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Abstract

Obsessive-compulsive disorder (OCD) is disabling and often treatment-refractory. Host immunity 

and gut microbiota have bidirectional communication with each other and with the brain. 

Perturbations to this axis have been implicated in neuropsychiatric disorders, but immune-

microbiome signaling in OCD is relatively underexplored. We review support for further pursuing 

such investigations in OCD, including: 1) gut microbiota has been associated with OCD, but 

causal pathogenic mechanisms remain unclear; 2) early environmental risk factors for OCD 

overlap with critical periods of immune-microbiome development; 3) OCD is associated with 

increased risk of immune-mediated disorders and changes in immune parameters, which are 

separately associated with the microbiome; and 4) gut microbiome manipulations in animal 

models are associated with changes in immunity and some obsessive-compulsive symptoms. 

Theoretical pathogenic mechanisms could include microbiota programming of cytokine 

production, promotion of expansion and trafficking of peripheral immune cells to the CNS, and 

regulation of microglial function. Immune-microbiome signaling in OCD requires further 

exploration, and may offer novel insights into pathogenic mechanisms and potential treatment 

targets for this disabling disorder.
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1. Introduction

Obsessive-compulsive disorder (OCD) is a disabling and chronic neuropsychiatric disorder, 

characterized by obsessions, compulsions, or both, which significantly interfere with an 

individual’s functioning (APA, 2013). Several lines of inquiry have offered insights into 

possible pathogenic mechanisms in OCD, and serotonergic, dopaminergic, and 

glutamatergic dysfunction in brain cortical-striatal-thalamic-cortical (CSTC) circuitry is 

consistently implicated (Pauls et al., 2014; Stein et al., 2019). However, the exact causes of 

OCD remain unclear, and with current first-line treatments, a majority of individuals will 

have at least some symptoms persist throughout life, and one-third or more of all patients 

with OCD are treatment-resistant (Pittenger et al., 2005; Skoog and Skoog, 1999; Stewart et 

al., 2004). Therefore, reliable biomarkers of disease, predictors of treatment response, and 

individualized treatments are critically needed for OCD.

Immune-mediated mechanisms may be involved in at least some cases of OCD (Gerentes et 

al., 2019; Lamothe et al., 2018; Marazziti et al., 2018; Pérez-Vigil et al., 2016). 

Epidemiologic studies suggest that OCD is associated with immunologic comorbidities 

(Isung et al., 2020; Mataix-Cols et al., 2018; Orlovska et al., 2017; Wang et al., 2019), and 

genetic studies have implicated immune-related genes in OCD (Cappi et al., 2016, 2012; 

Den Braber et al., 2016; Hounie et al., 2008; Rodriguez et al., 2017). The immune system 

has become a treatment target in several psychiatric disorders including OCD, but 

identifying whom to treat, appropriate immune-modifying agents that will be safe and 

effective for individual patients, and at what timepoints in disease, remain major challenges 

(Gerentes et al., 2019; Köhler et al., 2014; Roman and Irwin, 2020; Zheng et al., 2017). 

Notably, fast growing evidence has implicated immune regulation, the microbiome, and host 

immune-microbiome interactions in normal neurodevelopment and in a number of 

neuropsychiatric and neurodegenerative disorders (Dinan and Cryan, 2017; Fung et al., 

2017; Petra et al., 2015; Pronovost and Hsiao, 2019), which present novel areas of inquiry 

for OCD and may offer mechanistic and therapeutic clues.

The human microbiome refers to the collection of trillions of microorganisms including 

bacteria, viruses, and fungi, which together with their genetic material inhabit human hosts 

(Turnbaugh et al., 2007). Bidirectional communication occurs between host and microbiome 

via multiple mechanisms, and microbes have the potential to influence host physiology, as 

they participate in the production and degradation of various short chain fatty acids (SCFAs), 

vitamins, hormones, and neurotransmitters (Cho and Blaser, 2012; Cryan and Dinan, 2012; 

Rogers et al., 2016). Changes in microbial diversity or composition, sometimes termed 

“dysbiosis,” have been implicated in a number of human disease states, including obesity, 

autoimmune disorders, inflammatory bowel disease (IBD), cancer, and some 

neuropsychiatric disorders (Bastiaanssen et al., 2018; Gilbert et al., 2018; O’ Mahony et al., 
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2015; Wu and Wu, 2012). Studies of microbiome-targeted therapies such as prebiotics, 

probiotics, antibiotics, and fecal microbiota transplant (FMT) in the context of 

neuropsychiatric disorders are in their infancy, with mixed results and ambiguous 

mechanisms of action (Kang et al., 2019, 2017; Van Ameringen et al., 2019). The 

microbiome has a bidirectional relationship with immune development and homeostasis 

(Belkaid and Hand, 2014; Belkaid and Harrison, 2017; Chen and Stappenbeck, 2019; 

Robertson et al., 2018). While the gut microbiota participates in bidirectional 

communication with the nervous system by various mechanisms, immune-microbiome 

signaling is of particular interest to OCD, where immunologic etiologies have been 

suspected but exact mechanisms remain unclear.

1.1. Approaches and Inclusion of Literature:

In this comprehensive narrative review, we aim to provide a critical appraisal of the extant 

literature in immune and microbiome investigations in OCD to integrate and scrutinize the 

evidence of their associations. We conducted an inclusive compilation of the literature 

through PubMed and EMBASE of articles available in English, through January 31, 2021, 

without limitation to publication date. Key search terms included obsessive, compulsive, 

immune, immunologic, inflammation, microbiome, microbiota, and germ-free. Reference 

lists of relevant publications were also manually searched for additional references that did 

not result from those search engines, and both human and pre-clinical studies were included. 

The inclusive nature of this review was necessary given the infancy of this literature in order 

to decipher the complex nature of immune-microbiome interactions in the context of OCD. 

Thus, we evaluated evidence of immune dysregulation in OCD, which has been 

systematically reviewed elsewhere (Gerentes et al., 2019; Lamothe et al., 2018; Marazziti et 

al., 2018; Pérez-Vigil et al., 2016), in combination with literature related to the gut 

microbiome and OCD, which remains relatively less explored (Turna et al., 2017, 2016). 

Given the current paucity of direct evidence implicating gut microbiome changes in the 

pathophysiology of OCD, the evidence of microbiome associations in immune-mediated 

processes that had been separately associated with OCD, was also evaluated. The role of the 

microbiome in immune and inflammatory disorders, outside of OCD, has been extensively 

reviewed elsewhere (Fitzgibbon and Mills, 2020; Peroni et al., 2020; Trøseid et al., 2020; 

Xuan Zhang et al., 2020), which offered insight. One study to date has examined immune 

and gut microbiome biomarkers concurrently in the context of OCD (Turna et al., 2020), and 

to our knowledge there were no systematic or quantitative (i.e., meta-analysis) reviews 

published on the topic of host immune and microbiome associations related to OCD 

symptomatology at the time of this review.

