales involved in the
changes of growth- and division-related variables and character-
ize the correlation patterns between cell-size growth and timing
of cell division emanating from the mechanisms of division con-
trol. Second, we compare the data with mathematical models

to support and/or falsify different underlying mechanistic mod-
els, such as initiation-limited division, accumulation of a putative
divisor protein, and slaving of changes in division rate to changes
in growth rate.

Results
Long-Term Single-Cell Tracking through a Nutritional Shift.
Robust environmental control was achieved by cultivating the
Escherichia coli cells in a “mother machine” microfluidic device
(34, 35). Fresh growth medium was fed into the device, and
cells were observed through a timed switch from stringent
(M9 + 0.4% glucose, doubling time = 57± 26 min) to rich
medium (M9 + 0.4% glucose +0.5% casamino acids, doubling
time = 37± 13 min). Cells must allocate energy resources
toward the biosynthesis of amino acids while in stringent
medium. When this metabolic limitation is relieved by the
introduction of casamino acids into the external environment,
cells grow and divide more quickly (36). Sample images from
these respective “slow” and “fast” steady-growth states are
shown in Fig. 1A. Consistent with Schaechter’s growth laws
(37) and Woldringh’s original experiments (38), the increase
in mean exponential growth rate 〈αinst〉 between steady states
(0.0137± 0.0052 min−1 to 0.0203± 0.0062 min−1; Fig. 1B) saw
a requisite increase in mean birth volume 〈V0〉 (1.15± 0.26µm3

to 1.53± 0.36µm3; Fig. 1B).
The device configuration achieved high throughput without

sacrificing spatiotemporal resolution, thereby enabling us to
assess the system’s response to environmental perturbation at
both population and single-cell levels. Thousands of single cells
were segmented and tracked for several generations before and
after the nutritional shift (Fig. 1 D–F). Cell shape and size
were measured from the segmented cell boundary (Materials
and Methods and SI Appendix) and used to determine individual
growth rate and interdivision time. Specifically, the instanta-
neous growth rate of a single cell exhibiting exponential growth
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Fig. 1. Robust and long-term single-cell tracking through a nutritional upshift. (A) Snapshots of trapped cells in microfluidic device under stringent (Left)
and rich nutrient conditions (Right) (false-colored). (B) Steady-state distributions of growth rate αcc in the two growth media. (C) Steady-state distributions
of birth volumes V0 for the sample populations in B. (D) Sample segmentation and tracking before and after the growth medium switch is implemented;
time since switch is shown in hours. (E) Tracking the change of instantaneous growth rate following the switch for cells shown above. Yellow regions indicate
time range spanned by segmented images; plotted line color corresponds to the cell above with the same color segmented boundary. (F) Volume tracking
of the same cell lines. Interdivision time τ is identified as the interval between dramatic volume decreases.
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(34) is defined as αinst = 1
V

dV
dt

(Fig. 1E); cell-division events can
be found at the sudden and dramatic decreases in the volume of
a tracked cell, yielding interdivision time τ (Fig. 1F).

Nonadiabatic Transition between Steady-Growth States. In order to
average equally and compare all of the different cell-cycle quan-
tities (interdivision time, growth rate from cycle-wide exponen-
tial fit, and added volume), we associated their values to the time
of division, then performed a sliding average. While different
choices are possible, this is conservative with respect to quickly
changing variables, and, technically, it ensures that the sliding
averages do not start changing before the actual time of the nutri-
ent shift. For instantaneous quantities, such as the growth rate
and the production rates of the promoters, we also considered
averages of the instantaneous (discrete) derivatives computed on
single cells along lineages. These “instantaneous” averages are
the appropriate choice in some instances, for example, as input
to the quantitative models.

Fig. 2 shows how the mean cell growth, cell division, and
cell-size parameters followed a very complex dynamics across
the nutrient upshift, characterized by multiple time scales and
trends, whereby the same quantity can both increase and
decrease in different time windows.
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E

Fig. 2. Near-adder behavior is conserved through a nutrient upshift,
despite complex dynamics of growth and division processes. Medium shift
is indicated at dotted vertical line. (A) Mean growth rate (defined by a
derivative of single-cell growth curves, as illustrated by the sketch in Left) as
a function of time in the experiment. The solid line indicates observable
mean, and shaded regions indicate SD for all time series. (B) Interdivi-
sion time transiently increases before reaching its new (lower) steady value
across the upshift. (C and D) Mean added volume shows an overshoot over
more than 2 h after the shift; the mean ratio of added to initial size is
one at steady states. (E) The division control shows near-adder behavior
robustly across the shift. The adder plot (added size vs. initial cell size, as
illustrated by the sketch on Left) quantifies division control by the slope
ζ (−1 for sizer, 1 for timer, and 0 for adder) (39). Data refer to averages
over biological replicates using the P5ter promoter strain (Materials and
Methods).

Fig. 2A shows the trend of mean growth rate vs. time in
our data. Classically, it is assumed that cells display “rate
maintenance” during an upshift, rapidly adopting the increased
nutrient-imposed growth rate, but continuing at the preshift
interdivision time for about one generation (40, 41), indi-
cating a divergence from the relation 〈αinst〉〈τ〉= log 2. The
combination of an increasing growth rate under constant inter-
division time is thought by some to establish the increased
volume characteristic of rich medium (38, 42). Indeed, some
degree of deviation is necessary for cells to achieve the ulti-
mately increased volume dictated by bacterial growth laws (SI
Appendix and ref. 10). Here, we found behavior far more com-
plex than simple rate maintenance. In the minimal medium,
cells had a growth rate of 0.0138± 0.0056 min−1. Upon
upshift, the growth rate increased gradually in agreement with
early models of the upshift response (38), though initially it
exceeded the new equilibrium value, reaching a maximum of
0.0219± 0.0076 min−1 at t = 2.6 h before settling to 0.0204±
0.0059 min−1.

