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Repeat-associated non-AUG (RAN) translation was discovered in 2011 in spinocerebellar
ataxia type 8 (SCA8) and myotonic dystrophy type 1 (DM1). This non-canonical form of
translation occurs in all reading frames from both coding and non-coding regions of
sense and antisense transcripts carrying expansions of trinucleotide to hexanucleotide
repeat sequences. RAN translation has since been reported in 7 of the 53 known micro-
satellite expansion disorders which mainly present with neurodegenerative features. RAN
translation leads to the biosynthesis of low-complexity polymeric repeat proteins with
aggregating and cytotoxic properties. However, the molecular mechanisms and protein
factors involved in assembling functional ribosomes in absence of canonical AUG start
codons remain poorly characterised while secondary repeat RNA structures play key
roles in initiating RAN translation. Here, we briefly review the repeat expansion disorders,
their complex pathogenesis and the mechanisms of physiological translation initiation
together with the known factors involved in RAN translation. Finally, we discuss research
challenges surrounding the understanding of pathogenesis and future directions that may
provide opportunities for the development of novel therapeutic approaches for this group
of incurable neurodegenerative diseases.

Introduction
Microsatellite expansions have been characterised in a large number of incurable neurodegenerative
diseases subdivided into polyglutamine (polyQ) and non-polyglutamine (non-polyQ) disorders [1].
Autosomal-dominant glutamine-encoding CAG repeat expansions in the Huntingtin gene (HTT)
cause Huntington’s disease (HD) [2,3] while CAG repeats in the coding regions of various unrelated
ataxin genes lead to spinocerebellar ataxias (SCA) [4,5]. Non-polyQ expansion disorders are caused by
various lengths of trinucleotide to hexanucleotide repeat sequences mostly contained within non-
coding regions of genes (50-/30-untranslated regions (UTR) and introns). These most commonly
include: CGG repeats in fragile X mental retardation 1 (FMR1) gene in Fragile X-associated syn-
dromes [6]; thousands of CTG/CCTG repeats in the myotonic dystrophies (DM1 and DM2) [7,8] and
trinucleotide, pentanucleotide or hexanucleotide repeats in non-polyQ SCAs [9]; GAA repeat expan-
sions in Friedreich’s ataxia [10]; thousands of GGGGCC repeats in chromosome 9 open reading
frame 72 (C9ORF72) in the most common genetic forms of amyotrophic lateral sclerosis (ALS) and
frontotemporal dementia (FTD) [11,12]. Altogether, we compiled a list of 53 expansion disorders that
mainly present with neurodegenerative conditions (Table 1).
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Table 1 Microsatellite repeat expansion disorders

Disorder Gene Sense repeat
Antisense
repeat

Disease
length

Location in
gene RAN translated proteins References

PolyQ microsatellite repeat expansion disorders:

Dentatorubropallidoluysian Atrophy (DRPLA) ATN1/DRPLA CAG Unknown 49–88 Exon 5 Unknown [127]

Schizophrenia/migraines KCNN3 CAG Unknown >28 Exon 1 Unknown [128]

Prostate/breast Cancer AIB/SRC-3 CAG/CAA Unknown >23 Exon 20 Unknown [129]

Huntington’s Disease (HD) HTT CAG CTG 36–250 Exon 1 polyS, polyA, polyC, polyL in
human brains & in vitro3

[2,52]

Spinal and Bulbar Muscular Atrophy (SBMA) AR CAG Unknown 38–62 Exon 1 Unknown [130]

Spinocerebellar Ataxia Type 1 (SCA1) ATXN1 CAG Unknown 49–88 Exon 8 Unknown [131]

Spinocerebellar Ataxia Type 2 (SCA2) ATXN2 CAG CTG 33–77 Exon 1 polyQ, polyA, polyS in vitro3 [132,133]

Spinocerebellar Ataxia Type 3 (SCA3) or
Machado-Joseph Disease (MJD)

ATXN3/MJD CAG CTG 55–86 Exon 10 polyQ, polyA, polyS in vitro3 [45,108,134]

Spinocerebellar Ataxia Type 6 (SCA6) CACNA1A CAG Unknown 21–30 Exon 47 Unknown [135]

Spinocerebellar Ataxia Type 7 (SCA7) ATXN7 CAG Unknown 28–120 Exon 3 Unknown [136]

Spinocerebellar Ataxia Type 17 (SCA17) TBP CAG/CAA Unknown 47–63 Exon 3 Unknown [137]

Non-polyQ microsatellite repeat expansion disorders:

Amyotrophic lateral sclerosis (ALS)/
Frontotemporal Dementia (FTD)

C9ORF72 GGGGCC CCCCGG 30–4400 Intron 1 polyGA, polyGP, polyGR,
polyPA, polyPR in human
brains & in vitro3

[11,12,49–
51,120]

Baratela-Scott Syndrome XYLT1 GGC Untranscribed
expansion

>100 Promoter Unknown [138]