In the following sections, we critically synthesize scientific premise and rationale for 

examining host immune and microbiome correlates in OCD in future studies, including the 

following: 1) The gut microbiome has been associated with OCD symptomatology in a 

small number of pre-clinical and human studies, and causal pathogenic mechanisms remain 

unclear. 2) Early environmental risk factors for OCD overlap with critical periods of 

immune-microbiome development. 3) OCD is associated with increased risk of immune-

mediated disorders and changes in immune parameters, which have been separately 

associated with the microbiome. 4) Gut microbiome manipulations in animal models are 
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associated with changes in immunity and some obsessive-compulsive symptom domains. 

Theoretical mechanisms by which host immune and microbiome signaling could influence 

OCD symptomatology are also reviewed, including the microbiota potentiating various 

neuroinflammatory processes. Further studies are needed in this novel area, and finally, 

considerations for such investigations and potential treatment implications are discussed.

2. Evidence in Support of Microbiome Involvement in OCD 

Symptomatology

Initial evidence from animal and human studies together suggest OCD symptomatology 

could be associated with gut microbial composition changes, although direct evidence 

supporting a causal role for aberrant immune-microbiome signaling in OCD remains lacking 

(see Table 1). In rodent models of both experimentally induced and naturally occurring 

obsessive compulsive behavior (OCB), gut microbiota alterations have been described (Jung 

et al., 2018; Scheepers et al., 2019). For example, in Long-Evans male rats exposed to 

experimental induction of OCB with quinpirole, onset of compulsive checking and 

locomotor sensitization was associated with changes in 25 fecal microbiota operational 

taxonomic units (OTUs), with several belonging to the Lachnospiraceae and 

Ruminococcaceae families (Jung et al., 2018). Large nest-building (LNB) deer mice that 

naturally develop obsessive-compulsive behaviors have altered gut microbiome composition 

compared to normal-nest building (NNB) deer mice, characterized by decreased abundances 

of Prevotella and Anaeroplasma, which have anti-inflammatory effects (Scheepers et al., 

2019). In a human study, OCD was associated with decreased gut microbiome richness, 

along with lower relative abundance of Oscillospira, Odoribacter, and Anaerostipes (Turna et 

al., 2020). Changes in microbiome composition have also been described in youth with 

Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections 

(PANDAS), a condition which can present with obsessions and compulsions (Quagliariello 

et al., 2018).

Studies of microbiome-based and dietary interventions also provide support for a potential 

role of gut microbiota in obsessive-compulsive symptomatology (OCS) (see Table 1). Pre-

treatment with Lactobacillus rhamnosus GG effectively attenuated experimental induction of 

OCB in mice, an effect comparable to that of pre-treatment with fluoxetine (Kantak et al., 

2014). In an animal model of colitis, exposure to select intermittent fasting schedules has not 

only more favorable colitis-related outcomes, but also attenuated colitis-related changes in 

compulsive behavior, neuroinflammation, and fecal microbiome composition (Zhang et al., 

2020). Healthy humans treated with a probiotic formulation containing Lactobacillus 
helveticus R0052 and Bifidobacterium longum R0175 had decreased sub-clinical OCS 

(Messaoudi et al., 2011), and in a clinical study of adults with IBD, FMT was associated 

with significant pre- to post-treatment decrease in obsessive symptoms (Kilinçarslan and 

Evrensel, 2020). Notably, studies have not evaluated the effect of microbiome-based 

interventions on psychiatric symptoms in humans with clinically diagnosed OCD.

The mechanisms by which microbiota composition and function could influence OCD 

symptomatology remain unclear, and only one study to date has examined gut microbiome 
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features concurrently with other biomarkers in OCD (Turna et al., 2020). Compared to 

healthy controls, OCD was associated with a significantly different gut microbiome 

composition and greater peripheral C-reactive protein (CRP) levels. Elevated CRP was 

associated with OCD symptomatology, but not microbiome features, which could have been 

related to the study’s small sample size (OCD n=21, control n=22) (Turna et al., 2020). 

While microbiome studies of OCD are in their infancy, further examining host immune-

microbiome correlates, and their relationships with genetic, neuroimaging, 

neuropsychological, and other clinical variables in larger samples of individuals with OCD, 

across developmental time periods, has the potential to increase our understanding of 

pathogenic mechanisms in OCD, and to inform novel treatment targets for this disabling 

disorder.

3. Overlapping Critical Periods of Immune, Microbiome, and Brain 

Development

Initial microbial colonization occurs during birth and is subsequently shaped during the first 

three years of life, thus setting the stage for the lifelong, relatively stable adult microbiome 

(Dominguez-Bello et al., 2019; Yatsunenko et al., 2012). In animal models, this early 

colonization event regulates the developmental programming of several systems, including 

the central nervous system (CNS) (Bruce-Keller et al., 2018; Galland, 2014). For example, 

germ-free (GF) animals show developmental derangements in brain structure and behavior 

(Desbonnet et al., 2014; Heijtz et al., 2011; Hoban et al., 2016; Luczynski et al., 2016; 

Ogbonnaya et al., 2015; Stilling et al., 2015). Additionally, microbial colonization of GF 

animals in early life can restore normal CNS function, while colonization in adulthood 

cannot, which further supports the crucial role of early gut microbiota for normal CNS 

function in adulthood (Borre et al., 2014).

In addition to its role in CNS development, microbial colonization of the gut is inextricably 

linked to the maturation of the immune system, and is also likely to have a critical 

developmental period (Gensollen et al., 2016; Knoop et al., 2017). For instance, GF mice 

have evidence of invariant natural killer T (iNKT) cell accumulation, which results in 

increased morbidity in models of inflammatory bowel disease and allergic asthma, while 

neonatal colonization of GF mice leads to markedly reduced number of iNKT cells, and to 

development of immune homeostasis (Olszak et al., 2014). In mice, host immune maturation 

within the CNS is also guided by the gut microbiome, which in early life is thought to 

‘educate’ developing CNS immune cells such as microglia and astrocytes, and in turn shape 

normal neurodevelopmental processes such as synaptic pruning and myelination (Erny et al., 

2015). In animal models of adulthood, the gut microbiome continues to stimulate 

inflammatory signaling in the host, as intestinal microbial antigens trigger release of 

cytokines by intestinal macrophages and T cells (Caspani et al., 2019; Fung et al., 2014). 

Peptidoglycans from bacterial cell walls can also enter the CNS in mice, where they 

stimulate central pattern-recognition receptors (PRRs) to trigger the innate immune system 

and modify behavior (Arentsen et al., 2017). Taken together, these observations suggest that 

both early and sustained immune-microbiome signaling are likely necessary for protection 
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from certain diseases, and that the immune system is a key component of microbiome-to-

brain communication throughout the lifespan.

Because the development of host immunity, gut microbiome, and normal CNS function 

occur in tandem and are inter-dependent, early disruptions to microbial colonization 

resulting from environmental insults can lead to persistent, and in some cases, irreversible 

changes in specific immune parameters, behavior, and cognition (Bailey et al., 2011; 

Crumeyrolle-Arias et al., 2014; Gensollen et al., 2016; Sudo et al., 2004). However, most 

evidence in support of this is gleaned from pre-clinical models. Associations among early 

life exposures, host immunity, gut microbial colonization, and neurodevelopment are starting 

to be identified in human studies, but causative pathogenic mechanisms largely remain to be 

established (Borre et al., 2014; Pronovost and Hsiao, 2019).

