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Abstract

Introduction: The Medication Regimen Complexity -Intensive Care Unit (MRC-ICU) is the first 

tool for measuring medication regimen complexity in critically ill patients. This study tested 

machine learning (ML) models to investigate the relationship between medication regimen 

complexity and patient outcomes.

Methods: This study was a single-center, retrospective observational evaluation of 130 adults 

admitted to the medical ICU. The MRC-ICU score was utilized to improve the inpatient model’s 

prediction accuracy. Three models were proposed: model I, demographic data without medication 

data; model II, demographic data and medication regimen complexity variables; and model III: 

demographic data and the MRC-ICU score. A total of 6 ML classifiers was developed: k-nearest 

neighbor (KNN), naïve Bayes (NB), random forest, support vector machine, neural network, and 

logistic classifier (LC). They were developed and tested using electronic health record data to 

predict inpatient mortality.

Results: The results demonstrated that adding medication regimen complexity variables (model 

II) and the MRC-ICU score (model III) improved inpatient mortality prediction.. The LC 

outperformed the other classifiers (KNN and NB), with an overall accuracy of 83%, sensitivity 

(Se) of 87%, specificity of 67%, positive predictive value of 93%, and negative predictive value of 

46%. The APACHE III score and the MRC-ICU score at the 24-hour interval were the 2 most 

important variables.
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Conclusion and Relevance: Inclusion of the MRC-ICU score improved the prediction of 

patient outcomes on the previously established APACHE III score. This novel, proof-of-concept 

methodology shows promise for future application of the MRC-ICU scoring tool for patient 

outcome predictions.
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Introduction

The Medication Regimen Complexity–Intensive Care Unit (MRC-ICU) scoring tool has 

been previously correlated with patient acuity scores, mortality, and pharmacist 

interventions, with the ultimate goal of being a reliable predictor of pharmacist resources.1,2 

Although other tools to predict patient outcomes (eg, mortality) and resource allocation (eg, 

APACHE III, SOFA, SAPS) have been developed, none of these incorporate medication 

therapies.3 Furthermore, tools that do incorporate medication therapies to predict pharmacist 

workload have been developed but not specifically for the ICU setting or for external use 

beyond site-specific academic medical centers.4–6 Thus, the MRC-ICU is the first and only 

validated tool using medication regimen complexity in critically ill patients with the intent to 

predict both patient outcomes and pharmacist interventions; however, further validation is 

necessary.7

Ideally, the developed scoring value would build on existing patient acuity scores (eg, 

APACHE III) providing enhanced and more pharmacy-oriented information. Although 

APACHE III was developed to predict hospital mortality, it was never intended to be used as 

a personnel allocation strategy.8 Patient acuity scores such as APACHE have been used to 

determine physician and nurse to patient ratios, but complex medication regimens requiring 

pharmacist expertise are seen throughout the spectrum of patient care (eg, community to 

ambulatory to ICU).9,10 Previously, it has been suggested that pharmacist allocation may be 

best justified by the hybrid of patient acuity and medication regimen complexity.7

To imbed a tool like the MRC-ICU into a real-time, automated decision support system 

requires further external validation measures through health information technology–based 

resources—namely, machine learning (ML) methods. Recently, ML methods have been 

developed and used to predict sepsis,11,12 early warning of sepsis,13,14 unplanned transfer to 

the ICU,15 ICU discharge,16 acute kidney injury,17 complications in the critical care setting,
18 and hospital mortality.18 These ML methods can support complex interactions in large 

data, identify hidden patterns, and provide timely predictions in critical care. ML provides 

an alternative strategy to statistical modeling and often shows superiority over traditional 

statistics.19

Thus, we proposed the development of an alternative validation strategy for the existing 

MRC-ICU tool using several ML models. Previously, the MRC-ICU tool was found to 

correlate with inpatient mortality and patient acuity. Here, a reverse engineering approach is 

proposed, with the development of a ML prediction model to predict inpatient mortality by 

including medication regimen complexity related binary variables and the MRC-ICU score. 
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The primary goal of this study is to evaluate whether the MRC-ICU score at 24 hours is 

correlated with patient mortality.