Blepharophimosis-Ptosis-Epicanthus Inversus
Syndactylyl

FOXL2 GCG Unknown 22–24 Exon 1 Unknown [139]

Cerebellar Ataxia, Neuropathy, Vestibular
Areflexia Syndrome (CANVAS)

RFC1 AAGGG Unknown 400–2000 Intron 2 Unknown [140]

Cleidocranial Dysplasia RUNX2/CBFA1 GCG Unknown >20 Exon 1 Unknown [141]

Congenital Central Hypoventilation/Haddad
Syndrome

PHOX2B GCG Unknown 5–13 Exon 3 Unknown [142]

Familial adult myoclonic epilepsy (FAME1/
BAFME1)

SAMD12 TTTCA/TTTTA Unknown 440–3680 Intron 4 Unknown [143]

Fragile X syndrome (FRAXA/FXS) FMR1 CGG CCG >230 50-UTR Unknown [6]

Fragile X-associated tremor/ataxia syndrome
(FXTAS)

FMR1 CGG CCG 55–200 50-UTR polyG, polyP, polyA, polyR in
vitro3 and Drosophila

[46,144,145]

Fragile X-associated Primary Ovary
Insufficiency (FXPOI)

FMR1 CGG Not found1 55–200 50-UTR polyG in biopsied human
ovarian stromal cells

[146,147]

Fragile XE mental retardation (FRAXE) AFF2/FMR2 CGG/CCG Untranscribed
expansion

>200 Promoter Unknown [17]
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Table 1 Microsatellite repeat expansion disorders

Disorder Gene Sense repeat
Antisense
repeat

Disease
length

Location in
gene RAN translated proteins References

Fragile XF syndrome (FRAXF) TMEN185A GCC Unknown 300–500 50-UTR Unknown [148]

FRA2A-associated mental retardation AFF3 CGG Unknown >300 50-UTR Unknown [19]

FRA7A-associated autism spectrum disorder ZNF713 CGG Unknown >85 Intron 1 Unknown [19]

FRA10A-associated mental retardation FRA10AC1 CGG Unknown >200 50-UTR Unknown [20]

FRA11A-associated mental retardation C11ORF80 CGG Unknown 500 50UTR Unknown [149]

FRA12A-associated mental retardation DIP2B CGG Unknown >50 50-UTR Unknown [21]

FRA16A-associated mental retardation LOC109617027 CGG Unknown 1000–
1900

50-UTR Unknown [150]

Friedreich’s ataxia (FRDA) FXN/X25 GAA TTC >100 Intron 1 Unknown [10]

Fuchs’ Endothelial Corneal Dystrophy (FECD) TCF4 CTG CAG >50 Intron 3 polyC in human corneal
endothelium + polyA, polyQ,
polyS in vitro3

[151,152]

Hand-Foot-Genital Syndrome HOXA13 GCG Unknown 24–26 Exon 1 Unknown [153]

Holoprosencephaly ZIC2 GCG Unknown >25 Exon 3 Unknown [154]

Huntington Disease-Like 2 (HDL2) JPH3 CAG CTG >41 30-terminal exon polyQ, polyA, polyS in vitro3 [45,155]

Jacobsen Syndrome FRA11B/CBL2 CGG Not found1 100–1000 50-UTR Unknown [156]

Myoclonus Epilepsy of the
Unverricht-Lundborg Type

CYSTB CCCCGCCCCGCG Untranscribed
expansion

12–13 Promoter Unknown [18]

Congenital Myotonic Dystrophy (CDM)/
Steinert’s Disease

DMPK CTG CAG 50–10000 30-UTR Unknown [157]

Myotonic dystrophy (DM1) DMPK CTG CAG 50–10000 30-UTR polyQ in human muscle/blood
+ polyA, polyS in vitro3

[7,8,45,157]

Myotonic dystrophy type 2 (DM2) ZNF9 CCTG GGAC 75–1100 Intron 1 polyQAGRpolyLPAC in human
brains & in vitro3

[106,158]

Neuronal Intranuclear Inclusion Disease (NIID) &
Amyotrophic lateral Sclerosis (ALS)

NOTCH2NLC GGC Unknown >71 50-UTR Unknown [159,160]

Oculopharyngeal Musclar Dystrophy PABPN1/PABP2 GCG Unknown 12–17 Exon 1 Unknown [161]

Pseudoachrondroplasia and Multple Epiphyseal
Displaysia (PSACH/MED)

COMP GAC Not found1 >6 Exon 13 Unknown [162]

Spinocerebellar Ataxia Type 8 (SCA8) ATXN8OS &
ATXN8

CTG CAG 110–250 30-UTR
ATXN8OS;
50UTR ATXN8

polyA in human brains + polyS,
polyQ in vitro3

[15,45]