During gestation and early development, exposure to certain environmental factors could 

influence immune-microbiome parameters in humans (Codagnone et al., 2019), and recent 

studies have suggested some of the same early environmental exposures may also confer risk 

for later development of OCD symptoms in humans (see Table 2). For example, a Swedish 

population-based cohort study demonstrated that perinatal events such as in utero exposure 

to maternal smoking, pre-term birth, and Cesarean section (C-section) delivery are 

associated with increased risk of OCD (Brander et al., 2016). In a community-based sample 

of Brazilian youth, self-reported prenatal maternal stress and lack of early breast feeding 

were associated with subclinical OCS severity scores (Macul Ferreira de Barros et al., 2020). 

These environmental exposures are also associated with changes in immune and microbiome 

parameters; therefore, early immune-microbiome development in OCD warrants further 

investigation. Future studies could elucidate if other early threats to early immune-

microbiome development, such as maternal high-fat diet, early antibiotic exposure, or early 

immigration to a developed country, among others, are associated with risk for OCD (Rook 

et al., 2014). Longitudinal studies of immune and microbiome development in offspring of 

parents with OCD, or youth at high risk for OCD, would shed further light on these potential 

associations, as would assessment of OCS and other psychiatric symptoms in longitudinal 

studies of immune-microbiome development in other pediatric populations.

4. Microbiome Implicated in Immune-Mediated Processes Associated with 

OCD

4.1. Pathogenic Infections:

A healthy microbiome can provide protection against pathogenic infection, as commensal 

microorganisms compete with potential pathogens for resources, produce metabolic 

byproducts such as SCFAs which help maintain the integrity of epithelial barriers, and 

promote differentiation of immune cells and maturation of secondary lymphoid tissues 

(Belkaid and Hand, 2014; Belkaid and Harrison, 2017; Wu and Wu, 2012). Notably, 

disrupted immune-microbiome development is associated with increased susceptibility to 

infection in animal models (Deshmukh et al., 2014; Khosravi et al., 2014). In humans, OCS 

can spontaneously emerge following pathogen exposure, such as is the case in Sydenham’s 

chorea (SC), PANDAS, or Pediatric Acute-Onset Neuropsychiatric Syndrome (PANS) 
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(Freeman et al., 1965; Swedo et al., 2012, 1998, 1989). However, controversy has long 

surrounded the issue of whether or not the PANDAS/PANS phenotypes represent distinct 

clinical entities. More recent studies have suggested the broader OCD phenotype may also 

be associated with increased susceptibility to infection, and to increased risk of symptom 

onset following pathogenic infection (Isung et al., 2020; Mell et al., 2005; Orlovska et al., 

2017; Wang et al., 2016). Thus far, gut microbial composition in youth with PANDAS has 

been explored in one study (Quagliariello et al., 2018), and future longitudinal investigations 

of immune-microbiome correlates in pathogen-associated OCD symptomatology could shed 

light on this complex and poorly understood phenomenon.

It remains unclear if individuals with OCD have increased susceptibility to infection itself, 

to the deleterious neuroimmune consequences of pathogenic infection, or both. In support of 

the former, a Swedish population- and sibling-based cohort study showed that history of any 

primary humoral immunodeficiency is associated with increased risk of any psychiatric 

disorder, including OCD (population-based adjusted odds ratio [aOR] 2.19, 95% confidence 

interval [CI] 1.68–2.86; sibling-based adjusted aOR 1.55, 95% CI 0.95–2.56) (Isung et al., 

2020). The most common humoral immunodeficiency, selective immunoglobulin A (IgA) 

deficiency was also associated with risk for OCD (population-based aOR 2.27, 95% CI 

1.53–3.37, sibling-based aOR 1.50, 95% CI 0.74–3.04) (Isung et al., 2020). Clinically, 

selective IgA deficiency can be asymptomatic, or associated with increased infections and 

with autoinflammatory and autoimmune processes. Secretory IgA is important for 

maintaining host-microbiome homeostasis at gut epithelium (Yang and Palm, 2020). 

Changes in gut microbial composition have been demonstrated in individuals with selective 

IgA deficiency, including increased relative abundance of Eubacterium dolichum and 

Ruminococcus bromii, and decreased relative abundance of unclassified Paraprevotellaceae 
(Catanzaro et al., 2019) The clinical relevance of primary humoral immunodeficiencies to 

OCD symptomatology remains to be established. Further studies are warranted, to determine 

if these are causally related, and if treatments targeting immunodeficiency syndromes and/or 

their associated microbial dysbiosis could offer preventive or therapeutic targets for OCD.

Evidence supporting a temporal relationship between pathogenic infections and onset of 

OCD symptomatology has been mixed, particularly in prospective clinical studies (Leckman 

et al., 2011; Luo et al., 2004; Murphy and Pichichero, 2002). Larger population studies 

suggest that Streptococcus infection may be associated not only with PANDAS/PANS, but 

also with the broader OCD and other psychiatric phenotypes, including obsessive-

compulsive personality disorder (OCPD), tic disorders, and/or attention-deficit hyperactivity 

disorder (ADHD), with streptococcal infection history having the strongest association with 

incidence of tic disorders (Mell et al., 2005; Wang et al., 2016). In addition, history of non-

streptococcal throat infections is associated with increased risk of OCD, tic disorder, or any 

psychiatric disorder (Orlovska et al., 2017), and in a nationwide pediatric study, any treated 

infection since birth was associated with increased risk of subsequent treatment for any 

psychiatric disorder in adolescence, including OCD (Köhler-Forsberg et al., 2019). 

Associations between multiple non-streptococcal pathogens and onset of OCD symptoms 

have been suggested, including Borna disease viruses, Borrelia burgdorferi, Herpes simplex 

virus 1, Mumps orthorubulavirus, Mycoplasma pneumoniae, Toxoplasma gondii, and 

varicella-zoster virus, with no association with human immunodeficiency viruses (Akaltun et 
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al., 2018; Dietrich et al., 2005; Flegr and Horáček, 2017; Johnco et al., 2018; Khanna et al., 

1997b, 1997a; Miman et al., 2010, 2018; Murphy et al., 2015; Sutterland et al., 2015; Ursoiu 

et al., 2018; Yaramiş et al., 2009). To date, only one study of gut microbial ecology in youth 

with a history of PANDAS/PANS has been completed (see Table 1). When compared with 

healthy controls, children aged 4 to 8 years with history of PANDAS/PANS had decreased 

microbial diversity, along with increased relative abundance of members of the 

Bacteroidetes phylum (Quagliariello et al., 2018). Youth 9 to 12 years of age did not have 

evidence of specific microbiome changes when compared with healthy controls, possibly 

related to age or maturational effects. While children were not exposed to antibiotics in the 2 

to 4 months immediately prior to enrollment, history of repeated antibiotic exposure is not 

uncommon in youth with PANDAS/PANS, and this could also confound microbiome studies 

in this group (Quagliariello et al., 2018).