Interdivision time exhibited a three-phase response (Fig. 2B),
initially increasing from its preshift value of 57± 26 min to
67± 28 min at t = 1.1 h, before quickly undershooting to a 34±
14 min minimum 2 h later. The equilibrium interdivision time
was established after approximately 4.5 h in the nutrient-rich
growth medium to a value of 37± 13 min (Fig. 2B). These
noncomplementary responses of growth and division processes
can be summarized by the trajectory in the plane 〈αinst〉 vs.
1/〈τ〉 “growth space” (SI Appendix, Fig. S1A) ; we see that
the nutritional upshift prompted the system to veer away from
the “adiabatic” trajectory 〈αinst〉〈τ〉= log 2 (dotted line), achiev-
ing a maximum of 0.968 at t = 1.3 h. That is, directly following
the upshift, cells grew to a final volume that is, on average,
up to 2.63 times their birth volume. The population 〈αinst〉〈τ〉
then decreased and actually undershot log 2 at t = 3 h (green
segment), indicating that cells slightly reduced their size tran-
siently in relation to their mothers before reaching equilibrium.
SI Appendix, Fig. S1 B–E compare the trend of mean initial
volume, cell width, growth rate, and interdivision time. Cell
width relaxed very slowly to the new condition (31). Mean
growth rate 〈α〉 and mean interdivision/doubling time 〈τ〉 at
steady state are related through the equation 〈αinst〉〈τ〉= log 2
(11, 43). However, the data show clearly that the system does
not obey this relation in the process of adapting to a differ-
ent nutrient condition (SI Appendix, Fig. S1F; we also note
that in order to change mean size, this relation needs to be
transiently broken).

Finally, we considered size changes across the shift. Simple
calculations (13, 14, 20) show that at the steady state of bal-
anced exponential growth, regardless of the mechanism of size
control, the average added size ∆ and the average initial size
have V0 to be equal in order to produce two daughter cells
that are the same size as the mother, but the two quantities
need to be decoupled outside of steady-growth conditions, for
example, in environments with changing nutrient conditions. Fol-
lowing the nutritional upshift at t = 0, mean birth volume V0

and mean added volume ∆ initially overshot their increased
equilibrium values in the new growth medium (Fig. 2C and SI
Appendix, Fig. S1A). Specifically, birth volume peaked at roughly
111% of its new equilibrium (1.71± 0.44µm3), reached at t '
2.5 h, and plateaued to 1.54± 0.34 for t ≥ 5 h (SI Appendix,
Fig. S1A). Similarly, added volume attained a maximum of
123% of its equilibrium value, reaching 2.00± 0.78µm3 at t '
1.5 h compared to its new plateau value of 1.63± 0.60µm3

reached for t ≥ 4.5 h (SI Appendix, Fig. S1). Growth rate var-
ied slowly, but it immediately changed its trend after the shift.
Instead, interdivision time and added volume appeared to show
a common delay of about 20 min (Fig. 2 B–D). The delay
was even longer (about 1 h; SI Appendix, Fig. S1) for initial
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volume.∗ The mean ratio of added to mean volume needs
to be unitary at stationarity, and this is verified in the
data (Fig. 2D). During the transition, this quantity fol-
lowed a fairly symmetric peak to about 1.5 times its value
in about 2.5 h.

Near-Adder Behavior Is Conserved during the Upshift. Recent stud-
ies have demonstrated the emergence of near-adder behavior
in bacterial cells, but the underlying biophysical and molecu-
lar mechanisms remain elusive (13, 20, 30, 43). The size-control
strategy employed to adjust to a new growth environment is
similarly mysterious, since the existing adder observations have
largely been confined to steady-state conditions. Our data pro-
vide the opportunity to extend the analysis of the robustness
and the determinants of adder behavior out of steady-state
growth.

Adder size control can be tested by plotting the added size
against the initial size of dividing cells (39) and evaluating the
slope. We define this parameter as ζ. When ζ = 0, one has
a perfect adder, i.e., cells add a size-independent volume to
their initial size. The limits ζ = 1 and ζ =−1 correspond to a
timer (no control) and a sizer (absolute size threshold). Fig.
2E shows a strikingly robust trend of the measured near-adder
behavior across the shift, despite all of the different time scales
involved in the geometry changes. To further characterize the
adopted size-control strategy and assess the contributions of the
growth rate and interdivision time dynamics toward the overall
size control, we also deployed an analysis developed in previous
studies (15, 17) (SI Appendix, Fig. S2), whereby these contribu-
tions are inferred from the single-cell correlation patterns. This
analysis confirmed a near-adder behavior that is uninterrupted
by the environmental shift, affected by complementary dynam-
ics between the timing- and growth-related components of size
control.

Nutrient-Shift Data Are Qualitatively Incompatible with Some Pro-
posed Models for Cell-Division Control. We first tested whether
some previously proposed models could reproduce the complex
behavior of division-related variables that we observed across the
shift. To this end, we considered different models available in the
literature (Fig 3A). Specifically, we ran single-cell simulations of
the models proposed by Harris and Theriot (31) (“relative-rates”
model), Ho and Amir (16) (“incremental” model), and the clas-
sic idea of “initiation sizer” (which we implemented here with
size-uncoupled C + D period; ref. 7), using both modeled (Mate-
rials and Methods) and sampled growth-rate distributions across
the shift (in the latter simulations, each cell was assigned an expo-
nential growth rate extracted from the measured ones in each
particular time bin).

The models are described in more detail in Materials and Meth-
ods (see also SI Appendix). The relative-rates model assumes
that chromosome replication–segregation is never limiting for
cell division (9, 12) and that completion of synthesis of cap
material (produced at the rate of surface synthesis) triggers divi-
sion. A variant of the model may entail that target added size is
proportional to width squared (31), and similar models assume
that ring synthesis is limiting (32), but such variants are not
crucial for our scopes. Both the incremental model and the initia-
tion sizer model assume that replication–segregation are limiting
for cell division. We did not consider the more complex sce-
nario of concurrent time scales (7, 8) because of the unknown
extra parameters used in this framework. The incremental model
assumes that the chromosome is always limiting for cell division,
and an interinitiation adder (per origin) based on the cell cur-

*Unless otherwise stated, the population time-series data presented here calculate the
average for cells represented at their time of division (Materials and Methods).

A
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Fig. 3. The nonsteady data across the nutrient shift falsify commonly
assumed models for division dynamics. (A) Summary of the models tested.
(B–D) Dynamics of interdivision time (B) added size (C) and across the shift
(D) cannot be re-created by existing size-control models. In particular, all of
the tested models are too slow in reproducing the added-size dynamics and
do not reproduce the initial increase in interdivision times. (E) The behav-
ior of division control across the shift is steady across the shift for all three
models considered. Data refer to averages over biological replicates using
the P5ter promoter strain (Materials and Methods).

rent growth rate. By contrast, the initiation sizer model assumes
a critical size per origin at initiation.