Spinocerebellar ataxia Type 10 (SCA10) ATXN10 ATTCT Not found1 32–4000 Intron 9 Unknown [163]

Spinocerebellar ataxia Type 12 (SCA12) PPP2R2B CAG CTG 66–78 50-UTR Unknown [164]

Spinocerebellar ataxia Type 31 (SCA31) BEAN1 TGGAA TTCCA >110 Intron 1 polyWNGME?2 in vitro3 [165]

Spinocerebellar ataxia Type 36 (SCA36) NOP56 GGCCTG Unknown >100 Intron 1 [166,167]
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Table 1 Microsatellite repeat expansion disorders

Disorder Gene Sense repeat
Antisense
repeat

Disease
length

Location in
gene RAN translated proteins References

polyGP, polyPR in human
brains + polyGL, polyWA in
vitro3

Spinocerebellar ataxia Type 37 (SCA37)4 DAB1 ATTTC GAAAT 31–75 50-UTR Unknown [168]

Synpolydactylyl Type II (SPD) HOXD13 GCG Unknown 22–29 Exon 1 Unknown [169]

X-Linked Dystonia-Parkinsonism (XPD)5 TAF1 CCCTCT Unknown 35–52 Intron 32 Unknown [170]

X-Linked Mental Retardation and Abnormal
Genitalia (XLAG)

ARX GCN Unknown 20 Exon 2 Unknown [171]

X-Linked Mental Retardation (XMLR) ARX GCN Unknown 18–23 Exon 2 Unknown [172]

X-linked Mental Retardation with Growth
Hormone Deficiency (XLMRGHD)

SOX3 GCN Unknown 15–26 Exon 1 Unknown [173]

1Not found indicates that antisense transcripts were not detected;
2The polypeptide polyWNGME is produced from the intronic repeat expansion, however it can not be confirmed as a RAN translation product due to the presence of an ATG sequence encoding a canonical AUG
start codon within the repeat expansion;
3In vitro indicates that the RAN-translated proteins were detected from reporter constructs in transfected cell model of diseases;
4Not classical expansions but insertions due to replication/recombination/duplication events;
5Not classical expansion but insertion due to retrotransposon event.
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Pathogenic mechanisms induced by microsatellite repeat
expansions
The transcription of repeat expansions located in coding and non-coding regions of genes generates patho-
logical transcripts with polymorphic RNA-repeat sequences. The microsatellite loci are moreover
bi-directionally transcribed in HD, DM, C9ORF72-ALS/FTD and in some SCAs and Fragile X-associated syn-
dromes leading to expression of both sense and antisense repeat transcripts. These are thought to cause neur-
onal injury through complex intertwined mechanisms involving: (i) translation of proteins with expanded
stretches of glutamine in poly-Q disorders; (ii) protein gain-of-functions caused by repeat-associated non-AUG
(RAN) translation of toxic repeat proteins; (iii) RNA toxic gain-of-functions through the sequestration of
RNA-binding proteins within RNA foci and onto repeat transcripts; (iv) protein loss-of-functions via haploin-
sufficiency (reviewed in [13,14]).

Translation of protein with expanded poly-glutamine domains
Polymorphic CAG repeat expansions in HD and poly-Q SCAs encode long stretches of poly-glutamine and the
translation of proteins with polyQ domains. These promote misfolding/ aggregation, inhibit interactions with
physiological binding protein partners and generate abnormal interactions with other proteins, mediating thus
both toxic protein loss- and gain-of-functions [4]. The non-polyQ disorder SCA8 was initially shown to
express expanded CUG repeats in the 30-UTR of the ATXN8OS (ATXN8 Opposite Strand) gene [15]. Later,
bidirectional expression of CAG expansion transcripts from ATXN8 were reported and shown to result in the
expression and accumulation of a polyQ protein that forms neuronal inclusions [9].

Haploinsufficiency
Loss-of-function of the genes harbouring the repeat expansions can directly contribute to the pathophysiology
of the microsatellite repeats. Over 200 CGG repeats in the 50-UTR of FMR1 cause Fragile X syndrome
(FXS) [16], the most common inherited form of intellectual disability, due to transcriptional silencing induced
by DNA methylation of the CGG trinucleotides and loss of the FMRP protein which has roles in synaptic plas-
ticity. A contributory loss-of-function is the likely pathological cause of diseases where the repeat expansions
are found in promotors, e.g. fragile-XE mental retardation (FMR2 gene; [17]) and myoclonus epilepsy of the
Unverricht-Lundborg type (CYSTB gene; [18]). Loss-of-function is also associated with folate sensitive fragile
sites harbouring CGG repeats (FRA7A, FRA10A and FRA12A) through DNA methylation of the repeat expan-
sions [19–21]. Hexanucleotide-repeat expansions in the 50-UTR region of C9ORF72 lead to decreased expres-
sion levels of C9ORF72 mRNAs, encoding a protein involved in autophagy regulation [22–25], vesicle
trafficking [26,27] and immune response in mice [28,29] in several in vitro and in vivo models and post-
mortem brains [11,30–33]. However, the direct contribution of reduced levels of C9ORF72 protein to disease
pathogenesis is still debated.