Collectively, studies suggest that susceptibility to and/or infection by a diverse set of 

bacterial and viral pathogens could be associated with at least some cases of OCD, but 

immunodeficiency syndromes and pathogen exposures might also increase risk for 

psychiatric disorders more non-specifically. The mechanisms by which immune responses 

could lead to gradual versus acute onset of OCD symptoms also remain largely unclear, and 

the role of the gut microbiome in this context remains unknown. If immune-microbiome 

processes are involved in some cases of pathogen-associated OCD, directions of causation 

cannot be inferred based on existing knowledge. It might be the case that infection and 

immune responses shape microbial composition, microbiome dysbiosis may predispose to 

pathogenic infection and immune dysregulation, or other genetic and environmental factors 

could influence both host immunity and microbial ecology. Further studies are needed to 

elucidate potential mechanisms, particularly in the case of acute-onset OCD following 

pathogenic infection, where immune and microbiome biomarkers could facilitate 

development of more precise guidelines for use of immunomodulatory and antimicrobial 

treatment strategies.

4.2. Atopy, Autoimmunity, and Inflammation:

In clinical and epidemiologic studies, OCD has been associated with a diverse set of other 

immune-mediated processes including autoimmune, inflammatory, and atopic disorders; 

separately the microbiome has been associated with or causally implicated in several 

immune-mediated disorders. In a clinical study, significantly higher frequency of asthma, 

recurrent bronchitis, recurrent sinusitis, arthritis, recurrent infections, and/or recurrent 

diarrheal illness was seen in adults with OCD compared to controls with other psychiatric 

diagnoses (Dinn et al., 2005). Children and adolescents with OCD with and without 

Tourette’s syndrome (TS) also had significantly higher rates of atopic disorders such as 

asthma, allergic rhinitis, and eczema compared to controls (Yuce et al., 2014). Among 

individuals with childhood-onset OCD, frequency of ear and throat infections has been 

positively correlated with severity of contamination-related OCD symptoms (Westwell-

Roper et al., 2019).

Population-based studies have also addressed the relationship between OCD and immune 

dysregulation. In a Swedish birth cohort study, OCD and tic disorders were associated with 
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significantly increased risk of any immune-mediated disorder in probands and their relatives, 

when compared to population controls (Mataix-Cols et al., 2018). In the OCD group, the 

strongest associations were found (in order of strength of association) with Sjogren’s 

syndrome, celiac disease, Guillain-Barre syndrome, Crohn’s disease, Hashimoto’s 

thyroiditis, diabetes mellitus type I (DM I), scarlet fever, idiopathic thrombocytopenic 

purpura (ITP), ulcerative colitis (UC), multiple sclerosis (MS), and psoriasis vulgaris 

(Mataix-Cols et al., 2018). In a population-based cohort study in Taiwan, any immune-

mediated disorder was associated with higher incidence of subsequent OCD diagnosis, and 

risk of developing OCD was greatest for individuals with dermatomyositis, Sjogren’s 

syndrome, and systemic lupus erythematosus (SLE) (Wang et al., 2019). Notably, history of 

immunosuppressive steroid treatment for the immune-mediated disorder was protective 

against OCD development, further indicating the role of significant immune activation as a 

pathogenic mechanism in OCD (Wang et al., 2019). Associations have also been identified 

with OCD and increased metabolic and cardiovascular comorbidity, thus expanding the 

range of inflammatory processes in OCD (Isomura et al., 2018).

OCD is not only associated with individual risk of immune-mediated disease, but first-

degree relatives of probands with OCD also have increased odds of any immune or 

inflammatory disorder (Mataix-Cols et al., 2018). Among mothers, fathers, and full siblings 

of individuals with OCD, odds of immune-mediated disease were similar. However, in first-

degree relatives of probands with tic disorders, which are frequently comorbid with OCD, 

risk for immune-mediated disorder was greatest for mothers (Mataix-Cols et al., 2018), 

suggesting maternal immune factors could be particularly relevant to offspring with OCD 

and comorbid tics. Indeed, in a clinical study of pediatric OCD and tic disorders, prevalence 

of both confirmed maternal autoimmune disease and maternal pro-inflammatory state (e.g., 

asthma, smoking) were significantly greater in the OCD/tic group compared to both 

neurological autoimmune and healthy control groups (Jones et al., 2021). Further, mothers 

with immune-mediated disorders and children with OCD/tics had evidence of peripheral 

cytokine network dysregulation and enriched transcription of genes related to innate immune 

function (e.g., neutrophil degranulation, toll-like receptor signaling), when compared to 

control mothers (Jones et al., 2021).

While immune-microbiome studies in OCD are in their infancy, microbiome changes have 

been implicated in several immune-mediated disorders associated with OCD risk in humans 

(see Table 3). Microbiome correlates of various immune-mediated disorders have been 

extensively reviewed elsewhere (Fitzgibbon and Mills, 2020; Peroni et al., 2020; Trøseid et 

al., 2020; Xuan Zhang et al., 2020), and Table 3 is therefore not exhaustive. Taken together, 

clinical and epidemiologic associations between OCD and several immune-mediated 

processes, in which the microbiome has been separately implicated, provide indirect support 

for further characterizing host immune and microbiome interactions in OCD. However, as 

illustrated in Table 3, OCD has been associated with a heterogeneous set of immunologic 

disorders, which have partially overlapping but distinct pathogenic mechanisms and 

microbiome correlates. It may also be the case that not only personal but also family history 

of immune-mediated disorders, of maternal versus paternal origin, could influence 

microbiome composition and neuropsychiatric symptomatology differently, but this remains 

unclear. It will therefore be important for future investigations to disentangle immune-
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microbiome relationships in homogeneous subgroups of OCD with and without personal and 

family history of autoimmune, inflammatory, and atopic comorbidities.

5. Immune Parameters, the Microbiome, and OCD

The gut microbiome has been shown to participate in immune development and 

homeostasis, largely in animal models, (Belkaid and Hand, 2014; Belkaid and Harrison, 

2017; Chen and Stappenbeck, 2019; Robertson et al., 2018), and relationships between gut 

microbial composition and peripheral immune parameters are starting to be elucidated in 

humans (Schirmer et al., 2016). In individuals with OCD, peripheral immune biomarkers 

have been an area of ongoing investigation, but findings are not widely replicated, and at 

times contradictory (Cosco et al., 2019; Lamothe et al., 2018), likely due to significant 

heterogeneity in patient samples and methodologies. Despite this, existing findings suggest 

there might be overlap in some of the immune parameters separately associated with 

microbiome changes, and with OCD symptomatology (see Table 4).