None of the considered envelope- or chromosome-limited
models for cell division predict correctly the division time dynam-
ics (Fig 3B). Specifically, no model predicts that the interdivi-
sion time in the data initially increases, before decreasing to
its new steady state. Considering interdivision timing dynam-
ics across the shift, under increasing αinst, in these models,
interdivision time can only decrease upon increase of growth
rate; hence, the models cannot reproduce the over/undershoot
we observed for interdivision timing. Considering the dynam-
ics of added size and initial size (Fig. 3 C and D), all models
showed a delayed dynamics compared to the experimental data
and cannot predict the observed early overshoot in added vol-
ume. Büke et al. (44) observe that the added size responds
abruptly to changes in the ppGpp level, aided by transiently
accelerated divisions upon a downshift, while growth adjusts on
longer time scales. Confirming this observation, in our upshift
data, the (counterintuitive) initial increase of interdivision time
was accompanied by the increase of the added size on a faster
time scale than the growth rate. Note, however, that in our
shifts, the dynamics of ppGpp levels may follow a two-time-scale
dynamics (45, 46).

A Threshold Accumulation Model of a Signal Produced at the Same
Rate as a Protein Expressed from a Terminus-Proximate Constitutive
Promoter Explains the Shift-Division Dynamics. We figured that,
instead, one may need a model where division dynamics is cou-
pled to the mechanistic action of a biological circuit able to
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sense the physiological state of the cell. We therefore sought to
define a mechanistic model where a protein under physiological
control could act as the trigger defining cell division. In partic-
ular, we focused on a class of “threshold accumulator” models
that have been proposed several times in the literature, both
for replication and for cell division (1, 9, 23, 24, 32). We sup-
posed that the fast and complex changes in division rate and
added size observed during our shifts could be due to a coupling
between the changes in biosynthetic “sectors” (47) occurring dur-
ing the shift and cell-division dynamics. The literature offers
models that describe proteome sector dynamics and biosynthesis
in nonsteady regimes (33), and recent attempts were put for-
ward to link these sectors with cell division (48–51). However,
the descriptions differ, and current data do not allow us to select
a specific one. Thus, rather than committing to a specific choice,
we decided to take an experimentally driven approach to define
our model.

Following the literature, we agnostically assumed that an
effector molecule that is produced at a rate proportional to
volume triggers division once a critical amount is reached (the
above-mentioned threshold accumulation hypothesis). Steady-
state data from our experiments provide validation of the fact
that protein production is proportional to cell volume (SI
Appendix, Fig. S3) and, thus, that a volume-specific rate r is a
good descriptor of protein synthesis from our promoters (52).
Finally, a well-known sufficient requirement to obtain near-
adder correlations from an accumulator model is that the trigger
molecule is reset to zero upon birth (1, 31, 32). This last point
can be achieved biologically if the divisor molecule is structural,
e.g., cell-surface material that is integrated into the cell cap upon
division (31).

Assuming a putative divisor protein is produced with rate rV ,
proportional to volume (here, r has units of inverse volume and
time), dN /dt = rV . There is a critical amount N ∗ that, once
reached, triggers division, N (τ) =N ∗, and at cell birth, the num-
ber of molecules are reset to zero N (0) = 0. Solving for N , under
steady growth, one obtains

N (t) =
r

αinst
V0(eαinstt − 1), [1]

and, as a consequence,

N ∗=
r

αinst
V0(eαinstτ − 1)

=
r

αinst
(Vf −V0)

=
r

αinst
∆.

[2]

Our strains carried fluorescent reporters for ribosomal and con-
stitutive promoters inserted in the chromosome close to either
the origin or the terminus of replication (Materials and Methods
and refs. 53 and 54), and we used their experimentally mea-
sured dynamics to define the putative production rate of the
putative “adder protein.” The constitutive reporter “P5” is based
on a strong exogenous promoter with consensus −10 and −35
sequences lacking any transcription factor regulation, as well as
lacking a GC-rich ppGpp discriminator region at the transcrip-
tion initiation site that would render it sensitive to inhibition
by ppGpp. Conversely, the ribosomal reporter “P1” is derived
from the P1 promoter of the ribosomal RNA operon rrnB and,
therefore, contains a GC-rich discriminator region at the tran-
scription start site. The upstream end of the promoter has been
omitted, thus deleting the binding sites for any transcriptional
regulators (Materials and Methods). Thus, we define “constitu-
tive” here as lacking transcription factor regulation, as well as
lacking a ppGpp discriminator region. In order to determine the

role of ppGpp in the regulation of gene expression and of a possi-
ble trigger factor during a growth-shift adaptation, we compared
the production rate of GFP in our strains having chromosomal
reporters for ribosomal (P1) and constitutive (P5) promoters
and measured the average volume-specific rate, r(t), across
the shift.

A comparison of Eq. 2 with steady-state data for all promot-
ers indicates that N ∗ was about the same in both conditions,
before and after the shift (SI Appendix, Fig. S4). We therefore
reverted for simplicity to a model where N ∗ was constant (the
data do not allow us to quantify this number in absolute terms
due to the arbitrary unit of fluorescence measurement). We then
ran simulations using as input from experimental data (hence,
with no free parameters) both the measured production rate
r(t) (for the four strains with reporters) and the growth rate
αinst(t) (Fig. 4A). Fig. 4 B–D shows that using similar dynamics
to the terminus-proximate constitutive promoter P5ter gives very

A

B

C

D

E

Fig. 4. A putative divisor protein expressed from a constitutive promoter
explains the shift data. (A) As model input, we used the measured instan-
taneous growth rates and volume-specific production rate r (obtained from
derivatives along lineages) from our promoters (in this case, the P5 consti-
tutive promoter inserted close to the replication terminus). Note that this
quantity has units min−1/µm3, minus a constant conversion factor from
fluorescence to molecule number. The panel also shows the absolute flu-
orescence F from the same promoter. A.u., arbitrary units. (B–D) The model
predicts faithfully the size dynamics. (E) The model reproduces the observed
robustness of near-adder size control. Other model variants using the pro-
duction rates of different reporters fail to reproduce the observed size
dynamics (SI Appendix, Figs. S6–S8). Data refer to average over biological
replicates using the P5ter promoter strain (see Materials and Methods and
SI Appendix, Figs. S6–S8 for the other strains).
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satisfactory agreement with the data and captures all of the com-
plex changes of both interdivision time and (added and initial)
cell-size dynamics. For consistency, we also verified that both
model and data complied to an expected constraint involving
strength of size control, mean size, and growth variables (SI
Appendix, Fig. S5).