Methods

Study Design

This ML study was designed using previously published data from the development and 

validation of the MRC-ICU.7 The central hypothesis is that addition of medication regimen 

complexity variables and the MRC-ICU score into ML models improves on APACHE III 

scores’ prediction of mortality in critically ill patients. This study was reviewed by the 

institutional review board (IRB) and deemed exempt from review.

Data Sources

The data were collected retrospectively from the medical ICU (MICU) of Augusta 

University Medical Center from November 2016 to June 2017. Briefly, patient 

demographics, patient outcomes, and individual medication components of the MRC-ICU 

were extracted from the electronic medical record system. The study data included a total of 

130 MICU patients ≥18 years of age. Patients were excluded for an ICU length of stay 

(LOS) of less than 24 hours in the MICU, active transfer, or change in code status to hospice 

at 24 hours.7

MRC-ICU Scoring Tool

The MRC-ICU is an objective, quantitative scoring tool that describes the relative 

complexity of medication regimens in critically ill patients.12 The score consists of 39 

components of different medication therapies (eg, vancomycin, aminoglycosides, heparin) 

and includes a weighted scoring system for the relative complexity of each individual agent 

(eg, vancomycin is weighted as 3 points, whereas a continuous infusion of crystalloid fluids 

is weighted as 1 point). The MRC-ICU scoring table is included in the online material 

(Supplemental Table 1, available online). Although the MRC-ICU can be scored at any time, 

evaluation at the 24-hour interval is the most studied and is used in the present study. The 

score has undergone validation testing for both internal and external validity, criterion-

related validity, test-retest reliability, interrater reliability, and convergent-and divergent-

related validity. The complete analytic algorithm has been reported elsewhere.7

Machine Learning Models

The data set has a total of 50 variables, which include patient demographics, admission 

information, and medication record (refer to summary Table 1 and Results section). For 

simplicity, the original variable “diagnosis at admission” was recoded into 6 categories: 

infection, gastrointestinal bleeding (GI_bleed), respiratory failure/distress 

(respiratory_dysfunction), substance overdoses, sepsis, and others. Three ML models are 

proposed:

Model I (Base model): This model included variables—namely, age, gender, 

admission weight, diagnosis at admission, LOS, home medications, total medications 
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at 24 hours, and the APACHE III score. Medication regimens and MRC-ICU scores 

were omitted from this model.

Model II (Medication complexity model): This model included model I variables 

with the addition of each individual medication as a binary variable. The MRC-ICU 

score was omitted from this model. In this case, medications were not weighted as 

they are in the MRC-ICU score.

Model III (MRC-ICU model): This model included model I variables as well as the 

MRC-ICU score at 24 hours.

Model Development and Statistical Analysis

For each model, 6 classifiers were developed and tested: support vector machine (SVM),20 

naive Bayes (NB),21 a sample-based classifier k-nearest neighbor (KNN),22 the decision tree 

classifiers classification random forest (RF),21 neural network (NN),22 and logistic classifier 

(LC).23 These classification algorithms were chosen for their simplicity in implementation 

and interpretation. In brief, LC is the baseline supervised ML classification method, which 

estimates the probability of class membership in combination with a decision rule that 

makes dichotomous outcome; an NB classifier is a simple algorithm for classifying data 

based on the Bayes theorem, where it assumes that the presence of a particular feature in a 

class is unrelated to the presence of any other feature; a KNN classifier is a simple algorithm 

that stores all available cases and classifies new cases based on the assumption that similar 

things exist in close proximity, where it uses a similarity measure such as distance; RF is a 

tree-based supervised algorithm that identifies mutually exclusive subgroups that share 

similar important predictors of the outcome of interest through a series of binary recursive 

partitioning; an SVM classifier is a nonprobabilistic binary linear classifier where a 

hyperplane separates data across a decision boundary (plane) determined by only a small 

subset of the data called feature vectors in a 2-dimensional space; a NN classifier mimics the 

learning process occurring in human brains, where it consists of parameters, often called 

neurons, arranged in layers, which convert an input vector into some output (classes).20–23 R 

package caret was used for LC, NB, and KNN; e1071 for RF and SVM; and nnet for NN.