5.1. Innate Immune Parameters:

The innate arm of the immune system represents the first line of defense against pathogens, 

and is in constant bidirectional communication with microbiota at epithelial barriers (Thaiss 

et al., 2016). A diverse microbiome is required for normal innate immune development, as 

evidenced by GF status and antibiotic exposure leading to impaired myelopoiesis and 

granulocyte homeostasis in pre-clinical models (De Agüero et al., 2016; Deshmukh et al., 

2014; Khosravi et al., 2014). The function of tissue-resident macrophages including 

microglia is also altered in GF mice (Erny et al., 2015). Genetic changes in components of 

the innate immune system, such as PRR polymorphisms, can also predispose mice to both 

microbial dysbiosis and increased risk of inflammatory sequelae (Elinav et al., 2011; Vijay-

Kumar et al., 2010).

Microglia are the resident immune cells of the brain, and a diverse microbiome is essential 

for normal microglia development and function in animal models (Erny et al., 2017; 

Lebovitz et al., 2018). In human OCD, microglial activation is a potential CNS biomarker 

(e.g., neuroinflammation) (Attwells et al., 2017). Changes in peripheral innate immune cell 

counts and function have also been identified in human OCD, including lower neutrophil 

counts (Atmaca et al., 2011), and also higher natural killer (NK) cell counts, but only in 

males (Ravindran et al., 1999). Medication-free adults with OCD had decreased ex vivo NK 

cell activity when compared to the control group, with no differences in NK cell count 

(Denys et al., 2004). In the same study, NK cell activity was associated with familial and 

childhood-onset OCD, with lower NK cell cytotoxic activity compared with adult-onset 

OCD (Denys et al., 2004). Pediatric OCD has been associated with a significantly higher 

proportion of total and intermediate monocytes compared to healthy controls (Rodríguez et 

al., 2017). The OCD group did not show any difference in cultured monocytes’ basal 

cytokine production or sensitivity to an anti-inflammatory stimulus (e.g., dexamethasone), 

but ex vivo stimulation of monocyte cultures with lipopolysaccharide (LPS) was associated 

with significantly increased inflammatory cytokine production in the OCD group. The study 

further demonstrated that youth taking psychotropic medication for OCD had a lesser degree 
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of ex vivo inflammatory cytokine release, compared with unmedicated OCD youth 

(Rodríguez et al., 2017).

Taken together, the literature suggests that markers of altered innate immune function may 

be associated with OCD but could be specific to different OCD subgroups (e.g., male versus 

female, adult versus pediatric). Gut microbiota have complex relationships with the innate 

immune system, but these have largely been established in animal studies. The degree to 

which the microbiome could be a possible source of innate immune dysregulation in human 

OCD is therefore unknown. Existing evidence suggests that examining microbiome and 

immune parameters concurrently, in homogeneous human OCD populations, will be 

necessary to elucidate any potential associations.

5.2. Adaptive Immune Parameters:

The adaptive arm of the immune system serves to provide long-term protection against 

specific pathogens through development of immune memory. Lymphoid-derived T- and B-

lymphocytes comprise the cellular components of the adaptive immune system, and B-cells 

mediate humoral immunity through antibody production. As with the innate immune system, 

adaptive immunity is in part shaped by the microbiome, and intact adaptive immune function 

is also required to control microbiota (Belkaid and Hand, 2014; Belkaid and Harrison, 

2017). Relationships have been identified between specific microbes and adaptive immune 

processes (Geva-Zatorsky et al., 2017). For example, in animal studies, segmented 

filamentous bacteria (SFB) promote differentiation of T-helper 17 (Th17) cells and 

immunoglobulin A (IgA) production (Lécuyer et al., 2014), while Bacteroides and other 

species support differentiation of regulatory T-cells (Tregs) (Faith et al., 2014). However, 

understanding of microbiome relationships with adaptive immunity are largely gleaned from 

pre-clinical models, and caution is therefore required in translating this to humans, where 

such associations remain less well elucidated.

In human OCD, cellular components of the adaptive immune system have been examined, 

and adults with OCD had significantly increased CD8+ T-cells and decreased CD4+ T-cells 

compared to healthy controls, while no other cell counts differed between groups (Marazziti 

et al., 1999). Other studies have failed to demonstrate differences in T- or B-cell subsets 

between OCD and control groups (Barber et al., 1996; Denys et al., 2004). Most recently, 

children and adolescents with OCD were shown to have normal distribution of Th1 and Th2 

lymphocyte subsets compared to healthy controls, but greater frequency of pro-inflammatory 

Th17 lymphocytes compared to healthy controls (Rodríguez et al., 2019). Youth with OCD 

also had lower frequency of Tregs, which play an anti-inflammatory function. Th17 level 

positively correlated with both symptom severity and disease duration, while Treg level was 

negatively correlated with disease duration (Rodríguez et al., 2019).

Investigations of humoral adaptive immunity in OCD have primarily centered on the search 

for autoantibodies, as discussed in a following section ‘Brain Autoantibodies.’ More 

recently however, immunoglobulin profiles have been investigated, and groups have reported 

selective IgA deficiency in pediatric OCD, tic disorders, and PANDAS/PANS (Bos-Veneman 

et al., 2011; Frankovich et al., 2015; Kawikova et al., 2010). In a medical record review 

study of youth and adults with OCD compared to medical and psychiatric controls, youth 
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with OCD were significantly more likely to demonstrate decreased IgA concentration 

compared to adults with OCD, and compared to youth with ASD and anxiety disorders 

(Williams et al., 2019). Pediatric OCD was associated with a comparable rate of decreased 

IgA concentration when compared to the celiac disease group, with celiac disease being a 

disorder in which IgA deficiency is a recognized feature (Williams et al., 2019).

Available but limited evidence therefore suggests changes in adaptive immunity could be of 

relevance to OCD, with some parameters possibly having associations with specific 

subgroups of OCD. For example, adaptive immune parameter changes in OCD, such as 

increased Th17 frequency and decreased Treg frequency have been demonstrated in 

pediatric OCD, but not explored in adult OCD (Rodríguez et al., 2019), while decreased IgA 

concentration was present in youth but not adults with OCD, and was most pronounced in 

male youth (Williams et al., 2019). The microbiota has been shown to communicate with 

adaptive immune parameters in animal models; however, adaptive immune-microbiome 

relationships in human OCD remain to be investigated.

5.3. Cytokines and Inflammation:

Cytokines and chemokines are the primary proteins involved in immune signaling and can 

be pro-inflammatory or anti-inflammatory depending on the context. Cytokines are also 

involved in neuroimmune signaling, and abnormal cytokine profiles have been associated 

with a number of clinical neuropsychiatric disorders (Dantzer, 2018; Khandaker et al., 

2017). Cytokine production is influenced by a number of factors including age, sex, and 

genetics, and microbiome function also accounts for some inter-individual differences in 

human cytokine profiles (Schirmer et al., 2016). Specific microbially-derived metabolites, 

such as tryptophol and palmitoleic acid, for example, are associated with decreased 

interferon gamma (IFNγ) and tumor necrosis factor alpha (TNFα) production, respectively 

(Schirmer et al., 2016).

