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2TTK Momentum Cancer Biomarker Research Group, 2, Magyar tudósok körútja, Budapest H-1117,
Hungary, 3Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 50/A,
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Key Messages:
1. A statistical link between SARS-CoV-2 mutation status and severe COVID outcome was established using automated machine learning

techniques based on random forest and logistic regression combined with feature selection algorithms.
2. A mutation signature based on 3779 protein coding and 36 UTR mutations capable to identify severe outcome cases was established.
3. The trained model showed high classification performance [AUC= 0.94 (CI: [0.912, 0.962]) and accuracy= 0.87 (CI: [0.830, 0.903])].
4. A registration-free web-server for automated classification of new samples was set up and is accessible at http://

www.covidoutcome.com.
5. The established pipeline provides a quick assessment of future patients warranting a prospective clinical validation.
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Abstract
Numerous studies demonstrate frequent mutations in the genome of SARS-CoV-2. Our
goal was to statistically linkmutations to severe disease outcome. We used an automated
machine learning approach where 1594 viral genomes with available clinical follow-up
data were used as the training set (797 ‘severe’ and 797 ‘mild’). The best algorithm, based
on random forest classification combined with the LASSO feature selection algorithm,
was employed to the training set to link mutation signatures and outcome. The perfor-
mance of the final model was estimated by repeated, stratified, 10-fold cross validation
(CV) and then adjusted for multiple testing with Bootstrap Bias Corrected CV. We iden-
tified 26 protein and Untranslated Region (UTR) mutations significantly linked to severe
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outcome. The best classification algorithm uses a mutation signature of 22 mutations
as well as the patient’s age as the input and shows high classification efficiency with an
area under the curve (AUC) of 0.94 [confidence interval (CI): [0.912, 0.962]] and a pre-
diction accuracy of 87% (CI: [0.830, 0.903]). Finally, we established an online platform
(https://covidoutcome.com/) that is capable to use a viral sequence and the patient’s age
as the input and provides a percentage estimation of disease severity. We demonstrate a
statistical association between mutation signatures of SARS-CoV-2 and severe outcome
of COVID-19. The established analysis platform enables a real-time analysis of new viral
genomes.

Introduction

With several hundred thousand fully sequenced genomes
deposited in various databases, coronavirus SARS-CoV-2,
the causative agent of the COVID-19 pandemic, is probably
the most thoroughly sequenced organism today. The vari-
ance we see is impressive: there is no or hardly any sequence
position in the genome that is not mutated in one of the
published sequences.

Interpretation of SARS-CoV-2 genome data, especially
in terms of disease severeness and patient mortality, is
a formidable task complicated by facts such as the virus
spreading in a constantly mixing human population, in dif-
ferentially susceptible age groups, and in vastly different
health-care conditions [e.g. (1)]. In addition, only a small
part of deposited genomes are annotated with patient sta-
tus data. Consequently, one can argue that mutations are
simply neutral regional markers that rarely affect viral fit-
ness and clinical outcome. On the other hand, there is a
growing body of empirical evidence showing that specific
mutation patterns such as Spike protein mutation D614G
and its accompanying mutations are associated with faster
spreading of the virus (2, 3), and it was shown that Spike
D614G mutants not only spread faster but also cause more
severe disease in animal models (4). Recent statistical stud-
ies of ∼5000 SARS-CoV-2 genome sequences showed that
various mutations were significantly associated with clini-
cal outcome, and it was found that many of the mutations
affected known functional parts of the Spike and Nucleo-
capsid proteins (5, 6). It is an open question whether or
not the mutation signature of SARS-CoV-2 genomes can be
used as an indicator of disease severity given the current
data available.

Machine learning classification algorithms [such as sup-
port vector machines (7, 8), random forest (9) and logistic
regression (10) amongmany others] are par excellence tools
for uncovering hidden associations in large datasets. Given
two sets of samples assigned to different classes (such as
disease outcomes) and a mathematical description for the
samples (such as a vector or a list of mutations), clas-
sification algorithms can give well-understood statistical

estimates regarding how well a mathematical description
can discriminate the two classes. The pertinent measures
are defined in the framework of receiver operating char-
acteristic analysis (11, 12). On the other hand, mutation
lists—that we term here mutation signatures—can be quite
long and difficult to handle. Feature selection algorithms—
such as the LASSO algorithm or themore recent statistically
equivalent signature (SES) method (13)—can help one to
condense a mutation list to an essential core set. And if such
a recurrent set exists across various datasets and classifica-
tion algorithms, one is encouraged to believe that there is
an association between sample descriptions and the class
definitions—in our case mutation signatures and disease
outcomes.

