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ABSTRACT Automation in clinical microbiology is starting to become more com-
monplace and reportedly offers several advantages over the manual laboratory.
Most studies have reported on the rapid turnaround times for culture results, includ-
ing times for identification of pathogens and their respective antimicrobial suscepti-
bilities, but few have studied the benefits from a laboratory efficiency point of view.
This is the first large, multicenter study in North America to report on the benefits
derived from automation measured in full-time equivalents (FTE), FTE reallocation,
productivity, cost per specimen, and cost avoidance. Pre- and post-full automation
audits were done at 4 laboratories that have vastly different culture volumes, and
results show that regardless of the size of the facility, improved efficiencies can be
realized after implementation of full laboratory automation.
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For the past several decades, clinical laboratories have been asked to do more with
less, and diagnostic microbiology has been no exception. We are asked to accu-

rately detect antibiotic-resistant microorganisms, screen patients for hospital-acquired
infections, provide more and more rapid results to assure decreased patient length of
stay, rapidly test hundreds to thousands of patients daily for severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), and more. All of this is in the face of decreasing
laboratory resources. We are receiving less and less reimbursement for the testing we
perform, undergoing laboratory consolidations (often without accompanying resour-
ces for the increased workload), receiving unfunded legislative mandates, undergoing
budget cuts, and facing significant decreases in workforce, all of which make it very
challenging to meet these expectations.

Laboratory automation came to our clinical colleagues in chemistry, hematology,
and immunology decades ago and more recently has reached microbiology. There are
now two fully automated specimen processing and aerobic culture systems available
to microbiology laboratories as follows: Copan’s solution (Murrieta, CA and Brescia,
Italy) consisting of the Walk-Away specimen processor (WASP)-DT and the WASPLab
full laboratory automation (FLA) system and Becton-Dickinson’s system (Sparks, MD)
consisting of the InoqulA and the Kiestra total laboratory automation (TLA). Both offer
automated specimen processors, smart incubators, track lines, and digital imaging for
the examination of cultures displayed on a computer screen without the need to man-
ually handle the plates. In addition, Copan offers artificial intelligence and interpretive
algorithm (AI/IA) software that can segregate positive and negative cultures, provide
colony counts, and screen positive from negative results obtained from chromogenic
agars. BD is also working toward providing algorithms for culture reading.

Studies have been published on some of the benefits of these systems, and several
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are listed here as references (1–16). However, to date there has not been a systematic,
well-controlled, multicenter study on the total work efficiencies that can be realized
once these systems are in place and functional. This is the first report of a such a study
utilizing Copan’s full laboratory automation (FLA) system.

MATERIALS ANDMETHODS
This study was conducted at 4 facilities of different size, patient mix and acuity, and geographic loca-

tion. A variety of data was collected 6months to 1 year before installment of FLA and then again after
automation had been implemented (February 2019 to February 2020) based on the laboratory processes
in place at that time. Data collected at each site were the same pre- and postanalysis and included full-
time equivalent (FTE) number, FTE allocation (based on peak day scheduling and workbench staffing
across all shifts), and the total volume of culture specimens received, processed, and worked up. Post-
FLA FTE salaries for laboratory assistants and clinical laboratory scientists were provided by the labora-
tory, or a national salary average approved by participants was used (laboratory assistants, $60,000; clini-
cal laboratory scientists, $90,000). From this data, we were able to determine FTE productivity, labor cost
per specimen, and cost avoidance associated with automated culture processing and workup.
Specifically, each laboratory had a workflow analysis performed before and after implementation of their
FLA, which included review of the daily and peak volumes of specimens processed and the number and
scheduling of FTE allocated for culture processing and workup. If turnaround time (TAT) data were avail-
able, this was also included. Pre- and post-FLA workflow analysis was performed by a Six Sigma Black
Belt professional Copan consultant who spent 2 to 3 days onsite observing laboratory operations before
and after FLA at each site.

Calculations.

1. Labor cost per specimen. Total daily labor cost/total volume of culture specimens processed on
peak day.

2. Productivity. Volume of cultures processed or volume of cultures worked up/number FTE
required on peak day to complete the work.

3. Total productivity percentage. Post-FLA productivity minus pre-FLA productivity/pre-FLA
productivity.

4. FTE needed without FLA. FTE that would be predicted without FLA (adjusting for volume
growth; for example, if a laboratory required 1 FTE to complete the work pre-FLA and grew 50%
post-FLA, the adjusted FTE needed without automation would equal 1 FTE1 50% or 1.5 FTE).