While the robustness of the near-adder behavior across the
shift was captured by all of the models based on four strains
used here (Fig. 4E and SI Appendix, Figs. S6–S8), the only model
that can reproduce the cell size and division time dynamics is
the one based on the P5ter promoter. Conversely, the alternative
models (based on ribosomal promoter P1 close to both replica-
tion origin and terminus, as well as on the same P5 promoter
close to the origin) fail to reproduce the size and division time
dynamics, reinforcing the idea that the agreement of the data
with the model based on the P5ter promoter is not a coincidence
(SI Appendix, Figs. S6–S8). Finally, compared to the models
described in Fig. 3, this accumulator model requires only one
free parameter (N ∗, calibrated to match the initial size before
the shift). Hence, in this case, the steady-state size after the shift
is a prediction, which the model performs accurately (validating
the idea of a constant critical threshold for the putative adder
protein).

The Production Rate of the Accumulator Model Can Be Reverse-
Engineered from Division Data and Behaves as a Constitutive Pro-
moter. An independent reverse argument on the same model
leads to the same conclusions, without using the promoter-
expression data as model input. This argument assumes that N ∗

is constant after the shift and determines the volume-specific rate
that the putative adder molecule needs to have in order to repro-
duce the data. Solving for r in Eq. 2 gives a requirement on the
volume-specific transcription rate in steady growth. In Materials
and Methods, we generalize Eq. 2 out of balanced exponential
growth, when the instantaneous growth rate αinst(t) and the
volume-specific rate of expression r(t) are time-dependent. The
full equation cannot be analytically inverted to infer rreverse(t)
from the instantaneous growth-rate αinst(t) and the added size
∆(t). Nevertheless, the numerical solution matches very well the
following expression

rreverse(t − τ/2)' αinstN
∗

∆(t)
=

αinst(t)N
∗

V0(t)(eαcc(t)τ(t)− 1)
. [3]

The delay comes from the fact that the integrated production
rate over the cell cycle causes the (future) added size at the
division time. This effect is fully captured by the expression
presented in Materials and Methods.

SI Appendix, Fig. S9 shows the behavior of rreverse in the
transient period after the shift, which initially decreases, and
then reaches a higher plateau than found before the shift. This
behavior closely resembles the dynamics of the P5 constitutive
promoter. The precise value of N ∗ does not affect this “down-
up” dynamics and just sets a quantitative vertical offset in the
plot shown in SI Appendix, Fig. S9; it is important for this
reverse argument, however, that N ∗ remains constant after the
shift. Comparing SI Appendix, Fig. S9 with Fig 4A confirms that
constitutive expression meets the requirements set by our shift
data for the accumulated divisor factor. We also note that the
model clearly works well in a fit where the threshold is different
before and after shift, and, in this case, the best-fit parameter
values are such that N ∗ (preshift) 'N ∗ (postshift), which con-
firms that the value of the threshold remains constant or nearly
constant.

The model obtained by the reverse argument shows an even
more faithful agreement with data (SI Appendix, Fig. S10). We
also applied this model to an upshift experiment between the
same two nutrient conditions at 30 ◦C (SI Appendix, Fig. S11),

finding that the inferred rate by the reverse model shows the
same pattern over the shift, initially decreasing, then increasing
with an overshoot, before reaching a plateau. Finally, we used the
reverse model for more detailed comparisons with data. First, we
analyzed the shift dynamics by a discrete time variable represent-
ing the number of generations separating each lineage from the
shift. The overshoots visible in Fig. 2 persist when the same data
are plotted by aligning the cell generations before and after nutri-
ent shift and are captured by both the positive and the reverse
model (SI Appendix, Fig. S12). Second, we performed a detailed
analysis of the generation seeing the shift and the subsequent
one (SI Appendix, Figs. S13–S15). This analysis shows that the
division behavior of the generation seeing the shift depends on
the cell-cycle time at the time the nutrient level changes. The
model reproduces well the cell-cycle behavior of the generation
seeing the shift and the subsequent ones in terms of interdivision
time and added size. However, a careful analysis also reveals dis-
crepancies that are likely due to ingredients not present in our
model (and not monitored in our data), such as the interplay of
the shift time and the processing of the chromosome during the
cell cycle (2, 7). Specifically, in the model, cells that see the nutri-
ent shift late in their cell cycle do not modify their cycle duration
compared to the preshift conditions, while in the data, these cells
delay their division (SI Appendix, Fig. S15).

Discussion
This work has two main components.

First, it examines a well-defined upshift where the carbon
source remains the same, and the cell adapts to the presence
of the added amino acids, in real time and in single cells,
extending classic results obtained when single-cell tracking was
not possible (38). The response to the shift is unexpectedly
complex, challenging old conclusions from population analysis.
Most variables, including growth rate, show a two- or three-
phase dynamics, with trend changes, overshoots, and under-
shoots before they fully relax; growth rate is slow to achieve
full relaxation to its nutrient-imposed value; interdivision time
and added size start changing early on, in parallel to growth
rate itself (and not slaved to this variable). A near-adder cor-
relation is maintained throughout the shift despite the complex
response. We are aware that much of this complexity will need
deeper theoretical and experimental investigations to be fully
unraveled, but our dataset could set an important reference for
forthcoming studies. Here, we decided to restrict our focus on
the division-control dynamics and validation of competing cell-
division models. Nutrient shift experiments at the single-cell level
have been performed and analyzed by Harris and Theriot (31)
and by two studies performed in parallel to this one (44, 55).
Among these studies, only this study and the study by Büke et
al. (44) focused on the coordination of division dynamics with
growth. Theoretically, nutrient-shift simulations using a thresh-
old accumulation model have been performed by Ojkic et al.
(32), with a relative-rates model where FtsZ-ring synthesis limits
division.