Several groups have sought to characterize cytokine and chemokine profiles in clinical OCD 

samples, though results have been inconclusive. In a meta-analysis of 12 studies of 

interleukin 1 beta (IL-1β), IL-6, and TNFα in OCD, IL-1β levels were significantly 

decreased in OCD compared to controls with no differences in IL-6 or TNFα concentrations 

(Gray and Bloch, 2012). A more recent meta-analysis of 14 studies examining IL-1β, IL-4, 

IL-6, IL-10, IFNγ, and TNFα in OCD found no differences in any of the parameters in the 

OCD group compared to controls (Cosco et al., 2019). Similarly, in a meta-analysis of 

immune biomarkers in pediatric anxiety disorders, including OCD, no significant differences 

were demonstrated (Parsons et al., 2020). Significant heterogeneity likely limits such meta-

analyses, as individual studies vary in terms of the OCD phenotype studied (pediatric versus 

adult), participants’ psychotropic medication status, inclusion and exclusion of psychiatric 

comorbidities, reporting of factors known to affect inflammatory markers such as body mass 

index (BMI), time of sample collection, and immunoassay methods. OCD subtype may also 

be related to variability in cytokine profiles. To this end, higher TNFα, IL-1β, and IL-6 

concentrations in medication-exposed adult outpatients with OCD were higher than healthy 

controls, and further, IL-1β concentration was significantly higher in the “reactive” OCD 

subtype group compared to the “autogenous” OCD subtype group (Karagüzel et al., 2019), 
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supporting the notion that phenotypic heterogeneity in OCD likely contributes to discrepant 

findings in cytokine and chemokine studies.

Taken together, changes in immune biomarkers might be associated with at least some cases 

of OCD, but most results have not been replicated and the implications of peripheral 

immune abnormalities for psychopathology are not fully understood. The cause of these 

immune abnormalities is also unknown, and microbiome studies are needed to determine if 

microbial composition or function contributes to immune dysregulation in OCD. If 

replicated, findings in pediatric OCD, such as increased peripheral IL-17a concentration 

(Şimşek et al., 2016), increased Th17 cell frequency, and decreased Tregs (Rodríguez et al., 

2019), suggest specific types of microbes such as SFB might be relatively more abundant in 

OCD, while Prevotella species might be relatively less abundant (Mangalam et al., 2017). 

The age- and sex-specific nature of some immune abnormalities in OCD, such as increased 

frequency of selective IgA deficiency in pediatric but not adult OCD (Williams et al., 2019), 

and increased NK cell frequency in adult males but not females (Ravindran et al., 1999), 

also suggest microbiome correlates in OCD could vary depending on age and biologic sex. 

In neuroimaging studies of OCD, developmentally- and sex-specific biomarkers have been 

identified, such as increased thalamic volume in pediatric but not adult OCD (Boedhoe et al., 

2017), and decreased pituitary volume which is most pronounced in males with pediatric 

OCD (MacMaster et al., 2006). It is therefore likely that, looking forward, large studies with 

homogeneous samples will be needed to identify subtypes of OCD for which specific 

immune-microbiome correlates are potentially relevant.

6. Toward Immune-Microbiome-Brain Mechanisms in OCD

6.1. Brain Autoantibodies:

Autoantibodies which are cross-reactive with streptococcal antigens and basal ganglia 

underlie the onset of neuropsychiatric symptoms in the context of SC (Ben-Pazi et al., 2013; 

Dale et al., 2012, 2006; Doyle et al., 2012; Kirvan et al., 2007, 2003). Similar processes of 

molecular mimicry have been proposed to underlie PANDAS/PANS, but findings of 

autoantibodies in PANDAS/PANS are less consistent (Brilot et al., 2011; Dale et al., 2012; 

Frick et al., 2018; Kirvan et al., 2006; Loiselle et al., 2004; Morer et al., 2008; Pavone et al., 

2004; Singer et al., 2005; Xu et al., 2020). Idiopathic OCD is also associated with anti-

neuronal antibody positivity (Bhattacharyya et al., 2009; Cox et al., 2015; Dale et al., 2005; 

Pearlman et al., 2014), thus calling into question the specificity of the proposed association 

between PANDAS/PANS and brain autoantibodies.

Gut microbial composition may be of relevance to cases of OCD in which autoantibody 

production is suspected, as the microbiome has been shown to be necessary for autoantibody 

production in animal models of autoimmunity, such as experimental autoimmune 

encephalitis (EAE) (Berer et al., 2011; Petta et al., 2018). Commensal microbial peptides 

may also share sequence homology with autoantigens, and therefore participate in 

autoimmune processes via molecular mimicry (Xuan Zhang et al., 2020). However, a 

potential role for the microbiome in OCD symptoms associated with autoimmunity remains 

speculative.
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6.2. Neuroinflammation:

Aside from autoimmunity, neuroinflammation is increasingly recognized as pathogenic in 

psychiatric disorders (Dantzer, 2018; Khandaker et al., 2017). Inflammatory cytokines, for 

example, from the periphery can influence brain and behavior, and are also produced by glial 

cells in the CNS (Dantzer et al., 2008; Miller and Raison, 2016). While findings in regard to 

circulating cytokine concentrations in individuals with OCD have been mixed (Cosco et al., 

2019; Gray and Bloch, 2012; Parsons et al., 2020), genetic studies have suggested TNFα 
polymorphisms (Cappi et al., 2012; Hounie et al., 2008; Jiang et al., 2018) and single 

nucleotide variants (SNVs) in genes related to transforming growth factor beta (TGFβ) 

signaling are associated with risk for OCD (Cappi et al., 2016). Gut microbiome-derived 

metabolic pathways have also been shown to Influence cytokine production capacity in 

humans (Schirmer et al., 2016). Complex host immunogenetic-microbiome relationships 

may therefore mediate the pathogenesis of OCD, but this requires further investigation.

Trafficking of immune cells into the CNS is another means by which peripheral immunity 

can influence behavior. Monocytes, for example, can cross the BBB under circumstances of 

stress or inflammation and propagate neuroinflammation (Wohleb et al., 2015). Auto-

reactive Th17 lymphocytes can also enter the CNS, and have been shown to induce 

obsessive-compulsive behaviors in a mouse model of MS, namely EAE (Kant et al., 2018). 

Female mice affected with chronic EAE following myelin oligodendrocyte glycoprotein 

(MOG) immunization exhibited increased grooming behavior, marble burying, and nestlet 

shredding early in their disease course. While adoptive transfer of both Th1 and Th17 cells 

could induce demyelination, only Th17 cell transfer was associated with onset of obsessive-

compulsive behaviors, which were successfully treated with either Th17 depletion or 

fluoxetine (Kant et al., 2018). Separately, GF rearing and antibiotic treatment have been 

shown to be protective against development of EAE in mice by attenuating microbially-

driven Th17 responses (Lee et al., 2011; Ochoa-Repáraz et al., 2009). Taken together, 

immune-microbiome studies in the context of EAE suggest that microbiome-dependent 

expansion and infiltration of auto-reactive Th17 cells, among other activated immune cells, 

into the CNS may be a novel neuroimmune mechanism of relevance to OCD 

symptomatology.