During data preparation, a single imputation approach was used to impute the 3 missing 

values for the variable APACHE score. Imputation was performed using mice functionality 

from the mice package.23 We assessed the correlation as pairwise variables using the 

Pearson correlation coefficient, whereas multicollinearity among the independent variables 

was tested using the Farrar-Glauber test for each model.24 None of the variables revealed 

multicollinearity. The data set was randomly segregated into training (80% of total data set) 

and test data (20% of total data set). The automatic grid search algorithm from the caret 
package was utilized to find the ML algorithm with the strongest predictive abilities. For the 

KNN classifier, optimal number of clusters (k = 5) were utilized for 3 models, and RF was 

built using mtry = 5’. For SVM, the tuning was performed using the tune function and 

determined the fixed cost function as 4 and cost = 4, with gamma as 0.0625. For NN, the 

parameters chosen were size = 4, decay = 0.0001, and maxit = 500.

In determining the optimal classification results, k-fold cross-validation (k = 10) was 

estimated for 10 repetitions. Area under the receiver operator characteristics curve (AUC) 
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was selected as an overall performance measure because it provides an efficient measure 

independent of the class sizes and the classification threshold.25 Additional metrics included 

were sensitivity (Se; ability of the classifier to correctly classify an individual as dead at 

inpatient), specificity (Sp; ability of the classifier to correctly classify an individual as alive 

at inpatient), positive predictive value (PPV; it is the probability that, following a mortality 

prediction, the sample is truly deceased) and negative predictive value (NPV; it is the 

probability that the sample is truly alive). A 95% CI was calculated for each metric, and the 

results for 6 classifiers are developed and tested for a single-train data split for each model. 

After that, the top 3 classifiers were tested using over 100 random train-test splits to produce 

estimates of the mean and SD of the classifier’s performance. All analyses were performed 

using R (R Core Team, 2019), and figures were produced using the package ggplot2.26

Results

A total of 130 patients were included. Demographic information has been published 

previously, but in summary, patients were 54% female with an average age of 57.9 (SD = 

±14.6) years. A large proportion of patients survived the ICU admission (79%) and 

underwent mechanical ventilation (60%).1 The diagnosis of respiratory failure and sepsis 

accounted for (50%) of ICU admissions. The total number of medication orders were 3985 

(average ± SD: 30 ± 12 per patient), and the total number of medications administered were 

2171 (average ± SD: 16.7 ± 5.19 per patient). The majority of the medications prescribed at 

the 24-hour interval were restricted antimicrobials (70%), opioids, and sedatives (77%). 

Demographic characteristics and medication classes are summarized in Table 1.

Tables 2, 3, and 4 present the performance measures of the 6 ML algorithms after a single-

train data split for model I, model II, and model III, respectively. Precision/PPV was defined 

as percentage of patients predicted to die who did die during the inpatient stay. In model I, 

LC outperformed the other classifiers with a precision of 98% and a 94% overall prediction 

accuracy for patient death. Moreover, LC correctly classified patients who died with a Se of 

93% (see Figure 1A and Table 2). Notably, all classifiers including LC were able to predict 

that patients did not die during the inpatient stay (NPV) on average at a rate of 62%, with a 

wide range of predictive values. The APACHE score (Admi_APACHE) calculated during 

the admission was identified as the most important feature (see Supplemental Figure 1, 

available online) for the top 4 classifiers (LC, KNN, NB, RF), ranked based on precision.