Here, we applied machine learning classification com-
bined with feature selection algorithms to a cohort of
1594 SARS-CoV-2 genomes and their associated patient
data in order to show that the known mutation signa-
tures contain the information sufficient to separate mild
and severe outcome classes and can be considered as
predictors of severe outcomes. We also established an
online analysis platform for predicting the probability of
severe infection, starting from a SARS-CoV-2 genome
sequence.

Materials and methods

The SARS-CoV-2 nucleic acid sequences were downloaded
in FASTA format from the GISAID virus repository (https://
www.gisaid.org/, accessed on December 2, 2020). Only
genome sequences annotated with patient follow-up sta-
tus data were downloaded. The CoVsurver analysis tool
(https://corona.bii.a-star.edu.sg) was used to extract the
mutations. The viral sequences in FASTA format were used
as input for this tool. The ‘hCoV-19/Wuhan/WIV04/2019’
strain was used as the reference. The UTR mutations
were extracted from the multiple alignments of underlying
sequences by comparing the target sequence to the reference
sequence. The multiple alignment was constructed using
the MAFF software tool (14), and substitutions occurring
in at least 10 genomes were selected for further analysis.
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The protein mutations were exported in protein alter-
ation format, and non-protein (i.e. UTR) mutations were
exported in nucleotide mutation format.

Artificial intelligence (machine learning) algorithms
were used to identify mutations associated with the sever
outcome. Briefly, we chose a procedure, using the JADBio
platform (15), that starts with genomic mutation data as
the input, carrying out classification based on rigde logis-
tic regression (10), random forests (9) or support vector
machines (7) in conjunction with LASSO feature selec-
tion (16) whenever appropriate, and outputting (i) classi-
fication efficiency measures [accuracy and area under the
curve (AUC)—for a review, see (12)] and (ii) a feature
importance list, i.e. a list of mutations ranked accord-
ing to their importance in distinguishing severe vs. other
outcomes. For training and testing the classification and
feature selection algorithms, we organized the genome data
into three datasets: Dataset #1 included 797 severe and
797 mild cases (Supplementary Table S1) and Dataset #2
included 638 severe and 638 mild samples (Supplementary
Table S2).

The online analysis platform (https://www.covidout
come.com) is written in R using the R Shiny package
(https://CRAN.R-project.org/package=shiny) and is run-
ning under Linux Debian 64-bit (x86_64). The server takes
a SARS-CoV-2 genomic sequence in FASTA format as the
input and provides (i) a list of protein as well as UTRmuta-
tions and (ii) a probability of the input genome producing
severe infection, as the output.

The server fist performs a global pairwise sequence
alignment between the input sequence and the reference
genome of the ‘Wuhan strain’ (hCoV-19/Wuhan/WIV04/
2019), using the program of the ‘Biostrings’ R Bioconduct-
or package (https://bioconductor.org/packages/Biostrings/)
and outputs the protein as well as UTR mutations. The sec-
ond step of the analysis includes prediction of the clinical
outcome that is expressed as the probability of severe out-
come. The prediction is based on the random forest model
trained on 797 ‘mild’ and 797 ‘severe’ genome records
(Dataset 1). The result is presented in numerical as well
as graphical form. Figure 1 shows the complete analysis
workflow.

Results

Set up of viral datasets

We retrieved from the GISAID database a total of 9781
SARS-CoV-2 genome data that were provided with patient
status indications. We found that patient status was
described with 179 different, submitter-defined terms, so
we formed cohorts that included clearly defined patient
descriptions. This was possible for the mildest and for the

Figure 1. Flowchart of the online analysis platform. Quality control
includes checking the number of identities with the Wuhan strain
(min. 90%), genome length (29 000< length<40 000), GC contents
(37%<GC<39%) and number of uncertain (‘N’) characters (max 2%).

most severe outcomes that we designated as ‘mild’ and
‘severe’. The pertinent terms are listed in Supplementary
Table S3. Hospitalized patients were more difficult to cat-
egorize as hospitalization criteria varied from country to
country, so these were not included in the learning and test
sets. The retrieved sequences contained a total of 3779 pro-
tein and 36 UTRmutation types as compared to theWuhan
strain.

Association of mutations with patient outcome

We represented the genomes with mutation signature vec-
tors that contained the name of the genome, the age of the
patient, followed by a series of protein and UTR mutations
listed in the order of their sequence positions.