Formation of RNA foci and RNA-repeat sequestration of proteins
RNA-mediated cellular toxicity results in either protein gain- and loss- of-functions via sequestration of
RNA-processing proteins on repeat transcripts which may either be co-transcriptionally processed or aggre-
gated into RNA foci. Protein loss-of-functions have been implicated in a wide range of expansion disorders via
RNA-repeat sequestration of mRNA-binding proteins which may loose their normal cellular functions includ-
ing: muscleblind-like splicing regulator (MBLN) and CUG-binding protein and ETR3-like factor (CELF) fam-
ilies of proteins in myotonic dystrophy [34–36]; MBLN and other RNA-binding proteins in polyQ disorders
[37,38]; Sam68 [39], PUR-alpha, hnRNP A2/B1, CUGBP1 [40,41] in fragile X-associated tremor ataxia syn-
drome (FXTAS); PUR-alpha, heterogeneous nuclear ribonucleoproteins (hnRNPs) and SR-rich splicing factors
(SRSFs) among others in C9ORF72-ALS/FTD [42,43]. On the other hand, toxic protein gain-of-function also
occurs through RNA-repeat sequestration of SRSF1 which triggers the nuclear export and subsequent RAN
translation of sense and antisense C9ORF72-repeat transcripts retaining pathological expansions in intron-1 [44].

RAN translation of toxic repeat proteins
In 2011, Laura Ranum’s group demonstrated that CAG-repeat transcripts lacking canonical AUG start codons
are remarkably translated into homo-polymeric proteins in all frames (poly-glutamine, poly-serine and poly-
alanine) by repeat-associated non-AUG (RAN) translation [45]. RAN-translated poly-alanine proteins driven
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from ATXN8 CAG-repeat transcripts were also characterised in SCA8 mice and human brain tissue [45].
Interestingly, the poly-alanine repeat proteins can also be produced by RAN translation of the 50UTR-sense
ATXN8OS CUG-repeat transcripts in transfected cells. Since this discovery, RAN translation of non-coding
transcript regions was highlighted to occur from CGG repeats in FXTAS which produce toxic poly-glycine
FMRpolyG and poly-alanine FMRpolyA proteins [46–48] and from bi-directionally transcribed GGGGCC
repeats in all frames in C9ORF72-ALS/FTD to generate five cytotoxic sense and antisense dipeptide-repeat pro-
teins (DPRs) (poly-glycine-alanine, poly-glycine-arginine, poly-glycine-proline, poly-proline-alanine and
poly-proline-arginine) [49–51]. Moreover, RAN translation also occurs through the coding CAG-repeat expan-
sions in the HTT open reading frame leading overall to both canonical translation of the polyQ-expanded HTT
mutant protein and to four RAN-translated sense and antisense homo-polymeric repeat proteins in HD (poly-
alanine, poly-serine, poly-leucine, poly-cysteine) [52]. To date, RAN translation has been evidenced from
repeat transcripts expressed in human disease samples in seven expansion disorders (Table 1).
The recent discovery of RAN translation challenged the initial hypothesis that non-coding repeat expansion

disorders are primarily caused by RNA foci and protein loss-of functions due to sequestration of RNA-binding
proteins since polymeric repeat proteins exhibit aggregating properties and high levels of cytotoxicity in mul-
tiple cell and animal models of repeat expansion disorders. A range of polypeptides are produced through these
mechanisms from the homo-polymeric proteins derived from trinucleotide repeat expansions through to dipep-
tide repeat proteins found in C9ORF72-ALS/FTD and SCA36 to more complex polypeptide repeat proteins
expressed in transfected reporter cell models in SCA31 and DM2 (Table 1). Repeat expansions can be translated
from sense, e.g. Jacobsen Syndrome, or sense and antisense strands, e.g. C9ORF72-ALS/FTD, SCA8, HD and
FXTAS. The pathophysiological properties of C9ORF72-ALS/FTD DPRs are the most characterised. Increasing
evidence has associated very high cytotoxicity to the arginine-containing DPRs (poly-glycine-arginine and
poly-proline-arginine) in Drosophila, mice, patient-derived neurons and other cell models [53–59] while
poly-GA toxicity was also reported in chicks and mice [60–62]. Mechanisms of DPR-mediated cytoxicity
include nucleolar dysfunction [53], transcriptional silencing [63], broad disruption of gene expression through
interaction with low complexity domain-containing proteins such as RNA Recognition Motif proteins [64],
altered splicing [65] and nucleocytoplasmic transport [44,66,67], impairment of DNA repair [68], mitochon-
drial defects [59,69] and global alteration of translation [56,70,71] together with alterations of ubiquitin/
proteasome mediated proteolysis [72,73].