When incorporating medication regimens as binary variables in model II, the LC classifier 

maintained the overall accuracy, remaining the same; however, Se (see Figure 1B) and NPV 

values improved significantly (see Table 3). Moreover, LC provided lower precision and 

specific values as compared with model I. The medication regimen variables such as 

intravenous vancomycin, restricted antimicrobials, and therapeutic heparins are seen in the 

top 5 important features (see Supplemental Figure 2) for the top 4 classifiers (LC, KNN, NB, 

RF, ranked based on precision).

In model III, adding the MRC-ICU score improved the CIs for Se (95% CI = 0.86–0.99), Sp 

(95% CI = 0.52–1.00), and precision (95% CI = 0.87–1.00), and overall NPV = 0.67 (95% 

CI = 0.22,0.96), when compared with model I and model II for LC algorithms (see Figure 
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1C). The variable importance plot denotes that the MRC-ICU (labeled: MRC_score) was the 

second most important feature in prediction of inpatient mortality for all 4 classifiers (LC, 

KNN, NB, and RF; see Supplemental Figure 3).

To address overfitting for model III, 100 random train-test splits were executed for the top 3 

classifiers (LC, NB, and KNN). Table 5 presents a summary of the performance metric 

results. The LC classifier outperformed both the NB and KNN algorithms for predicting 

inpatient mortality in terms of overall accuracy (83%), Se (87%), and NPV (46%). However, 

KNN provided the highest precision (98%) when compared with either the LC (92%) or NB 

(95%) classifiers. Furthermore, KNN outperformed regarding the Sp (75%) when compared 

with the LC (67%) and NB (60%) classifiers. The feature importance table identifies the 

admission APACHE III scores to be the most important feature, and the MRC-ICU score at 

24 hours also was identified to be within the top 3 most important features for all 3 

classifiers (see Table 6).

Discussion

In this first study to evaluate medication regimen complexity as a mortality predictor, the 

addition of the MRC-ICU scoring tool improves on traditional mortality prediction measures 

when added to a ML algorithm. Furthermore, these results corroborate previous findings in 

which the MRC-ICU scoring tool is closely correlated with patient characteristics (ie, 

APACHE III score) and patient outcomes (ie, inpatient mortality and LOS).1,2 Overall, these 

results support the hypothesis in which the medication regimen complexity tool is a 

predictor of mortality through the addition of medication information to model II and the 

incorporation of the MRC-ICU in model III. Both models II and III demonstrate improved 

performance when compared with an APACHE III score–driven model I. Prior to 

implementation of the tool at a patient care level, the development and utilization of a ML 

algorithm is required to investigate overall utility.

Six ML classification algorithms were developed to classify inpatient mortality using 3 

model constructs, with the best (eg, most closely correlated) 3 algorithms chosen. When 

incorporating medications into model II, an improved prediction occurred in comparison to 

model I. The results of a performance measurement utilizing 100 random train-test splits 

identified that the use of the LC classifier provided a stronger correlation of inpatient 

mortality prediction while providing similar overall accuracy when compared with the NB 

and KNN classifiers. The variable importance plots for 3 models demonstrate that the 

APACHE score at admission was the most important feature. To further investigate, a 

submodel analysis utilizing model I was created omitting the APACHE score. For this 

submodel, LC showed 85% precision (PPV) and Se, where overall accuracy was 75% (see 

Supplemental Table 2). Moreover, KNN also provided similar Se and precision; however, all 

the classifiers underperformed (see Supplemental Figure 4) when compared with model III. 