6.3. Microglial Dysregulation:

Recently, attention has also been given to microglial dysregulation for its role in the 

pathogenesis of OCD (Frick and Pittenger, 2016). Microglia, the resident macrophages of 

the brain, arise from yolk sac-derived progenitors during embryonic development and may 

have more heterogeneous developmental trajectories and functions than previously 

recognized (De et al., 2018). Microglia are required for multiple aspects of normal 

neurodevelopment and synaptic plasticity, and the microbiome is associated with microglial 

development and functioning throughout the lifespan in pre-clinical models (Lebovitz et al., 

2018). In humans with OCD, a positron emission tomography (PET) neuroimaging study 

demonstrated increased microglial activation in CSTC structures in adults with OCD 

compared to healthy controls (Attwells et al., 2017), and in mice, loss of homeobox B8 

(Hoxb8)-lineage microglia function causes obsessive-compulsive symptoms (Nagarajan et 

al., 2018). Interestingly, the Hoxb8-null behavioral phenotype is marked by excessive self-
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grooming in both males and females, but increased anxiety only in female mice starting at 

sexual maturity (Chen et al., 2010; Tränkner et al., 2019). Abnormalities in CSTC have been 

identified in Hoxb8-null mice, which are consistent with those found in OCD, and treatment 

with fluoxetine has also demonstrated efficacy in mitigating the Hoxb8-null phenotype 

(Nagarajan et al., 2018). Taken together, these studies suggest that microglial dysregulation 

in OCD warrants further study. Microglial loss of function, as is the case in Hoxb8-null 

mice, and activation, as demonstrated by PET imaging findings in human adults with OCD, 

could be of relevance to OCD symptomatology. Further understanding of separate microglial 

subsets, with differential anatomic locations and specializations, separate but overlapping 

critical periods of development, and differential responses to the effects of gonadal 

hormones, could also help account for the sexual dimorphism and developmentally specific 

features of OCD in humans.

In pre-clinical models, it is increasingly recognized that the microbiome is essential for 

normal microglia development and function (Lebovitz et al., 2018); changes in microbiome 

composition may therefore represent a means by which microglial dysregulation can 

develop. In adulthood, GF mice have an increase in microglial density and rate of 

proliferation, but an immature phenotype characterized by impaired responses to viral and 

bacterial challenges (Erny et al., 2015). A similar immature microglial phenotype could also 

be induced with antibiotic treatment of adult mice (Erny et al., 2015). Microbiome-

associated microglial dysregulation may also manifest differently depending on 

developmental stage and biologic sex. For example, both male and female GF mice exhibit 

increased microglial density, but this is more pronounced in utero in males, and more so in 

adulthood in females (Thion et al., 2018). Further, while both male and female GF mice had 

altered microglial transcriptomic signatures, this manifested earlier in development for male 

compared to female GF mice, and differentially expressed genes were also sexually 

dimorphic (Thion et al., 2018). Treatment of non-GF mice with antibiotics in adulthood was 

not associated with altered microglial colonization, but with changes in microglia 

transcriptomic signatures, most markedly in adult male mice (Thion et al., 2018). Taken 

together, studies in mice demonstrate that both genetic and environmental insults can alter 

microglial function, resulting in different developmental trajectories depending on timing of 

the insult, developmental stage, and host sex.

In humans, early-onset OCD is more frequently associated with male sex and tic-related 

comorbidity, while later-onset OCD has a more equal sex distribution (Taylor, 2011); the 

developmentally-specific sexual dimorphism of microglial dysregulation seen in pre-clinical 

studies therefore offers potential for compelling translational models. However, while the 

Hoxb8-null mouse is a valid genetic model of microglial dysfunction leading to OCD-like 

behavior, analogous genetic associations have not been identified in human OCD, and 

Hoxb8-null mice have physical deformities not observed in humans with OCD (Chen et al., 

2010). Microbial dysbiosis may lead to microglial dysregulation in animal models, but 

whether or not this could also lead to an OCD-related phenotype remains less clear. To this 

end, studies have demonstrated that animals exposed to early microbiome manipulations, 

such as GF rearing or maternal high-fat diet, can subsequently develop compulsive 

behaviors, including increased self-grooming and marble burying (Bruce-Keller et al., 2017; 

Desbonnet et al., 2014). Impaired fear extinction learning is also a feature of human OCD 
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(Milad et al., 2013), and both GF and antibiotic-treated adult mice have normal fear 

acquisition, but impaired fear extinction learning (Chu et al., 2019). This impaired fear 

extinction was associated with immature microglial morphology, defective dendritic spine 

remodeling, and decreased expression of the post-synaptic density protein-95 (PSD-95) in 

medial prefrontal cortex (mPFC) (Chu et al., 2019). GF mice have increased PSD-95 

expression also in striatum (Heijtz et al., 2011). SAP90/PSD95-associated protein 3 

(SAPAP3) is a post-synaptic scaffolding protein at glutamatergic synapses previously 

implicated in human genetic studies of OCD (Bienvenu et al., 2009; Boardman et al., 2011), 

and SAPAP3-null mice are an existing animal model of OCD (Welch et al., 2007). Finally, 

normal fear extinction learning could be restored in ex-GF mice by recolonization with a 

diverse microbiota only if recolonization occurred immediately after birth, but not at 

weaning or in adulthood (Chu et al., 2019). In summary, in pre-clinical models, early 

microbiome composition and function are relevant not only for long-term microglial 

function, but also for normal excitatory signaling and synaptic pruning in the mPFC and 

striatum, and for normal fear extinction learning, all of which have been implicated in OCD. 

Microbiome programming of microglia therefore represents a novel area of research with 

promise for elucidating the mechanisms underlying immune-mediated and environmental 

influences in the pathophysiology of OCD symptomatology.

7. Future Directions

Further studies of host immunity and microbiota in OCD are warranted, and a translational 

systems biology approach will be necessary for realizing the clinical impact of such 

investigations. Animal models of microbial manipulation at multiple developmental 

timepoints (e.g., GF rearing, antibiotic treated, maternal high-fat diet) are likely relevant to 

certain symptom domains in OCD, and microbiome analyses in existing genetic and 

behavioral animal models of OCD are also thus far under-explored (see Table 5). In humans, 

gut-brain-immune axis dysregulation is a plausible etiopathogenic mechanism in 

neuropsychiatric disorders, but thus far this is only indirectly supported. Therefore, more 

patient-oriented studies are critically needed, in which immune and microbiome parameters 

are systematically investigated together, while also connecting the dots with and among 

existing genetic, neuroimaging, neuropsychological, and other clinical findings, in order to 

fully understand complex gut-brain-immune relationships in OCD.