5. FTE savings or cost avoidance with growth. Pre-FLA FTE subtracted from FTE needed without FLA.
6. Direct savings FLA. Post-FLA FTE subtracted from Pre-FLA FTE.
7. Total FTE savings (direct savings and cost avoidance). Add cost avoidance with growth to direct

FTE savings with FLA.
8. Turnaround time (TAT). Time of culture set up subtracted from the time of the final report

(derived from the laboratory information system data).

Note that all costs were derived including only specimens for which FLA is used and that FTE was deter-
mined by the number of hours spent processing specimens and working up cultures.

Laboratory demographics, FLA instrumentation, and workflow overview. Willis-Knighton
Laboratory (WKL) services a 5-hospital network and outreach program extending throughout Louisiana
and processes approximately 143,000 bacterial cultures annually. The pre-FLA analysis was performed in
2016 (annual volume of bacterial cultures excluding blood cultures, 81,030), and post-FLA analysis was
done in 2019 (annual volume of bacterial cultures excluding blood cultures, 118,625). No automation
was present at the time of the laboratory’s pre-FLA evaluation, and no algorithms were implemented in
this laboratory. The WKL FLA solution consisted of a single line connecting 2 WASP and 3 smart incuba-
tors. Pre-FLA, WKL received 70% of culture volume processed off-site and operated a day shift culture
reading and workup process only. Post-FLA, WKL processes 100% of cultures on-site and operates 24/7
for culture reading and workup. FLA processes 87% of their total culture volume (Table 1).

TriCore (TC) Reference Laboratories is New Mexico’s largest medical laboratory serving numerous
hospitals, physicians’ offices, and collection centers statewide. TC processes approximately 775,000 bac-
terial cultures per year. The pre-FLA analysis was performed in 2015 (annual volume of bacterial cultures
excluding blood cultures, 318,280), and post-FLA analysis was done in 2018 (annual volume of bacterial
cultures excluding blood cultures, 395,295), 4 years after automation was complete and segregation soft-
ware for urine cultures was fully integrated. No automation was present at the time of the laboratory’s
pre-FLA evaluation. TC now processes approximately 90% of their specimens on the single WASP instru-
ment, and urine cultures and methicillin-resistant Staphylococcus aureus (MRSA) screens (approximately
81% of their volume) are processed on an FLA line consisting of the WASP instrument and 2 smart incu-
bators. Since FLA, TC was able to extend their hours of culture workup to help improve TAT (Table 1).

Hamilton Regional Medicine Laboratory Program (HRMLP) is a laboratory reference center providing
testing services to 11 hospitals and a cancer center within the Hamilton, ON, Canada area. They process
approximately 600,000 bacterial cultures annually. Analysis was performed in 2012 before automation
(annual volume of bacterial cultures excluding blood cultures, 349,305), and post-FLA analysis was done
in 2020 (annual volume of bacterial cultures excluding blood cultures, 571,225), 8 years after FLA had
been successfully implemented and 3 years after algorithm software programs were in routine use.
HRMLP had no microbiology automation prior to 2013. HRMLP processes 88% of all specimens on their
2 WASP instruments, and 80% of specimens are placed on their FLA line consisting of 2 WASP
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instruments, 1 track line, and 3 smart incubators. Post-FLA analysis also included the use of urine segre-
gation and MRSA and vancomycin-resistant enterococci (VRE) segregation software. They were able to
extend their culture workup hours from 1 to 2 shifts (Table 1).

Sutter Health Shared Laboratory (SHSL), located in northern California, serves 24 hospitals and 26
clinics. The laboratory processes over 600,000 bacterial cultures annually. Analyses were performed in
2016 pre-FLA (annual volume of bacterial cultures excluding blood cultures, 410,625), and again in 2019
post-FLA (annual volume of bacterial cultures excluding blood cultures, 601,620). Prior to FLA, SHSL was
using 2 WASP instruments, which increased to 3 WASP instruments, 2 track lines, and 6 smart incubators
at their post-FLA evaluation. SHSL post-FLA analysis also included the use of urine segregation and
MRSA segregation software. Approximately 96% of all specimens are processed, and cultures worked-
up, using FLA (Table 1).

RESULTS
Willis-Knighton Laboratory. Pre-FLA specimens were processed for culture at 3 of

its hospitals utilizing 0.3 FTE at each location (determined by the time laboratory assis-
tants spent processing cultures). These cultures were incubated at the processing site
until they were transported (approximately 20 min) to WKL for continued incubation
and workup. These “off-site” processed cultures represented approximately 70% of
their total culture volume. After the implementation of FLA, all specimens were trans-
ported to WKL for processing on the WASP, which resulted in an immediate 0.9 FTE
savings (Table 2).