Notably, the MRC_score_24h is the most important variable for all top classifiers (KNN, 

NB, RF, and LC; see Supplemental Figure 5). In total, these exercises confirmed that adding 

the analytic medication regimen complexity scores improved the prediction of patient 

outcomes.
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Historically, LC, NB, KNN, and decision tree (RF) classifiers have been used in a multitude 

of applications for clinical decision making.14,16,27,28 Furthermore, SVM and NN are 

considered state-of the-art ML algorithms for classification.29 Utilizing these 6 classifiers, 

the 3 most strongly correlated classifiers were chosen with consideration of the best 

predictive receiver operating characteristic (ROC) curves and computational complexity 

reduction (LC, KNN, and NB, listed in order of decreasing ROC curve in Figure 1). Notably, 

the LC often provides appropriate baseline prediction unless the classification task requires 

complex decision boundaries (eg, SVM and NN). In the setting of increasing the variance in 

the explanatory and noise variables, LC consistently performed with higher overall accuracy 

as compared with RF.30 SVM, NN, and RF were excluded because of multiple feasibility 

considerations. First, NN outperformed the LC classifier in large data sets; however, the 

present data set is limited by size and number of features. Second, SVMs prefer high-

dimensional data because of a linear separation. SVMs are easy to locate and were 

successful for predicting breast cancer,31,32 substrates of the breast cancer resistance protein,
33 and chemotherapy resistance.34 Furthermore, the possibility exists that more cross-

validation and complex feature engineering methods are required to obtain the best 

prediction accuracy using small data sets. Notably, choosing an optimal classifier is not a 

one-size-fits-all solution and depends on which individual metrics (eg, AUC, Se, Sp, PPV, 

and NPV) are required by the classification task.

Whereas patient acuity and medication regimen complexity are intertwined (eg, more acute 

patients often require more robust and intensive pharmacotherapy regimens), these results 

prove that they are not interchangeable factors, which has novel implications when applied 

at the bedside. First, the MRC-ICU is a potentially modifiable risk factor for reducing 

adverse patient outcomes. The utility of applying a weighted scoring tool over general 

inclusion of the sum of medication orders or individual medications (eg, vancomycin 

attributed weighted score of 3 points as opposed to simply presence or absence) lends 

credence to the concept that specialized content knowledge of medication therapy has the 

potential to improve outcomes. Application of high-level content knowledge by critical care 

pharmacists is an intriguing approach. Historically, critical care pharmacists have been 

identified as vital members of the interdisciplinary team because of various outcome 

improvements; however, the mechanism of their benefit and how to maximize their value are 

key knowledge gaps.35 These findings pose a unique hypothesis bridging pharmacist activity 

(measured as interventions) to patient outcomes (eg, mortality, LOS) through the mitigation 

of medication regimen complexity. Furthermore, MRC-ICU’s specific orientation toward 

pharmacists as a resource allows for prediction of pharmacist interventions, which has been 

previously established as correlating to the MRC-ICU.1,2 Algorithm-based prediction of 

pharmacist interventions (a measurement of workload) could then be translated to both times 

needed for patient care and the quantity of patients cared for during a customary 8-hour 

shift, which ultimately translates to a pharmacist-to-patient ratio. Indeed, provider-to-patient 

ratio is a known modifiable factor that improves outcomes, but no pharmacist-to-patient ratio 

has been established for critically ill patients. A previous evaluation noted that a majority of 

pharmacists care for >30 patients daily, which was associated with perceptions of reduced 

safety and, a priori, is likely too many patients to achieve optimal pharmacist-mediated 

patient benefit.35 Although the present study is unable to answer these questions because of 
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lack of pharmacist intervention data and sample size, these results are a vital first step in the 

optimization of an underutilized resource known to improve patient outcomes.35

This study has several limitations. First, the selected best classifiers can predict the inpatient 

mortality on average 90%, whereas their NPV values are <50%. This low NPV may be the 

result of a small sample size and type of included data. Indeed, these ML models may be 

enhanced by including more detailed hourly data of patient physiological status (eg, vital 

signs, continuous infusion medications). Second, the excluded classifiers (SVM, NN, and 

RF) require appropriate feature selection algorithms (eg, SVM with backward feature 

selection (SVM-BW), SVM with forward feature selection (SVM-FW)), and larger sample 

sizes are required to improve the prediction performance. The current MRC-ICU scoring 

tool considers all medications within a predefined 24-hour period and is thus a static 

measurement of complexity. Finally, the single-center data used here limit external validity, 

and implementation of feature selection algorithms in multicohort data sets will be required. 