Second, the unexpected kinetics during the shift are qualita-
tively incompatible with several current models for control of cell
size in single cells. This holds irrespective of the details. Thus,
a new way of looking at the cell-division decision upon a shift
in growth conditions is required. We explore experimentally the
possibility that division could be triggered by the accumulation
of a critical amount of a constitutively expressed (i.e., presump-
tively not growth-rate regulated, or not directly) molecule. As we
show, the production levels for such a molecule explain the unex-
pected division kinetics, provided the molecule is expressed from
an unregulated promoter located near the terminus.

Near-adder size-control behavior is robust across the shift,
despite large changes in the cell-cycle parameters, as well as
in the correlations between initial size and growth rate in this
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transient regime. This feature is surprising on biological grounds,
and, as we show, it is a common feature of the current phe-
nomenological models, where it is built on the assumption that
either the interinitiation or the interdivision process invariably
should reproduce adder correlations (for the case of an initiation
sizer, we observe the same constant behavior, with a different
value of the size-control parameter). This common assumption
is essentially post hoc when looking at steady-state data, but its
applicability to transient data indicates that its validity might
be broader. Hence, we take the robustness of the size-control
parameter across the shift as a validation (beyond expectation)
of the widespread approach to modeling size control.

However, not all models can reproduce the complex tem-
poral changes observed in the key cell-cycle parameters mon-
itored here, and specifically of interdivision time, initial size,
and added size. Standard frameworks describing cell-size con-
trol (13, 14) are “hierarchical,” in the sense that (constant, or
fluctuating) nutrients are thought to affect growth rate, and size
and division rate, in turn, adjust to the growth rate (44). How-
ever, division rate may sense nutrients directly (44) and become
decoupled from the different cell-growth processes connected to
the nutrient-imposed growth rate (bulk mass biosynthesis, elon-
gation, and volume change). It is worth noting that, as soon as
the nutrient condition is changed, both added size and interdi-
vision time show changes before growth rate begins to change
and reach a new steady state before growth rate does, thus inval-
idating a view where the cell cycle “senses” growth rate and
adapts the interdivision time accordingly. A scenario where both
the division and the biosynthesis machinery are able to sense
and react to nutrient changes appears more plausible. As we
further show, the standard view where cell division is slaved to
the chromosome replication–segregation cycle appears to be at
odds with the observed time scales and qualitative changes in
cell-cycle parameters across the shift. Both results are in accor-
dance with a parallel study on downshifts induced by increased
ppGpp (44). Beyond the tested models, the same limitations
may be common to most models available in the literature
(which were not designed to describe shifts), as a consequence
of the hidden assumption whereby these models describe divi-
sion rate as a consequence of growth rate, treated as an input
parameters (5).

Finally, using the data from four GFP reporter strains with
either a ribosomal or a constitutive promoter inserted at two
different locations along the genome, we could test the hypoth-
esis that the adder molecule is a protein under the control
of these kinds of promoters (whose expression is differently
dependent on growth rate). We believe that, giving our cur-
rent limited knowledge on the cross-talks between growth- and
cell-cycle physiology, this “empirical” approach to forward mod-
els is preferrable to more theoretical routes postulating the
behavior of different proteome sectors across shifts (48–51).
Comparing the predictions of the four possible models that
can be generated from our data, we show that the data are
in agreement with a model where a putative adder protein is
under the control of a constitutive promoter located close to
the replication terminus of the E. coli chromosome. This model
predicts efficiently the behavior of interdivision time, initial
size, and added size of cells across the shift. Conversely, if we
reverse-engineer the production rate of an accumulator model
in order to reproduce our division data, we find that it matches
the expression pattern of the terminus-proximate constitutive
promoter.

Crucially, the specific production rate of a constitutive pro-
moter transiently decreases immediately after the upshift, while
the one of a ribosomal promoter transiently increases, in agree-
ment with the rapid decrease in ppGpp upon addition of amino
acids to cells grown in their absence (36). Note, however, that
in this study, we do not investigate why the observed promoters

show this complex behavior, which is a separate question (33).
Presumably, cells are spending their resources producing more
ribosomes to take advantage of the richer medium to such a
level that constitutive promoters are fractionally down-regulated.
We also note that surface and mass synthesis decouple during
nutrient shifts (55).

The conclusion that a threshold accumulation process sets
division is common in the recent literature (to the point that
isolating competing hypotheses is an open challenge). A recent
study combining experiments and theory concludes that in
order to reproduce the observed trends across conditions, this
molecule should be under growth-rate control and able to sense
the mean duration of the replication or segregation period of
the chromosome in a given condition (10). Several theoretical
studies have speculated on the possible interactions between
biosynthetic “sectors” and cell-division control (48–51). In par-
ticular, based on the analysis of steady-state growth-division data,
two studies (48, 49) have suggested that the molecule affecting
the adder behavior may be a protein of the “P sector” of the pro-
teome, i.e., a constitutive promoter, in full agreement with the
conclusions reached here.

It has been speculated that the divisor molecule could be
FtsZ itself (9, 32). In agreement with our findings, FtsZ expres-
sion is not ppGpp-dependent (56). Additionally, its expression
rate is inversely proportional to the replication–segregation
period duration (9, 10, 48). However, the subcellular localization
dynamics and activity of this protein are complex (57). Addi-
tionally, the dynamics of width across the shift in our data (SI
Appendix, Fig. S1) is very slow compared to the changes in divi-
sion rate and added size. Hence, our data seem at odds with a
scenario whereby the FtsZ ring (or the septum) are always rate-
limiting for cell division, which predicts a direct link between cell
diameter and division rate (31, 32).

A parallel single-cell study has implicated the alarmone
ppGpp (44), the key player of a network sensing nutrient lev-
els and setting the growth rate through transcriptional control
of ribosomal promoters, in the direct regulation of division rate.
This result is based on the observation that the added size
and interdivision time change faster than the growth rate in
a downshift induced by upregulation of ppGpp synthesis. This
observation opens the question of whether ppGpp could have
direct or indirect interactions with the divisome.

In our shifts, the carbon source does not change, and available
ppGpp levels are expected to decrease due to the increased levels
of amino acids in the new medium (45), so the nutrient change
could be paralleled to an effective rapid decrease in ppGpp lev-
els, similarly to the case studied by Büke et al. (44) (in our case,
we also expect that the transcription of genes for AA biosynthe-
sis is shut off, freeing resources for the increased expression of
genes involved in the transport of AA and biosynthesis of cellular
components). Based on our data and modeling analysis, we spec-
ulate that the control of ppGpp on cell division could be exerted
through an indirect effect of the change in ppGpp on the tran-
scription of a constitutive promoter, supporting the idea that the
more direct ppGpp–divisome interaction proposed by Büke et al.
might not be necessary.