Prior to FLA implementation, the system processed approximately 222 specimens
per day at peak times. This increased to 325 specimens during their post-FLA evalua-
tion, accounting for an increase of 46% in specimen volume. Productivity increased
from 77 to 163 specimens processed per FTE and from 44 to 81 cultures worked up per
FTE for a combined productivity increase of 93%. Total FTE needed for combined speci-
men processing and culture workup decreased from 7.9 pre-FLA to 6 post-FLA, result-
ing in a direct savings of 1.9 FTE. However, when adding in the cost avoidance associ-
ated with a 46% volume increase, an additional 3.7 FTE were saved accounting for a
total savings of 5.6 FTE or approximately $322,000 annually in labor costs (Table 3). As
a result, the labor cost per specimen decreased 47% from $5.75 per specimen to $3.03
per specimen (Table 2). Additionally, improvements were seen in the TAT of results.
Before the implementation of FLA at WKL the average urine culture TAT was 30.8 h.
This decreased to 23.0 h after FLA implementation, resulting in a 7.8 h more rapid TAT

TABLE 1 Laboratory instrumentation and workflow overview

Condition

Instrumentation or workflow overview for:a

WKL TC HRMLP SHSL
Pre-FLA instrumentation None None None 2 WASP
Post-FLA instrumentation 2 WASP, 1 track line, 3

incubators
1 WASP, 2 incubators 2 WASP, 1 track line, 3

incubators
3 WASP, 2 track lines, 6
incubators

Specimen processing Pre-FLA, 24/7 with 70% of
volume processed off-
site; post-FLA, 24/7 with
100% volume
processed on-site

Pre-FLA, 24/7; post-FLA,
24/7

Pre-FLA, 24/7; post-FLA, 24/7 Pre-FLA, 24/7; post-FLA,
24/7

Culture workup Pre-FLA, 08:00–19:00;
post-FLA, 24/7

Pre-FLA, workup 07:00–
00:30; post-FLA, 05:30-
02:30

Pre-FLA, 08:00–17:00; post-
FLA, 08:00–23:00 (positive
blood cultures: 24/7)

Pre-FLA, 24/7; post-FLA,
24/7

Specimens/collections
processed by WASP/FLA
(percent of laboratory
volume)

Urine, MRSA, ESwab, GBS,
body fluid, positive
blood culture (87% FLA)

Urine, MRSA, ESwab,
respiratory, GAS, body
fluid, disc diffusion AST
(90%WASP; 81% FLA)

Urine, MRSA, VRE, GAS, CSF,
positive blood culture
(88%WASP; 80% FLA)

Urine, MRSA, GAS, GBS,
body fluid, stool
(96% FLA)

Segregation algorithms No Yes: urine Yes: urine, MRSA, VRE,
MRSA/VRE biplate

Yes: urine, MRSA

Years between pre- and
post-FLA analysis

3 5 8 3

aWLK, Willis-Knighton Laboratory; TC, TriCore Reference Laboratories; HRMLP, Hamilton Regional Medicine Laboratory Program; SHSL, Sutter Health Shared Laboratory;
WASP, Walk-Away specimen processor; FLA, full laboratory automation; MRSA, screening culture for MRSA; GBS, screening culture for group B Streptococcus; GAS, screening
culture for group A Streptococcus; AST, antimicrobial susceptibility testing; VRE, screening culture for VRE; ESwab, specimens collected in ESwab devices; CSF, cerebrospinal
fluid.
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for these results. If WLK had maintained their pre-FLA work schedule (08:00 to 19:00) in
the postanalysis period, they would have improved TAT for 73% (5.7 h decrease) for
urine cultures. This leaves approximately 27% (2.1 h) of the improved TAT attributable
to extending culture workup hours of 24 h/day.

TriCore Reference Laboratories. Prior to FLA implementation, the system proc-
essed approximately 872 specimens per day at peak times. This increased to 1,083
specimens during their post-FLA evaluation, accounting for an increase of 24% in spec-
imen volume. Productivity increased from 125 to 271 specimens processed per FTE,
and while cultures worked up per FTE went from 97 to 90, a combined productivity
increase of 24% was seen. Total FTE needed for combined specimen processing and
culture workup remained the same at 16 for pre-FLA and post-FLA. When adding in
the cost avoidance associated with a 24% volume increase with no additional FTE
added (cost avoidance of 3.9 FTE), this accounted for approximately $268,000 annually
in labor costs (Table 3). As a result, the labor cost per specimen decreased 17% from
$3.86 per specimen to $3.19 per specimen (Table 2).