Physiological mechanisms of eukaryotic translation
Translation involves three distinct mechanisms in Eukaryotes: (i) canonical AUG-driven cap-dependent initi-
ation of translation for the vast majority of mRNAs; (ii) IRES-mediated cap-independent translation and
(iii) canonical translation using alternative near-cognate codons.
Translation initiation of canonical mRNAs is a complex process which requires many eukaryotic initiation

factors (eIFs) and is one of the key rate-limiting steps for the regulation of gene expression [74]. Translation of
canonical mRNAs has been shown to occur through the formation of a closed loop complex, with eIF4G
forming a bridge between the m7cap-binding protein eIF4E and the poly(A) tail binding protein PABP
although the closed loop formation does not explain initiation of all cellular mRNAs [75]. Briefly, the 40S ribo-
somal subunit is recruited to mRNAs upstream of the translation start site via multiple initiation factors and
an incorporated eIF2α-bound Met-tRNAiMet to form the 48S pre-initiation complex, which scans along the
mRNA 50-UTR with the RNA-helicase eIF4A and its cofactors eIF4B and eIF4H unwinding any secondary
structures until the AUG codon is reached. Further initiation proteins facilitate the joining of the 60S subunit
to produce the initiating 80S complex [74]. Regulation of translation is predominantly exerted at the initiation
stage where the AUG start codon is identified by eIF2α-bound methionyl-tRNA and start codon selection effi-
ciency is tightly influenced by the surrounding nucleotide sequence known as the Kozak consensus element
[76]. A schematic of canonical AUG-driven translation initiation is provided in Figure 1A.
Alternative initiation mechanisms using internal ribosome entry site (IRES) elements are utilised by many

viral and a growing number of cellular mRNAs [77]. IRES elements drive translation in a cap-independent
manner via distinct secondary or tertiary RNA structures that directly bind either the initiation factor eIF4G
(picornaviridae and togaviridae) or the 40S ribosome (dicistroviridae and flaviviridae) to initiate translation
[78,79] (Figure 1B). With picornaviridae, togaviridae and flaviviridae, eIF4G or the 40S ribosome subsequently
recruits other initiation factors to facilitate translation of the IRES-harbouring RNAs while IRES from dicistro-
viridae require no initiation factors directing translation solely via its binding of the 40S ribosome (Figure 1B).
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Figure 1. Canonical and physiological translation initiation mechanisms. Part 1 of 2

(A) Canonical initiation involves the eIF4F complex and the poly(A) tail binding protein PABP binding to the mRNA and

subsequently interacting with the 43S complex (eIF5, eIF3, eIF2 and the 40S ribosome) to form the 48S complex. eIF4E and

PABP both interact with eIF4G to create a ‘closed loop complex’. eIF4A, with its cofactors eIF4B and eIF4H, interact with

eIF4G and eIF4E to provide helicase activity to unwind secondary structures present in the 50UTR. The 48S complex scans the

mRNA for an AUG start codon, where the 60S ribosomal subunit is recruited through eIF5B and several of the initiator factors

are displaced and recycled to initiate a new round of translation. (B) IRES mediated translation involves a strong secondary or

tertiary structure within the 50UTR. The precise mechanisms vary between viruses but the IRES element interacts with either

the 40S subunit or eIF4G, which recruit any other required factors to initiate translation. (C) Canonical and alternative

physiological initiator tRNA-binding eIF factors recognise different start codons. Canonical translation occurs through eIF2α,
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Finally, near-cognate start codons (typically CUG, GUG and UUG), which differ from the AUG start codon
by one nucleotide, initiate translation in mammalian cells at a much lower efficiency, using the non-AUG initi-
ator tRNAiMet and methionine as the initiating amino acid [80] or an elongator Leu-tRNALeu at a CUG codon
in the case of the major histocompatibility complex class I molecules [81,82]. Near-cognate initiation sites can
be used by mismatch recognition of eIF2α-bound Met-tRNAiMet [80], when fidelity of start codon usage is
affected depending on secondary structures downstream of the initiation codon and expression levels of other
initiation factors such as eIF1 or eIF5 which respectively increases or decreases the fidelity of AUG recognition.
Two other initiation factors (eIF2A and eIF2D) can also be used at non-AUG codons to initiate translation in
either a GTP-dependent manner through initiator tRNAiMet or a GTP-independent manner through
Leu-tRNALeu [83] (Figure 1C).

Mechanisms of RAN translation
RAN translation involves the translation of short repeated RNA sequences in sense and/or antisense transcripts in
an AUG-independent manner and in multiple frames. However, how RAN translation occurs and which sets of
factors are required for initiation, elongation and potential regulatory controls remains largely unknown, although
it is clearly emerging that some features are shared with canonical and/or IRES-mediated initiation [84].