Our data and model show that this transcriptional effect can
explain the fast time-scale changes observed in the shift. ppGpp
binds directly to RNA polymerase (RNAP) and destabilizes
its interaction with the promoter, with a strong effect on the
transcription-initiation rate of ribosomal promoters, where the
RNAP–promoter complex is particularly weak (45, 58). A rapid
decrease in ppGpp could thus result in an increase in the amount
of RNAP that is used to transcribe ribosomal genes, decreasing
the amount of RNAP that is available for the transcription of
other promoters, such as the P5 promoter used here. Hence, a
change in ppGpp levels has, in principle, the power of chang-
ing the production rate of most gene categories on relatively fast
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time scales (36, 47). Our analysis shows that this action could be
sufficient to modulate division rate very quickly across an upshift,
and faster than effecting the observed changes in overall growth
rate. As a rationale for this, we hypothesize that a change in the
overall biosynthetic rate requires production of many ribosomes,
whereas a sufficiently low threshold of a putative adder protein
could make the effects of a change in its production rate on the
cell-division rate very quick to observe.

To conclude, we propose a more generic and formal inter-
pretation of our main results, which may help guide future
analyses aiming to identify molecular players of cell division.
The accumulator model can reproduce the data if two crucial
prescriptions are included. First, the production rate has to tran-
siently decrease during the upshift, then increase, in order to
capture the behavior of the division rate. Hence, the divisor
molecule must be something that responds in a precise way to
changes in ppGpp levels, without using biosynthesis as a readout.
Second, since the terminus-proximate location of the promoter
appears to play a role, any putative molecular accumulator circuit
leading to cell division should be able to count terminus copies
or something correlated.

Materials and Methods
Experimental Details.
Strains and culture conditions. The six strains assayed here each contain
one of three promoters controlling GFP expression from the gfpmut2 gene
(59) at either a genomic position close to the origin or the terminus of repli-
cation, with E. coli K-12 BW25113 serving as the background. The former
is at genome coordinate 4,413,507 bp, between the two convergent genes
aidB and yjfN, while the latter is at 1,395,706 bp, between the two conver-
gent genes ynaJ and uspE. The two promoters used here correspond to the
following: The first contains a shortened version of the well-characterized
ribosomal RNA operon promoter rrnBP1 (60, 61), here called P1, which
includes the sequence from −69 to +6 relative to the transcription start site.
The binding sites for Fis and the higher-affinity H-NS binding site are thus
omitted from this construct. The rrnBP1 promoter has a GC-rich discrimina-
tor region at the transcription-initiation site, which makes the open complex
sensitive to changes in negative supercoiling and to inhibition by ppGpp
(61). The second promoter used here is a constitutive promoter, P5, derived
from the phage T5, that has consensus −10 and −35 sequences and no dis-
criminator region. Per strain, one of the above promoters was placed at one
of two chromosomal locations: either close to the origin of replication at
ori-3 (4,413,507 bp, nearest gene aidB); or the replication terminus at ter-3
(1,395,706 bp, nearest gene ydaA). A kanamycin-resistance cassette (KanR) is
divergently expressed from each promoter-gfpmut2 cassette. Bacteria were
always kept at 37 ◦C. Growth medium had M9 minimal medium (BD Difco)
and 0.4% glucose as the carbon source; the upshift consisted of switch-
ing M9–glucose with M9–glucose supplemented with 0.5% casamino acids
(Sigma-Aldrich Company Ltd.; OmniPur). Overnight cultures were diluted
500:1 in new, slow-growth medium and returned to the incubator for 3
to 4 h, i.e., until the cells reached their exponential phase. One milliliter
of culture was then pipetted into two 2-mL prewarmed Eppendorf tubes
and centrifuged at 4,000 rpm and 37 ◦C for 4 min. The supernatant was
pipetted off, and each pellet was resuspended in 40 to 50 µL of fresh slow-
growth medium by vortexing. These condensed cultures were then injected
into prewarmed, passivated, and rinsed polydimethylsiloxane (PDMS) chips
as described below.
Device fabrication and loading. PDMS-based (Sylgard by Dow Corning)
microfluidic devices were constructed to support the long-term growth of E.
coli under a nutrient upshift from slow to fast growth medium and bonded
onto glass coverslips (Menzel-Gläser; 22 × 60 mm), as described in ref. 35.
PDMS was cast over the master template to yield the negative-relief mother
machine pattern to be fixed to the coverslip. Before loading bacteria into
the device, each chip was treated with a solution of bovine serum albu-
min (BSA; Sigma-Aldrich Company Ltd.) to minimize bacterial interactions
and binding to the glass or PDMS components. Devices were pipetted with
5 µL of 10% BSA and incubated at 37 ◦C for 45 to 60 min. Passivated chips
were rinsed with fresh medium. Bacteria in exponential phase were then
similarly pipetted into the device. The chip was then mounted on a spin
coater (Electronic Micro Systems, model 4000), such that the line connecting
both injection sites intersected the axis of rotation. Each sample was spun
at 3,250 rpm for 10 min, and bacteria were pulled into the microchannels
by the resulting centripetal force. Chips were inspected under 40× magni-