They were also able to add approximately 3.5 additional hours of culture workup,
extending their total time from 17.5 h pre-FLA to 21 h post-FLA. In addition, TC was
able to decrease their TAT throughout each step of their automation process. Their me-
dian TAT preautomation, post-WASP, post-FLA, and after implementation of reading
algorithms was 35 h, 31 h, 29 h, and 21 h, respectively. This median decrease of 14 h
was accompanied by a 24% increase in specimen volume. Approximately 11% of all
urine cultures were ready for workup between 00:30 and 07:00 pre-FLA when staff
were not scheduled. Extending culture reading time by 3.5 h, only 4% of cultures were
ready to read when staff were not scheduled. This suggests that up to 7% (11% minus
4%) of TAT improvement could be directly attributed to extending culture reading
hours (assuming staff were working up cultures at optimal incubation times as can be
achieved through FLA). As stated previously, the median TAT improvement or decrease
was 14 h, and as 7% of this was estimated to be due to the extension of culture reading
times (14 h � 7% = 0.98 h), then approximately 13 h or 93% of this improvement was
associated with FLA alone. Figure 1 shows the TATs at TC Laboratories as they went
from no automation, to working with a WASP, to implementation of FLA, and then
finally to algorithm-assisted FLA. The percentage of specimens in the first curve (0 to

TABLE 2 Pre- and post-FLA metrics

Lab and metrica

Pre-FLA Post-FLA

FTE
Total labor
cost/day ($)

Specimen vol:
peak day

Specimens/FTE
(productivity)

Labor cost/
specimen ($) FTE

Total labor
cost/day ($)

Specimen vol:
peak day

Specimens/FTE
(productivity)

Labor cost/
specimen ($)

WKL
Processing 2.9 317.81 222 77 1.43 2 219.18 325 163 0.67
Culture Work up 5 958.90 222 44 4.32 4 767.12 325 81 2.36
Total 7.9 1,276.71 222 28 5.75 6 986.30 325 54 3.03

TC
Processing 7 1,150.68 872 125 1.32 4 657.52 1,083 271 0.61
Culture Work up 9 2,219.18 872 97 2.54 12 2,794.51 1,083 90 2.58
Total 16 3,369.86 872 55 3.86 16 3,452.03 1,083 68 3.19

HRMLP
Processing 5 821.92 957 191 0.86 7 1,150.68 1,565 224 0.74
Culture Work up 18 4,438.36 957 53 4.64 17 4,191.78 1,565 92 2.68
Total 23 5,260.27 957 42 5.50 24 5,342.47 1,565 65 3.41

SHSL
Processing 13 2,315.07 1,125 87 2.06 13 2,315.07 1,648 87 2.06
Culture Work up 17 5,775.34 1,125 66 5.13 23.5 7,720.62 1,648 70 4.68
Total 30 8,090.41 1,125 38 7.19 36.5 10,035.69 1,648 45 6.09

aSome laboratories provided actual FTE salaries while others preferred to use a national average of $90,000/year for a clinical laboratory scientist and $60,000/year for a
laboratory assistant.
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36 h) for algorithm-assisted FLA and (0 to 42 h) for pre-WASP, WASP, and FLA 2016
when added together for each time frame is as follows: pre-FLA= 60%, WASP= 58%,
FLA 2016= 63%, and FLA 2018 = 61%. Approximately 60% of specimens represent
those cultures reported as equivalent to no growth, normal flora, mixed growth, con-
tamination, insignificant growth, etc., basically those that do not require additional
workup in the laboratory. As exemplified in the 18.1- to 24-h time frame, with algo-
rithm-assisted FLA, the number of these specimens released is almost 4 times that of
no automation, 3 times that of WASP alone, and approximately twice that of FLA
without algorithms. The remaining part of the graph, or the second curve (.36.1 h
for algorithm-assisted FLA and .42 h for the 3 other time frames), shows that
pre-WASP = 40%, WASP = 42%, FLA 2016 = 37%, and FLA 2018 = 39% for cultures
requiring additional work up in the laboratory, such as subcultures, identifications,
susceptibility testing, etc. In the category of cultures that take.36 h but,42.1 h to
generate a final report, there is an increase in the percentage of specimens reported
with algorithm-assisted FLA (9% compared to 3% with no automation, 2% WASP, and
4% FLA 2016). This is due to the shift of the curve to the left for algorithm-assisted
FLA with earlier reporting of cultures that require workup, e.g., the second curve
begins earlier with algorithm-assisted FLA. Lastly, there is a stepwise decrease in the
percentage of cultures taking.48 h to a final report with the addition of each part of
automation.