Several potential confounders will need to be taken into account in such investigations. In 

epidemiologic studies, OCD has been associated with diverse immune-mediated processes, 

which have distinct but partially overlapping influences on immune and microbiome 

parameters. OCD is also frequently comorbid with other neurodevelopmental and 

psychiatric disorders, including tic disorders, attention-deficit hyperactivity disorder, 

anxiety, and depressive disorders (Janowitz et al., 2009; Politis et al., 2017; Ruscio et al., 

2010), many of which have separately been associated with diverse immune abnormalities 

and/or microbiome changes (Halverson and Alagiakrishnan, 2020; Leckman and Vaccarino, 

2015; Martino et al., 2020; Yuan et al., 2019). Several types of comorbidity will therefore 

need to be taken into account in studies of human OCD of a large sample. Within the OCD 

phenotype, there is also significant heterogeneity, which has contributed to mixed and at 

times contradictory findings in immunologic studies, and the extent to which this will 
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influence microbiome studies remains unknown but could be significant. In both animal 

models and human studies, careful attention to biologic sex and age will be necessary, as 

sexual dimorphism and developmental effects are observed in features of immunity, 

microbial colonization, and in pre-clinical models of OCD and human OCD. Further, in 

human studies, clinical features such as predominant OCD symptom domain, acuity of 

symptom onset, duration of illness, and others have been shown to be associated with 

diverse biomarkers and may therefore also be relevant to microbiome investigations. 

Antibiotic and other medications, including psychotropic medications, can be both 

metabolized by the microbiome, and may also influence microbial communities; the extent 

to which this is the case in humans is only starting to be appreciated (Cussotto et al., 2019). 

Finally, factors such as diet, weight, exercise, ethnicity, and psychosocial stress can 

influence immune parameters and the microbiota, and must also be taken into account (Van 

Ameringen et al., 2019).

Looking forward, understanding host immune-microbiome signaling in OCD could help 

guide novel, targeted treatment approaches. It remains to be established whether microbiome 

modulation with prebiotics, probiotics, antibiotics, or FMT are viable treatments for 

psychiatric disorders such as OCD. In mice, pre-treatment with Lactobacillus rhamnosus GG 
effectively attenuated experimental induction of compulsive behavior (Kantak et al., 2014), 

and in a study of healthy human volunteers, treatment with a probiotic formulation 

containing Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 was 

associated with a decrease in sub-clinical obsessive-compulsive symptoms (Messaoudi et al., 

2011). However, the mechanisms by which such therapies exert their effects remain largely 

unclear, and data regarding the safety, efficacy, and dosing of different probiotic strains for 

specific conditions or individuals are lacking.

Microbiome data may also help guide more precise use of existing immune-modulating or 

psychotropic medications, or to monitor their effects. In the context of IBD, for example, 

specific microbially-derived metabolic pathways have been associated with the clinical 

efficacy of TNFα antagonists (Aden et al., 2019). In individuals treated with risperidone for 

first-episode schizophrenia, change in copy number of Bifidobacterium species was 

associated with weight gain over the course of the study (Yuan et al., 2018). In the context of 

OCD, in addition to various classes of psychotropic medications, several antibiotic or 

immune-modulating treatments have been studied, including penicillin, cephalosporins, 

minocycline, amantadine, celecoxib, corticosteroids, and IVIG, to name a few 

(Esalatmanesh et al., 2016; Gerentes et al., 2019; Murphy et al., 2014; Rodriguez et al., 

2010; Shalbafan et al., 2015). The positive or deleterious effects of such treatments on 

immune and microbiome markers in individuals with OCD are unknown, and reliable 

predictors or biomarkers of treatment response for specific agents remain elusive for OCD in 

general. Better understanding of gut-brain-immune axis function in OCD could therefore 

reveal immune-microbiome markers with potential to help guide more precise use of 

treatments for this condition.
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8. Conclusion

OCD is a disabling and often treatment-refractory disorder. Affected individuals are in 

critical need of reliable biomarkers of disease, predictors of treatment response, and novel 

treatment discovery. Aberrant immune-microbiome signaling has now been implicated in 

several human neuropsychiatric disorders, which represents a novel line of inquiry through 

which to understand and develop treatments for OCD with attention to demographic and 

clinical parameters.

Support for further pursuing such investigations in OCD comes from observations that 1) the 

gut microbiome has been associated with OCD symptomatology in a small number of pre-

clinical and human studies, but causal pathogenic mechanisms have not been established; 2) 

early environmental risk factors for OCD overlap with critical periods of immune-

microbiome development; 3) OCD is associated with increased risk of immune-mediated 

disorders and changes in immune parameters, which have been separately associated with 

the microbiome; and 4) gut microbiome manipulations in animal models are associated with 

changes in immunity and some obsessive-compulsive symptom domains. As shown in 

Figure 1, existing pre-clinical studies suggest possible mechanisms by which host immune-

microbiome signaling could elicit obsessive-compulsive symptoms, including microbiota 

programming of cytokine production capacity, expansion and trafficking of peripheral 

immune cell populations to the CNS, and microglial dysregulation; however, these remain to 

be established in humans.

With a thoughtful, translational, systems-biology approach, future host immune-microbiome 

investigations in OCD offer not only to further our understanding of gut-brain-immune axis 

function in OCD, but also to help guide more precise treatment for individuals with OCD.
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Highlights

• Current literature suggests immune-microbiome signaling could be relevant to 

OCD.

• We discuss mechanisms by which gut-brain-immune axis dysfunction could 

underlie OCD.

• OCD is heterogeneous, and future microbiome investigations should take this 

into account.

• This offers to be a novel area of inquiry to further our understanding and 

treatment of OCD.
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Figure 1. Select theoretical mechanisms by which host immune-microbiome signaling could 
influence OCD symptomatology
1. Gut microbiome can influence cytokine production capacity (1a) (Schirmer et al., 2016). 

Peripheral cytokines can influence afferent signaling to the central nervous system (CNS) 

via the vagus nerve (1b), or cross the blood brain barrier directly (1c), and cytokines are also 

produced by glial cells within the CNS. Cytokines of either peripheral or central origin can 

influence brain and behavior (1d) (Dantzer et al., 2008; Miller and Raison, 2016). Based on 

genetic studies, TNFα might be of particular relevance to OCD, but the relationship between 

TNFα and OCD remains to be fully elucidated (Cappi et al., 2012; Hounie et al., 2008; 

Jiang et al., 2018). 2. Gut microbes, specifically segmented filamentous bacteria (SFB), can 

participate in inflammatory and autoimmune processes by promoting expansion of T-helper 

17 (Th17) cells (2a) (Lécuyer et al., 2014). In mice, auto-reactive Th17 cells can enter the 
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CNS (2b) and have been shown to induce obsessive-compulsive behaviors (2c) (Kant et al., 

2018). Other peripheral immune cell types, such as monocytes, may also exhibit 

dysregulated inflammatory responses in humans with OCD (Rodríguez et al., 2017), and can 

traffic to the CNS under conditions of increased blood brain barrier permeability (Wohleb et 

al., 2015), but are not included here, as their relationships with microbiome composition are 

less clear in the current literature. 3. Gut microbiota are needed for development and 

homeostasis of mature microglia (3a) (Erny et al., 2017). Microbiome manipulations, such 

as germ-free (GF) rearing and antibiotic treatment, are associated with microglial 

dysregulation and cognitive and behavioral changes in animal models, in an age- and sex-

dependent manner (3b) (Thion et al., 2018).
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