fication to confirm that a substantial fraction of microchannels contained
bacteria. In the case of poor trapping, the sample was spun again under the
same settings.
Microfluidic circuit and growth medium switch. Two 20-mL syringes
(Becton Dickinson UK Ltd.; Plastipak) were prepared with each growth
medium and mounted on separate syringe pumps (KD Scientific; Legato
110). A membrane filter (Sigma-Aldrich Company Ltd.; MF-Millipore,
0.22-µm pore size) was placed between the syringe and the dispensing tip
(Intertronics; stainless steel, straight blunt, 1/2′′, 23 gauge), ensuring that
only sterile growth medium entered the microfluidic device. A Y-junction
was formed with three pieces of Tygon tubing (Cole Parmer; 0.020′′ ×
0.060′′ outside diameter [OD]; 40-, 40-, and 20-cm lengths) and a PEEK Y-
connector (Kinesis; for 1/16′′ OD tubing, flangeless fittings). The two 40-cm
tubing segments were attached to the syringe-dispensing tips, and the 20-
cm tubing segment was connected to the input injection site of the chip
by using the stainless-steel shaft of a 90◦ dispensing tip (Intertronics; stain-
less steel, 90◦ bend blunt, 22 gauge). Prior to attaching the 90◦ connector
to the chip, the fast-growth medium was pumped through the tubing at
100 µL/min until about 0.5 mL had drained from the connector end. The
same was then repeated by using the slow-growth medium. The syringe
pump controlling the slow-growth medium was then set to 10 µL/min,
and the input connector tip was inserted into the chip. The two syringe
pumps were programmed to alternate so that the slow-growth medium
fed the device first, while the fast-growth medium pump was delayed. In
most cases, a complete upshift experiment lasted between 18 and 24 h,
with roughly equal time spent in each growth medium. While the chip
was plugged in, the infusion flow rate was set to 10 µL/min, irrespec-
tive of growth medium. This corresponds to a flow velocity in the main
feeding channel of approximately 166.7 mm/s. There was a brief delay of
roughly 4 min before the new medium reached the device, which was
accounted in our definition of the shift time. This corresponds to the 20-
cm distance that the fluid must travel from the Y-connector junction to the
chip. We also performed an experimental test of the time to fill a chan-
nel and the device itself, by flowing (fluorescent) Luria–Bertani medium
(SI Appendix, Fig. S16). It takes less than 5 min (one frame) to completely
fill a channel with medium. The mixing of the two media outside the
channels is negligible, judging from the fluorescence, as expected from
such a low-Reynolds-number flow. Additionally, we tested directly in the
data that the growth rate averaged on the channels at the two outer-
most sides of the device shows a small delay, of about 5 min (SI Appendix,
Fig. S16).
Optical microscopy and image acquisition. Images were acquired under
60× magnification by using an inverted microscope (Nikon Eclipse Ti-E;
oil objective, numerical aperture 1.45). The camera (Andor iXon DU-897
electron-multiplying charge-coupled device, Oxford Instruments Industrial
Products Ltd.) captured 16-bit images at 512- × 512-pixel resolution, with
the length of 1 pixel equal to 0.1067 µm. The motorized stage and camera
were programmed to cycle between at most 40 fields of view, each span-
ning roughly eight microchannels, every 5 min, recording three images per
field of view: one brightfield (red or green illumination; excitation PD01
and PM01, LUXEON Z light-emitting diode [LED], Lumileds; multiband FF01-
392/474/554/635 optical filter, Semrock), one fluorescence (blue, PB01), and
one blank without illumination. The exposure time for all images was 0.286
s, corresponding to the camera’s maximum shutter speed. All LEDs were
set at their respective minimum forward currents to minimize potential
interference with the cells due to overexposure. The entire apparatus was
left to acquire images continuously through the growth-medium switch,
with sufficient data before and after the switch event. The coverslip of
the microfluidic device was fixed onto a custom aluminum thermoelec-
tric cooler that was then fitted on the microscope stage. The stage and
objective temperatures were always set to 37 ◦C. The input tubing was
woven through inlet holes to ensure that fluid entering the chip was the
appropriate temperature.

Data Analysis Details.
Segmentation and tracking algorithms. We developed bugpipe, a custom-
built MATLAB package to process mother machine-based images and handle
the resulting cell data. In brief, for each background-subtracted fluores-
cence image, the segmentation algorithm proceeds in the following steps:
1) find regions of interest (ROIs), i.e., the channels trapping each cell line;
2) within each ROI, threshold and isolate cells in the background; 3) find
cell boundaries and further process any “fused” cells; and 4) remove arti-
facts based on size. Simple background subtraction was performed by
subtracting the respective dark frame from each fluorescence image. The
tracking procedure that links individual cells between consecutive frames

8 of 10 | PNAS
https://doi.org/10.1073/pnas.2016391118

Panlilio et al.
Threshold accumulation of a constitutive protein explains E. coli cell-division behavior in nutrient

upshifts

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016391118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016391118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016391118/-/DCSupplemental
https://doi.org/10.1073/pnas.2016391118


CE
LL

BI
O

LO
G

Y
BI

O
PH

YS
IC

S
A

N
D

CO
M

PU
TA

TI
O

N
A

L
BI

O
LO

G
Y

takes advantage of the geometric constraints imposed by the microchannel
format of the microfluidic chip. Namely, that in the absence of cell divisions,
a cell’s rank within a channel is conserved between frames. The tracking pro-
cedure operates by: 1) microchannel matching between frames, 2) sorting
cells in-channel based on distance from the dead-end, and 3) determining
markers for cell division to adjust the rank-based pairing as necessary. The
package was designed with separate functions for segmentation, tracking,
and data-handling procedures. This grants flexibility for the user if, say, only
big-data manipulation tools are needed. Detailed information on bugpipe
is available in SI Appendix. The bugpipe package and its complete documen-
tation is available at https://github.com/panlilio/bugpipe. The data analyzed
here refer to three repeats of the entire upshift experiment for the P5ori
promoter, two repeats for the P5ter and P1ori promoters, and one repeat
for the P1ter promoter.

Modeling Details. We considered four alternative models to describe cell-
size control in steady growth and during the nutrient shift. These models
(with one exception) are known to reproduce the adder correlations in
steady growth and can be parameterized to reproduce the empirical rela-
tion between size and growth rate across condition, known as Schaechter’s
law (10, 37).

We generalized these models to nonsteady conditions under nutrient
shifts. This generalization required nonstraightforward decisions. Here, we
employed a data-driven strategy and used the experimental trajectory of
the average growth rate ᾱ(t), and of other quantities, if applicable, as input
of the model. The model output that we tested against the experiments
were the trajectories of division time, added size, initial size, and strength
of division control during the shift.