Hamilton Regional Medicine Laboratory Program. Prior to FLA implementation,
the system processed approximately 957 specimens per day at peak times. This
increased to 1,565 specimens during their post-FLA evaluation, accounting for an
increase of 64% in specimen volume. Productivity increased from 191 to 224 speci-
mens processed per FTE and from 53 to 92 cultures worked up per FTE for a combined
productivity increase of 55%. Total FTE needed for combined specimen processing and
culture workup increased from 23 pre-FLA to 24 post-FLA; however, when adding in
the cost avoidance associated with a 64% volume increase, an additional 13.6 FTE were
saved accounting for just under $1,200,000 annually in labor costs (Table 3). As a result,

TABLE 3 FTE savings with FLA

Lab and
metric Pre-FLA FLA

Direct savings
FLA

FTE needed
without FLA

FTE savings cost
avoidance with growth

Total FTE savings (direct
savings+ cost avoidance)

Total FTE cost
savings/yr ($)

WKL
Peak volume 222 325 325 325
Processing 2.9 2 0.9 4.2 1.3 2.2 89,819.82
Workup 5 4 1 7.3 2.3 3.3 232,387.39
Total 7.9 6 1.9 11.6 3.7 5.6 322,207.21

TC
Volume 872 1,083 1,083 1,083
Processing 7 4 3 8.7 1.7 4.7 281,628.44
Workup AST 2 22 22.0 (120,000.00)
Workup 9 10 21 11.2 2.2 1.2 105,997.71
Total 16 16 0 19.9 3.9 3.9 267,626.15

HRMLP
Volume 957 1565 1565 1565
Processing 5 7 22 8.2 3.2 1.2 70,595.61
Workup 18 17 1 29.4 11.4 12.4 1,119,216.30
Total 23 24 21 37.6 14.6 13.6 1,189,811.91

SHSL
Volume 1125 1648 1,648 1,648
Processing 13 13 0 19.0 6.0 6.0 392,831.00
Workup AST 4 24 24.0 (400,000.00)
Workup 17 19.5 22.5 24.9 7.9 5.4 669,985.78
Total 30 36.5 26.5 43.9 13.9 7.4 662,816.78
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the labor cost per specimen decreased 38% from $5.50 per specimen to $3.41 per
specimen (Table 2). FLA with culture algorithms significantly contributed to the
observed efficiencies for culture workup activities and negated the need for additional
FTE despite an increased workload of 64% over the 8-year period.

Sutter Health Shared Laboratory. Prior to FLA implementation, the system proc-
essed approximately 1,125 specimens per day at peak times. This increased to 1,648
specimens during their post-FLA evaluation, accounting for an increase of 46% in spec-
imen volume. Productivity remained constant for specimens processed per FTE at 87
for both study periods but increased from 66 to 70 cultures worked up per FTE for a
combined productivity increase of 18%. Total FTE needed for combined specimen
processing and culture workup went from 30 pre-FLA to 36.5 post-FLA, resulting in an
increase of 6.5 FTE; however, when adding in the cost avoidance associated with a
46% volume increase, 7.4 FTE were saved or approximately $663,000 annually in labor
costs (Table 3). As a result, the labor cost per specimen decreased 15% from $7.19 per
specimen to $6.09 per specimen (Table 2).

DISCUSSION

These laboratory experiences demonstrate that FLA can be applied to a variety of
laboratories large and small, reference laboratories to hospital-based laboratories, and
from those processing and working up a few hundred cultures per day to those that
process and read thousands each day. The laboratories in this study all benefited from
savings in FTE regardless of their size, regardless of the increase in specimen volume
seen during the pre- and poststudy periods, and regardless of the years when these
analyses were performed. WKL saved 1.9 FTE directly and a total of 5.6 FTE with cost
avoidance based on increased specimen volume during the study period. These
improvements were a function of processing a wide variety of specimens with FLA,
including tissues that were manually ground and placed on the WASP for inoculation,
streaking, and incubation. Processing steps that were eliminated with automation
included selection of plates, transport of plates to the setup area, labeling of plates,
planting/streaking of plates and broths, and transporting plates to incubator. For the
offsite laboratories, it also saved FTE by eliminating the packing of plates for transport,
planting/streaking of plates and broths, etc. Even though SHSL added 6.5 FTE during
the study period, with their increase in culture volume, they avoided hiring an