Our goal was to establish whether or not the muta-
tion signatures can distinguish two input classes, i.e. mild
and severe patient outcomes. Machine learning algorithms
can help to approach this problem since a high classifica-
tion efficiency is generally considered an indicator of the
input data being able to distinguish the class labels. A spe-
cific problem of the genomic data is the large number of
possible mutations that can obscure the identity of truly
relevant mutations. Techniques of feature selection (13, 16)
are designed to solve this problem as they can narrow down
the number of input dimensions to a few, relevant dimen-
sions ranked according to their importance. In practice, we
can combine feature selection algorithms, such as LASSO
(16) or SESs (13) with classifier algorithms [such as sup-
port vector machines (7, 8), random forests (9) and logistic

https://www.covidoutcome.com
https://www.covidoutcome.com
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https://bioconductor.org/packages/Biostrings/


Page 4 of 6 Database, Vol. 2021, Article ID baab020

Table 1. Prediction classification performance of different methods determined using a balanced dataset of 797 mild and

797 severe genomes (Dataset 1) and 638 mild and 638 severe samples (Dataset 2), using repeated, stratified 10-fold cross-

validation, including patient age data

Methodsa Dataset 1 Dataset 2

Classification Feature selection AUC AUC

1 Random forests LASSO 0.943 0.936
2 Ridge logistic regression LASSO 0.940 0.935
3 Random forest SES 0.937 0.927
4 Ridge logistic regression SES 0.935 0.923
5 Support vector machine LASSO 0.932 0.919
6 Support vector machine SES 0.918 0.913
7 Trivial model None 0.5 0.5

The models used the mutations as well as patient age as the input. The standard deviation of the values was typically <0.02.
aThe run parameters were as follows: random forests: 100 trees with deviance splitting criterion, minimum leaf size= 3, and variables to split=1.0 sqrt (nvars); support vector machines: type
C-SVC with radial basis function kernel and hyper-parameters: cost= 1.0, gamma=1.0. LASSO: penalty=1; lambda= 2.629e-03; ridge logistic regression: lambda= 1; SES (maxK= 2,
and alpha=0.05). The combination in italics is implemented in the online analysis platform.

Table 2. Mutation signature examples selected by the LASSO algorithm (16)

1 2 3 4

Dataset 1 (incl. age)a Dataset 2 Dataset 2 (incl. age) Dataset 2

Performanceb AUC=0.938;
Accuracy (ACC)=0.866

AUC=0.887;
ACC=0.800

AUC=0.933;
ACC=0.836

AUC=0.893;
ACC=0.806

1 Spike_V1176F Spike_V1176F Spike_V1176F Spike_V1176F
2 N_I292T N_I292T NS3_Q57H NS3_Q57H
3 NS3_Q57H Spike_L5F N_I292T NSP4_M324I
4 SG29830T NSP3_A994D N_D377Y NSP12_P323L
5 SC241T NS3_Q57H N_S194L Spike_D614G
6 N_D377Y NSP14_A320V Spike_D614G NSP13_S485L
7 NSP4_F308Y N_S194L NSP13_H290Y N_I292T
8 NS3_G251S NSP6_L37F N_G204R Spike_L5F
9 NSP6_L37F SC241Tc NS3_G251V NSP4_F308Y

10 NSP4_M324I N_G204R NSP14_A320V N_S194L
11 N_M234I SG29830Tc N_M234I N_G204R
12 NSP13_H290Y Spike_D614G NSP4_F308Y NSP3_A994D
13 NSP14_A320V NSP13_S485L SG29830Tc NSP6_L37F
14 N_S194L NSP4_F308Y NSP12_P323L SC241Tc

15 NSP7_S25L NSP4_M324I Spike_L5F NSP3_K945N
16 N_D377Y NSP6_L37F NSP7_S25L
17 NSP7_S25L NSP4_M324I NS3_G251S
18 NS3_G251V SC241Tc SG29830Tc

19 N_M234I NS8_L84S NS3_G251V
20 NS3_G251S NSP14_A320V
21 NSP13_H290Y
22 N_D377Y
23 Spike_N439K
24 NS8_L84S
25 NSP3_I1683T

aDetermined on datasets described in the Materials and methods section. The learning procedure only included patient age if indicated.
bCorrected AUC values.
cUTR mutations.

regression (10)], in such a way that classification perfor-
mance and feature (mutation) signatures will be optimized
at the same time. Table 1 summarizes the results in terms of
classification performance. The AUC and accuracy values