In order to take into account for the nonsteady values of the single-cell
growth rate αinst, we consider the following dynamics

dαinst(t)

dt
=−

1

Tα

(αinst(t)− ᾱ(t))+
√
σα

Tα

ξ(t), [4]

where ξ(t) is a Gaussian white noise with zero mean and an SD equal to
one. Under constant values of ᾱ(t) (ᾱ(t) = ᾱ), this equation corresponds to
a Gaussian stationary distribution of the αinst(t) with mean ᾱ and SD σα. In
this case, the parameter Tα sets the autocorrelation time of the single-cell
growth rates. When instead ᾱ(t) varies, Tα sets the typical time that it takes
for a single cell to respond to the forcing imposed by ᾱ(t). It is easy to show
that the average growth rate is equal to

〈αinst(t)〉=
∫ ∞

0
ds

1

Tα

exp
(
−

s

Tα

)
ᾱ(t− s). [5]

In order to simplify the inference of ᾱ(t), we assumed Tα to be small com-
pared to a cell cycle and to the typical time of change of ᾱ(t) during the
nutrient shift. Under this assumption, we set ᾱ(t) = 〈αinst(t)〉. For numerical
purposes, we set Tα = 1 min. We also verified that our simulations gave the
same results extracting the values of αinst from the experimental values in
each time bin.
Initiation-sizer model. The model assumes that initiation starts at a con-
stant cell size per origin of replication (“initiation mass”), i.e., 〈VB〉= OV∗,
where VB is the size of the cell at initiation, and O is the number of origins,
while V∗ is a constant size (independent of the condition) (43). Division
happens at a time 〈tC+D〉 after initiation. In steady growth, the model
reproduces Schaechter’s law and a sizer-like division control. This model is
different (simpler) from the one used in ref. 30, which includes nontrivial
correlations (see refs. 7 and 8 for a thorough discussion). Single-cell growth-
rate trajectories were modeled as explained above. We set the two other
free parameters of the model (V∗ and 〈tC+D〉) to reproduce the initial aver-
age size at the two steady-growth conditions before and after the shift. In
particular, in steady growth, it is known (10, 30) that 〈V0〉= V∗ exp ᾱ〈tC+D〉,
which can be easily inverted to determine V∗ and 〈tC+D〉 using the values
of 〈V0〉 and ᾱ before and after the shift. Both the initiation and time-to-
division are stochastic, where 〈VB〉 and 〈tC+D〉 are averages. We assume
Gaussian noise on log VB and tC+D with equal magnitude, set to reproduce
the coefficient of variation of the initial size [which is independent of the
condition (21, 39)].
Incremental model (16). The model assumes that cells add, on average, a
constant size per origin ∆∗ = 〈∆I〉/O between initiations of replication. As
in the initiation-sizer model, division takes place at a size-independent time
〈tC+D〉 after initiation. Single-cell growth-rate trajectories were modeled as
explained above. The two free parameters of the model (∆∗ and 〈tC+D〉) are
set to reproduce the initial average size at the two steady-growth conditions

before and after the shift using the relationship 〈V0〉= ∆∗ exp ᾱ〈tC+D〉.
Both the initiation and time-to-division are stochastic, where the log ∆I

and tC+B are independent Gaussian random variables with equal SD, set
to match variability of initial size.
Relative-rates model. This model assumes that septum-formation is the
rate-limiting process for cell division (31). Synthesis of the target surface
material S happens at a rate proportional to the volume dS/dt = βV , and
S is reset to zero at every cell division. β(t) along the shift is obtained from
measured cell surface (from width and length, assuming the shape to be a
spherocylinder) in our data. Division is triggered when S(t) reaches a crit-
ical threshold S∗. Depending on the assumption (31), the threshold could
be constant or proportional to the septum area πw2, with w being the
width of a cell. We chose the former. Since the two models differ in the
threshold S∗, while β(t) is the same, they cannot both reproduce the aver-
age added size postshift. The former version (constant S∗) correctly predicts
the average added size in steady state after the shift, while the latter does
not. Neither version can reproduce the overshoots in our data. The rates
β(t) before, during, and after the shift are determined from the empirical
value of the width w(t). The rates r before and after the shift are the two
free parameters and are determined to reproduce the empirical values of
the size before and after the shift. Noise is introduced in the value of S∗(t),
which has lognormal fluctuations set to match the variability of initial size.
Constitutive/ribosomal divisor accumulator model. This model assumes
that the accumulation of some protein triggers division. Synthesis of the
divisor protein N happens at a rate proportional to the volume dN/dt = rV ,
and N is reset to zero at every cell division. Division is triggered when N
reaches a critical threshold N∗. We assume that r(t) is proportional to the
experimental volume-specific rate of expression of a constitutive or riboso-
mal promoter from our data, which we use as an empirical input of the
model, together with the growth rate [both quantities are evaluated as
instantaneous (discrete) derivatives]. The only free parameter of the model
is the threshold N∗, which we assume to be constant during the shift and
condition-independent. We set N∗ to match the average size at birth before
the shift. Note that, contrarily to the other models described above, we
do not set any free parameter to reproduce the initial size after the shift,
which is therefore another prediction of the model. Stochasticity is intro-
duced in the value of N∗, which is assumed to have lognormal fluctuations,
with coefficient of variation set to match the variability of initial size.
Reverse variant of the divisor accumulator model. This model is identi-
cal to the previous one, but instead of using promoter expression data
to define r, it uses the production rate inferred from data on added size
and growth rate, assuming the model. Eq. 2, which holds in balanced expo-
nential growth, can be generalized during the shift, under the assumption
that the time dependency of the added size emerges as a consequence
of the time dependency of the instantaneous growth rate αinst(t) and of
the volume-specific expression rate r(t), while the threshold N∗ remains
constant.

An average cell born at time t with initial volume V0(t), at age a will have

volume V(a, t) = V0(t) exp
(∫ t+a

t ds αinst(s)
)
. The amount of divisor protein

of a cell born at time t, with age a will be therefore N(a, t) =
∫ a

0 du r(t +

u)V(u, t). At division, N(ad , t) = N∗, independently of t, from which we
obtain

N∗ =

∫ ad

0
du r(t + u)V(u, t) =

∫ ad

0
du r(t + u)V0(t) exp

(∫ t+u

t
ds αinst(s)

)
.

This expression can be written in terms of the average added size ∆(t) of a
cell born at time t, by using the fact that

∆(t) = V(a, t) exp
(∫ t+ad

t+a
ds αinst(s)

)
.

By inverting this expression, we obtain the approximate expression for
rreverse(t) shown in Eq. 3 and in SI Appendix, Fig. S9. The inferred production
rate was compared to the experimental values for the measured promoter
ad used in direct simulations of the model.

Data Availability. Experimental datasets and code used in this study have
been deposited at Mendeley Data (DOI: 10.17632/5d4yhyjn8j.1). The bug-
pipe package and its complete documentation is available at GitHub
(https://github.com/panlilio/bugpipe).
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