FIG 1 Turnaround times for TC through evaluation period. Pre-WASP 2015, no automation in the clinical
laboratory; WASP 2015, initial implementation of the WASP alone; FLA 2016, initial integration of FLA; FLA
2018, implementation of algorithm-assisted FLA.
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additional 7.4 FTE. Likewise, with the efficiencies gained by FLA, TC, having the same
FTE pre- and postanalysis, avoided hiring 3.9 FTE equaling a total of over $250,000 in
FTE savings. HRMLP required the addition of only 1 FTE post-FLA even while seeing a
64% increase in specimen volume between the study periods. In addition, they experi-
enced a decrease in labor of over $2.00 in cost per specimen and a productivity
increase of 55%.

Increases in productivity ranged from 18% to 93% with the implementation of FLA.
The FTE savings and increases in productivity seen by these laboratories were accom-
panied by a decrease in cost per specimen ranging from 15% to 47%, resulting in an-
nual labor savings of between;$268,000 to;$1.2 million. FLA also allowed those lab-
oratories that were not already processing and working up cultures 24/7 to do so or to
add additional hours of culture workup more easily than if they were still a manual lab-
oratory. To emphasize this point, the TAT data at TC, where automation allowed an
expansion of culture reading times, showed a median reduction of ;14 h for culture
results to be reported. Even with cultures that need additional incubation time, identi-
fication, and/or susceptibility testing performed, an advantage is still seen in this area
for FLA. This is shown in the data from TC (Fig. 1), where the second curve representing
the TAT for algorithm-assisted reporting has the greatest number (9%) of positive cul-
tures reported between 36.1 and 42 h. One can also see a decreasing volume of all cul-
tures that are reported at greater than 48 h through each step of automation with
28%, 26%, 25%, and 13% of cultures being reported for pre-FLA, WASP, FLA 2016, and
FLA 2018, respectively. This may be explained in that FLA in general, and algorithm-
assisted reading specifically, allows more efficient release of no growth and insignifi-
cant cultures, so the work on more significant cultures can begin sooner. Algorithm as-
sistance may equate to less time spent on managing these types of cultures, leaving
more time for assessment of complex cultures.

The fact that microbiologists are retiring at an accelerated rate, that fewer person-
nel are entering the field of laboratory medicine, and that reimbursements are declin-
ing, laboratories are left with little choice but to find ways to innovate and produce
quality results with fewer and fewer personnel. Laboratory automation can offer some
solutions to these challenges. This study shows that FTE savings can be realized not
only in the upfront specimen processing area but in culture workup as well. FLA affords
these savings on the bench by allowing technologists to visually review images from
both positive and negative cultures in batch mode for rapid release of results and
faster workup of specimens continually throughout the day, evening, and overnight
shifts. The laboratory having the greatest volume growth and FTE savings (HRMLP) uti-
lizes segregation algorithms for 80% of their cultures; the reduction in time to screen
their large volume of negative cultures contributes to these savings. In addition, con-
tinuous incubation afforded by laboratory automation shortens the time to culture
results (8–10). FLA allows cultures to be reviewed, worked up, and reported when they
are optimally ready rather than when staff is scheduled to be in the laboratory. It is
true that simply switching to a 24/7 processing and culture workup schedule without
FLA will allow for specimens to be read more appropriately at their optimal incubation
times, but as previously stated, the display of batched images afforded by algorithms
allows for even more savings in time spent reviewing cultures as well as allowing ear-
lier result reporting times.

In summary, this is the first large scale study in North America to look at the efficien-
cies and cost-savings that can be realized when implementing full laboratory automa-
tion in the bacteriology culture laboratory. Overall, such laboratory automation can
achieve significant benefits relating to FTE, productivity, specimen cost, TAT, etc. These
benefits will allow microbiology laboratories to continue to provide high-quality results
in the midst of continuing declining resources and support. Incorporation of tools such
as artificial intelligence with interpretative culture algorithms together with future
improvements in the automated release of negative routine and chromogenic culture
results will continue to provide the microbiology community with much needed
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efficiencies. Additional innovations, e.g., complicated customized ruled-based result-
ing, as well as rapid, inexpensive antimicrobial susceptibility setup and interpretation
will be available soon. These and future developments will continue to have significant
applicability in microbiology laboratories.
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