The roles of initiation factors and RNA structures in RAN translation
An improved understanding of the mechanisms driving RAN translation has begun to emerge with a clear role
for the general translation initiation factor eIF4A, a DEAD-box RNA helicase, identified in stimulating the
canonical translation of mRNAs containing complex secondary structures such as G-quadruplexes in the
50-UTR of oncogenes [85]. The identification of inhibitors of eIF4A highlighted that the RNA helicase activity
of eIF4A plays an essential role in unwinding secondary structures during ribosome scanning [86–88].
G-quadruplex structures are formed in GGGGCC-repeat [89] and CGG-repeat [90] RNAs. The eIF4A inhibitor
hippuristanol showed that eIF4A is required for the RAN translation of CGG-repeat expansions in FMR1 in
FXTAS [47] (Figure 2A) and GGGGCC-repeat transcripts in C9ORF72-ALS/FTD [91] (Figure 2B). The eIF4A
inhibitor FL3 [92] further confirmed the role of eIF4A in the RAN translation of sense C9ORF72-repeat tran-
scripts. However, the RAN translation mechanisms of antisense C9ORF72-repeats which form a double RNA
helix [93] remain completely unknown.
The RNA helicase activity of eIF4A is significantly enhanced by two cofactors, eIF4B and eIF4H [94–96],

and eIF4B is essential for the translation of mRNAs with long-structured 5-UTRs independently of eIF4A [97].
Interestingly, recent Drosophila screens involving sense C9ORF72-repeat [98] and FXTAS CGG-repeat [99]
transcripts identified eIF4B and eIF4H as disease modifiers of the RAN translation with down-regulation of
eIF4B or eIF4H leading to reduced RAN translation and associated toxicity, ameliorating Drosophila eye neuro-
degenerative phenotypes and life span (Figure 2A,B). Interestingly, sequestration of eIF4H by GGGGCC-repeat
sequences was previously reported [43]. DDX3X, another RNA helicase which is required for the resolution of
RNA–RNA structures in long GC-rich 50-UTRs, is also implicated in the RAN translation of FXTAS
CGG-repeats, with suppression of this helicase inhibiting RAN translation and rescuing associated toxicity in
Drosophila and primary neurons [99]. However, the role of DDX3X in RAN translation appears sequence-
specific since the depletion and overexpression of DDX3X respectively lead to increased and reduced DPR
levels in C9ORF72-ALS lymphoblasts [100]. Interestingly, the ribosomal protein RPS25, involved in IRES trans-
lation [101], also behaves differently during RAN translation of FXTAS CGG-repeats [99] and sense
C9ORF72-repeats [102]. Suppression of RPS25 in a FXTAS Drosophila model enhanced RAN-translated
protein production and associated toxicity [99], while suppression of RPS25 reduced DPR production and
rescued associated toxicity in yeast, Drosophila and human C9ORF72-ALS/FTD models [102].

Figure 1. Canonical and physiological translation initiation mechanisms. Part 2 of 2

delivering Met-tRNAi
Met to the P site of the 40S ribosomal subunit in a GTP-dependent manner, through interaction with both

the canonical AUG start codon and near cognate start codons CUG and GCG. Both eIF2A and eIF2D are also able to initiate

translation, however this can occur in a GTP-dependent or independent manner, binding either charged or uncharged tRNAi
Met.

eIF2A can additionally bind Leu-tRNACUG to initiate translation. eIF2A can initiate translation at AUG, CUG and UUG codons,

while eIF2D can initiate at AUG, CUG, GCG and UUG codons.
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RAN translation of reporter constructs require both a m7G-cap and eIF4E for FXTAS CGG-repeats [47] and
sense C9ORF72-repeats [91]. Accordingly, the eIF4E competitive inhibitor m7G-cap analogue (m7GpppG) pre-
vented RAN translation of FXTAS CGG-repeats [47] and sense C9ORF72-repeats [91,92]. However, another
study using a bicistronic reporter construct with all-frame stop codons prior to the initiating start codon
reported that RAN translation of C9ORF72-repeat transcripts still occurred, suggesting recruitment of ribo-
somes in a cap-independent manner [103]. eIF4E was shown to be important for the RAN translation of sense
C9ORF72-repeat transcripts using the 4EIRCat inhibitor [92] however, it was also reported that depletion of
eIF4E does not result in a reduction in RAN translation [103] (Figure 2A,B). It thus clearly appears that the
sequence-specific context surrounding repeat expansions regulate the mechanisms of RAN translation.
Additional translation initiation factors involved in start codon fidelity are implicated in RAN translation.

eIF1 is important in increasing AUG start codon fidelity and overexpression reduces RAN translation and asso-
ciated toxicity in FXTAS Drosophila [99]. eIF5, on the other hand, relaxes start codon fidelity and suppression

Figure 2. Known RNA structures and protein factors involved in RAN translation.