We recognize that the ideal tool is likely a clinically applicable electronic health record 

dashboard incorporating both real-time MRC-ICU values and detailed individual patient 

information that would result in individualized predictions for pharmacist interventions and 

patient outcomes. Overall, these results are highly promising given high performance with a 

relatively small data set and previously published data demonstrating external validity of the 

MRC-ICU for other clinical outcomes.

Conclusion and Relevance

A ML algorithm that includes traditional prediction measures (ie, APACHE III) with the 

added dimension of medication regimen complexity with the MRC-ICU scoring tool 

improves the ability to predict mortality in critically ill patients. This novel, proof-of-

concept methodology sets the stage for incorporation of more data into ML models to both 

predict further patient outcomes (eg, LOS, duration of mechanical ventilation) and also 

pharmacist allocation metrics (eg, pharmacist interventions and workload).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Performance matrix of the machine learning algorithms for predicting mortality among 

critically ill patients using 3 different model setups. Model I: base model without medication 

regimen complexity and MRC-ICU values at 24 hours; model II: model I + medication 

regimen complexity; and model III: model I + MRC-ICU values at 24 hours.

Abbreviations: KNN, k-nearest neighbor; LC, logistic classifier; MRC-ICU, Medication 

Regimen Complexity–intensive care unit; NB, naive Bayes; NN, neural network; RF, 

random forest; SVM, support vector machine.
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Table 1.

Baseline Demographics of the Study Population and Description of the Medication Regimens.

Characteristics Value

Age (min, mean, max), years (21, 78, 85)

Gender (%)

 Male 46

 Female 54

Admission weight (min, mean, max), kg (32, 85, 250)

Diagnosis at admission (%)

 Sepsis 20

 Respiratory problems 30

 Infection 12

 GI bleed 5

 Substance overdose 5

 Others (DKA, SIRS, cardiogenic shock, NSTEMI, etc) 28

Length of ICU stays (min, mean, max), days (2, 5.7, 26)

Mortality (%)

 Alive 79

 Died 21

Home medications at hospital admission (%)

 0 = 0–4 29

 1 = 5–10 45

 2 = 11+ 26

Total number of medication orders at 24 hours (min, mean, max) (10, 31, 69)

Total medications at 24 hours (min, mean, max) (6, 17, 30)

MRC-ICU scoring tool components (%)

 Aminoglycosides 5

 Antiarrhythmics 4

 Anticonvulsants 6

 Therapeutic heparins 22

 Vancomycin (IV) 58

 Continuous infusions (excludes those listed elsewhere) 69

 Thromboembolic prophylaxis (exclude heparin infusion, enoxaparin) 56

 Stress ulcer prophylaxis (excludes pantoprazole infusion) 76

 Glycemic control (subcutaneous insulin, excludes IV insulin) 34

 Bowel regimen 22

 Chlorhexidine 48

 Opioids/sedatives (scheduled and PRN) 77

 Continuous opioid/sedative infusions (propofol, fentanyl, dexmedetomidine, ketamine, benzos) 58

 Antimicrobials (includes HIV medications, excludes those listed elsewhere) 43

 Restricted antimicrobials (includes PR vancomycin) 70

 Dialysis 19
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Characteristics Value

 Mechanical ventilation 60

 Others
a 10

Abbreviations: DKA, diabetic ketoacidosis; GI, gastrointestinal; ICU, intensive care unit; IV, intravenous; max, maximum; min, minimum; MRC-
ICU, Medication Regimen Complexity–ICU; NSTEMI, non–ST-elevation myocardial infarction; SIRS, systemic inflammatory response syndrome.

a
Anticoagulants (1%), azole antifungals (1%), chemotherapy (1%), digoxin (1%), theophylline (1%), TPN (nonpharmacist managed, 2%), 

immunosuppressants (3%), warfarin (3%).
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