Skip to main content
. Author manuscript; available in PMC: 2022 Apr 1.
Published in final edited form as: Ann Pharmacother. 2020 Sep 15;55(4):421–429. doi: 10.1177/1060028020959042

Table 6.

Feature Importance Given by the Top 3 Classifiers, Evaluated Over 100 Train-Test Data Splits for Model III.a

Importance (classifiers) Rank
Features KNN NB LC KNN NB LC
Age 0.57 (0.03) 0.57 (0.03) 0.49 (0.37) 4 4 8
Gender 0.54 (0.03) 0.54 (0.02) 0.97 (0.53) 5 5 6
Admi_weight 0.53 (0.02) 0.53 (0.02) 1.45 (0.58) 6 6 4
Admi_APACHE 0.76 (0.03) 0.76 (0.03) 3.61 (0.25) 1b 1b 1b
Tot_orders_24h 0.60 (0.03) 0.60 (0.03) 0.49 (0.44) 3b 3b 7
Tot_medica_24h 0.53 (0.02) 0.53 (0.02) 1.26 (0.57) 7 7 5
Mecha_ventilation 0.53 (0.02) 0.53 (0.02) 2.25 (0.41) 8 8 2b
MRC_score_24h 0.65 (0.03) 0.65 (0.03) 1.82 (0.42) 2b 2b 3b

Abbreviations: 24h, 24 hours; Admi, admission; KNN, k-nearest neighbor; LC, logistic classifier; Mecha, mechanical; MRC-ICU, Medication Regimen Complexity–intensive care unit; NB, naive Bayes; Tot_medica, total medication.

a

Importance values are presented as raw values as mean (SD).

b

Top 3 features (1, 2, and 3, respectively).