(A) RAN translation of FMR1 occurs in a Cap-, eIF4E- and eIF4A-dependent manner along with eIF4A cofactors eIF4H and

eIF4B, recruiting the 40S ribosome and eIF2α-bound Met-tRNAi
Met to the near-cognate ACG start codon upstream of the CGG

repeat expansion. Regulation of start codon fidelity through eIF1 and eIF5 is important. Any potential role of the translation

initiation factors PABP, eIF4G, eIF1A and eIF3 remain unknown. (B) RAN translation of the GGGGCC repeat expansion from

C9ORF72 occurs in an eIF4A-dependent manner to recruit the 40S ribosome subunit and eIF2A-bound Met-tRNAi
Met to the

near cognate CUG start codon upstream of the hexanucleotide repeat expansion. The eIF4A cofactors eIF4B and eIF4H have

been shown to be disease modifiers and are involved. Contradictory evidence for the role of the m7cap and eIF4E factor

indicates that further elucidation of their roles is required. Any potential role of the translation initiation factors PABP, eIF4G,

eIF1, eIF1A, eIF3 and eIF5 still remain unknown. The mechanisms involved in the RAN translation of C9ORF72 antisense

CCCCGG-repeat transcripts have not yet been explored.
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of eIF5 reduces RAN translation and associated toxicity in FXTAS Drosophila [99] (Figure 2A). SCA8 has been
shown to require eIF3f during RAN translation of poly-serine and poly-alanine proteins [104]. eIF3f is a
non-core component of eIF3 which plays a role in regulating both canonical and IRES-dependent translation
[105]. Interestingly, the poly-S proteins produced by RAN translation in SCA8 [104] and HD [52] and
poly-QAGR/LPAC in DM2 [106] accumulate in white matter brain regions, where eIF3f levels are elevated
compared with grey matter [107], further supporting a potential role of eIF3f in the RAN translation and/or its
regulation for some repeat expansions.

The roles of near-cognate and non-cognate initiation codons in non-AUG
translation initiation
Complex secondary RNA-repeat structures such as G-quadruplexes appear to play direct initiating roles
through altered ribosome scanning and/or recruitment of ribosomes at near-cognate initiation codons, which
differ from AUG by only one nucleotide, and non-cognate initiation codons that differ by more than one
nucleotide. FXTAS CGG-repeats within the 50-UTR of FMR1 initiate RAN translation of FMRpolyG at a near-
cognate ACG codon embedded in a putative Kozak element 32 nucleotides upstream of the repeats in the +1
reading frame, while FMRpolyA initiates at a non-cognate GCG codon within the repeats in a +2 reading
frame [47,48]. Mass spectrometry analysis also indicated that polyA RAN-translated proteins from the SCA8
CAG repeats are initiated at non-cognate GCA codons throughout the repeat tract [45] while non-cognate
CUU and ACU codons are used to initiate RAN translation of polyQ upstream of the SCA3 CAG repeats and
polyA proteins likely within the repeats [108] in transfected cell models. Sense C9ORF72-repeat transcripts ini-
tiate RAN translation with a Met-tRNAiMet through eIF2A at a Kozak-embedded CUG codon located 24
nucleotides upstream of the repeat sequence in the +1 reading frame of transfected reporter constructs
[91,92,109].

The integrated stress response enhances non-canonical translation
Under non-stressed conditions, RAN translation of sense C9ORF72-repeats is strongly inhibited by an
upstream open reading frame (uORF) of 55 nucleotides which is located in intron 1 and flanked by an AUG
start codon and 2 downstream stop codons (UGA and UAA) [92] (Figure 3A). However, the integrated stress
response (ISR), which is stimulated during disease progression, leads to phosphorylation of eIF2α and down-
regulation of canonical translation due to poor recruitment of the 60S subunit of the ribosome and inhibition
of translation initiation. This results in read-through of the uORF and subsequent initiation at the downstream
CUG codon responsible for RAN translation of the hexanucleotide-repeats [92] (Figure 3B). In neurons, eIF2α
phosphorylation is important for synaptic plasticity and rapid activity-dependent alterations of synaptic pro-
teins [110,111]. Following cellular stress and activation of the ISR, a shift in translation occurs towards a subset
of transcripts with 50-UTRs containing uORFs, e.g. ATF4 and CHOP [112], cellular IRES e.g. HIAP2, HIF1α
and VEGF [113] and non-AUG start codons e.g. EPRS and major histocompatibility class I antigens [81,114],
allowing these transcripts to escape eIF2α-phosphorylated translational inhibition. Phosphorylation of eIF2α
increases non-canonical translation and increasing ISR occur concomitantly with increased RAN translation of
both FMR1 and C9ORF72 repeats in a positive feedback loop [91,103,109,115]. It is noteworthy that
ISR-resistant translation involves eIF2D, eIF2A and eIF5B [116–119] and as aforementioned, RAN translation
of sense C9ORF72-repeats initiates at a CUG codon through eIF2A [109] (Figure 3B). Taken together, these
studies strongly support a model in which increased ISR upon disease progression down-regulates canonical
translation of the uORF to stimulate RAN translation in a positive disease-enhancing feedback loop.