[for a review, see (12)] are high enough to indicate that the
mutation signatures contain the information necessary to
separate mild and severe outcomes. Table 2 lists examples
of mutation signatures identified by the LASSO algorithm
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on two datasets. Here, we also included models that did
not contain patient age data (which sum up the total of
four methods listed in Table 2). It is conspicuous that the
mutation lists are similar, i.e. almost the same mutations
were found to be important in all cases. For instance, out
of the 26 different mutations, 19 were prioritized by all
4 methods, 4 were selected in 2 of them and there were
only 3 mutations that were found by 1 method only.
Similar but not identical mutation signatures were found
with the SES method (13) (data not shown). In other
words, the prioritized mutations can be considered a
stable, robust subset that apparently contains most of
the information necessary to distinguish the ‘mild’ and
‘severe’ cases. We also note that the mutations priori-
tized here by feature selection quite well coincide with
those well known from previous sequencing studies. For
instance, spike protein variants V1176F and S477N,
that co-occur with DG14G, affect important functional
domains of the spike protein and are found to increasingly
spread around the world (6). In the nucleocapsid pro-
tein, S194L maps onto the phosphorylated ‘RS-motif’ (17)
that is in the intrinsically unstructured serine-rich region
181–213 of the protein and was previously found associ-
ated with severe outcome (5). Similarly, UTR mutations
SC241T and SG29830T were also noted byMukherjee and
Goswami (18).

Online analysis platform

The complete analysis pipeline is summarized in Figure 1.
In the first step of the analysis, global pairwise sequence
alignment is used to align the query nucleotide sequence
to the reference nucleotide sequence (hCoV-19/Wuhan/
WIV04/2019) using the ‘Biostrings’ R Bioconductor
package (https://bioconductor.org/packages/Biostrings/). A
quality control is carried out at this point, and input
sequences containing too few identities, too many ‘N’-
s, abnormal GC content or having a discrepant length
with respect to the reference sequence are rejected. Then,
using the ‘translate()’ function of the ‘Biostrings’ package,
nucleotide alterations are translated to protein alterations
plus UTR alterations. The resulting mutation signature
is passed on to random forest–based predictor that con-
tains a model with patient age. The output is a sever-
ity score, which is a (0,1) probability of the infection
being severe. This value can be evaluated in comparison
with distribution data of the test set (Figure 2). In this
figure, one can designate approximate segments depend-
ing on the ratio of severe and mild outcomes. Namely,
score <0.20 and score >0.80 are regions of high confi-
dence, 0.20 < score < 0.40 and 0.60 < score < 0.80 are of

Figure 2. Distribution of scores predicted for genomes associated with
known ‘mild’ and ‘severe’ clinical outcomes. The thick continuous line
indicates confidence defined as the probability of correct prediction,
scores below 0.20 and above 0.80 indicate high confidence in predict-
ing ‘mild’ and ‘severe’ outcomes, respectively. Intermittent scores are
considered medium or low confidence, respectively.

medium confidence and 0.40 < score < 0.60 is of low con-
fidence and annotated as ‘undecided’. An output exam-
ple is ‘score=0.10, interpretation: mild outcome (high
confidence)’, or score=0.58, interpretation: ‘undecided,
(low confidence)’. The server contains an option to submit
multiple genomes.

Discussion

In this work, we used machine learning techniques to select
mutation signatures associated with severe SARS-CoV-2
infections. We grouped patients into 2 major categories
(‘mild’ and ‘severe’) by grouping the 179 outcome desig-
nations in the GISAID database. A protocol combined of
logistic regression and feature selection algorithms revealed
that mutation signatures of about 20 mutations can be
used to separate the two groups. The mutation signa-
ture is in good agreement with the variants well known
from previous genome sequencing studies, including Spike
protein variants V1176F and S477N that co-occur with
DG14G mutations and account for a large proportion of
fast spreading SARS-CoV-2 variants (6). UTR mutations
were also selected as part of the best mutation signatures.
The mutations identified here are also part of previous,
statistically derived mutation profiles (5, 18).

An online prediction platform was set up that can assign
a probabilistic measure of infection severity to SARS-CoV-
2 sequences, including a qualitative index of the strength
of the diagnosis. The data confirm that machine learning
methods can be conveniently used to select genomic muta-
tions associated with disease severity, but one has to be
cautious that such statistical associations—like common

https://bioconductor.org/packages/Biostrings/
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sequence signatures, or marker fingerprints in general—
are by no means causal relations, unless confirmed by
experiments.

Our plans are to update the predictions server in regular
time intervals. While this project was underway, ∼100 000
sequences were deposited in public databases, and impor-
tantly, new variants emerged in the UK and in South Africa
that are not yet included in the current datasets. Also,
in addition to mutations, we plan to include also inser-
tions and deletions that will hopefully further improve the
predictive power of the server.

In summary, we found that automated machine learn-
ing, such as the method of Tsamardinos and coworkers
used here (15), is a versatile and effective tool to find
salient features in large and noisy databases, such as the
fast growing collection of SARS-CoV-2 genomes.

Supplementary data
Supplementary data are available at Database Online.
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