Conclusions
The pathogenesis driven by nucleic acid repeat expansions and RAN-translated products is complex and still
poorly understood. Multiple mechanisms of neuronal injury involve toxic RNA gain-of-functions, haploinsuffi-
ciency as well as protein gain-of-functions via canonical translation of proteins with extended polyQ domains
and/or RAN translation of toxic repeat polypeptides which have been characterised in vitro in 13 reporter
repeat expansion cell models and in patient bio-samples from seven diseases, including SCA8, DM1 [45,106],
C9ORF72-ALS [49–51,120] and HD [52]. However, the molecular mechanisms involved in RAN translation
remain poorly understood, hindering thus the development of therapeutic approaches for this incurable group
of diseases. In addition, it has remained challenging to dissect how the life-long expression of repeat transcripts
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and RAN-translated proteins contribute to the pathogenesis of these progressive adult-onset diseases. In the
past few years, growing evidence has implicated RAN translation as one of the main drivers of neurotoxicity in
C9ORF72-ALS/FTD models. On the other hand, FXTAS was initially thought to be caused by intranuclear
retention of transcripts and sequestration of splicing factors [40,41] however, the later discovery of RAN trans-
lation in the same model challenged this view [46]. Similarly in C9ORF72-ALS, increasing the number of intra-
nuclear RNA foci does not appear to alter neuronal survival or global RNA processing while expression of
DPRs drives the neurodegeneration process [44,54,121]. Sequestration of RNA-binding factors on repeat tran-
scripts might not only necessarily implicate loss-of-function mechanisms, as often hypothesised, as cells can
use compensatory mechanisms to up-regulate the transcription/translation of the sequestered proteins. So far,
there has not been any evidence demonstrating that RNA foci and sequestration of proteins on RNA-repeats
trigger protein loss-of-function mechanisms. In contrast, RNA-repeat sequestration of SRSF1 produces protein
gain-of-function by driving the nuclear export of intron-retaining C9ORF72-repeat pre-mRNAs and subse-
quent RAN translation of cytotoxic DPRs in the cytoplasm [44].
If expression of polymeric repeat proteins can kill cells and animal models, it is difficult to evaluate which

levels are RAN-translated in patients and which expression levels trigger toxicity depending on the nature of
the repeat expansion, disease and cell type. Understanding the molecular mechanisms of RAN translation will
be key to improving our understanding of pathogenesis. Additional mechanisms such as ribosome

Figure 3. The role of a uORF in the translation of RAN proteins from pathological sense GGGGCC C9ORF72 repeat

expansions.

(A) In unstressed cellular conditions, a uORF of 55 nucleotides in length within intron 1 of C9ORF72 inhibits RAN translation

of the downstream repeat expansion. The uORF is translated through the canonical translation machinery and ribosomes are

unable to reassemble on the mRNA for initiation at the downstream CUG RAN initiation codon. (B) Following cellular stress,

phosphorylation of eIF2α prevents its binding of Met-tRNAi
Met results in an inhibition of eIF2-driven canonical translation.

Consequently, the alternative tRNA recruiting factor eIF2A is able to initiate non-canonical translation. The scanning 40S

ribosomal complex scans through the uORF and eIF2A initiates RAN translation at the downstream CUG codon.
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frameshifting events also need to be explored. For example, frameshifting was suggested to occur during trans-
lation of CAG-repeat expanded transcripts in the −1 frame in SCA3 [122–124] as well as into the −1 [125]
and +1 [126] directions in HD, however, the production of chimeric repeat proteins was not directly evidenced.
RAN translation of three C9ORF72-related DPRs encoded from the three reading frames of sense repeat tran-
scripts suggested that RAN translation initiates at multiple initiation sites [91,109], however, mutation of a
near-cognate CUG start codon also inhibited the production of all sense DPRs, suggesting the occurrence of
potential frameshifting mechanisms that remain to be demonstrated [92].

Perspectives
• Mechanisms of RAN translation and RAN-translated proteins/peptides still remain poorly char-

acterised despite discovery in DM1/SCA8 patient samples in 2011, and later in C9ORF72-ALS
and HD in 2013 and 2015, respectively.

• RAN-translation occurs in absence of the canonical methionine start codon, in all frames, and
from coding and non-coding regions of transcripts encoding proteins of various functions. So
far, it is known to involve RNA secondary structures formed by repeat sequences and general
translation initiation factors, which exhibit/stimulate RNA-helicase activities, or play a role in
the fidelity of start codon recognition.

• In the future, it will be fundamental to fully identify the RAN-translation machinery components
and mechanisms in the context of the sequences flanking each microsatellite repeat expan-
sions, as well as examine further the pathological contribution of RAN-translated products for
the future development of much-needed disease treatments.
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