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ABSTRACT

Background. The mitochondrial genome (mitogenome) has been extensively used for
phylogenetic and evolutionary analysis in Diptera, but the study of mitogenome is still
scarce in the family Chironomidae.

Methods. Here, the first complete mitochondrial genomes of four Chironomid
species representing Diamesinae, Orthocladiinae, Prodiamesinae and Tanypodinae are
presented. Coupled with published mitogenomes of two, a comparative mitochondrial
genomic analysis between six subfamilies of Chironomidae was carried out.

Results. Mitogenomes of Chironomidae are conserved in structure, each contains 37
typical genes and a control region, and all genes arrange the same gene order as the
ancestral insect mitogenome. Nucleotide composition is highly biased, the control
region displayed the highest A + T content. All protein coding genes are under purifying
selection, and the ATP8 evolves at the fastest rate. In addition, the phylogenetic analysis
covering six subfamilies within Chironomidae was conducted. The monophyly of
Chironomidae is strongly supported. However, the topology of six subfamilies based on
mitogenomes in this study is inconsistent with previous morphological and molecular
studies. This may be due to the high mutation rate of the mitochondrial genetic markers
within Chironomidae. Our results indicate that mitogenomes showed poor signals in
phylogenetic reconstructions at the subfamily level of Chironomidae.

Subjects Entomology, Evolutionary Studies, Genomics, Molecular Biology, Zoology
Keywords Chironomidae, Diptera, Mitogenome, Phylogeny

INTRODUCTION

The typical mitochondrial genome (mitogenome) of insects is a double-strand circular
molecule ranging from 14kb to 20kb in size, which encodes 37 genes (13 protein-coding
genes, two ribosomal RNA genes, and 22 transfer RNA genes) and a control region
(Boore, 1999; Cameron, 2014; Wolstenholme, 1992). Due to its small genome size, maternal
inheritance, low sequence recombination, and fast evolutionary rates (Brown, George ¢
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Wilson, 1979; Curole ¢ Kocher, 1999), the mitogenome is considered as powerful marker
for phylogenetic and evolutionary analysis (Condamine et al., 2018; Jacobsen et al., 2012;
Stokkan et al., 2018; Tang et al., 2019b). Due to high-throughput sequencing technology,
an increasing number of complete mitogenomes have been sequenced among the Diptera,
covering most families (Kang, Li ¢ Yang, 20165 Li et al., 2020; Miao et al., 2020; Ramakodi
et al., 2015; Tang et al., 2019a). Mitogenomes have been widely used for mitochondrial
structure comparison and phylogenetic analysis at different taxonomic level of the Diptera
(Chen et al., 2018; De Oliveira Aragao et al., 2019; Miao et al., 2020; Yan et al., 2019; Zhang
et al., 2016; Zhang et al., 2019b). However, complete mitogenomes are still scarce for the
family Chironomidae, which limits our understanding of their mitochondrial structure and
phylogenetic pattern. In addition, it is still unknown whether mitogenomes can effectively
resolve phylogenetic relationships at the subfamily level within Chironomidae.

The dipteran family Chironomidae is a diverse aquatic insect group, and are important
bioindicators for freshwater ecosystem monitoring. Within Chironomidae, several
phylogenetic studies have been conducted based on morphological characters or combining
genetic markers to reconstruct the evolutionary history of subfamilies (Cranston, Hardy
& Morse, 20125 Seether, 1977), but no one has attempted to use mitogenomes. Prior to
this study, only five mitogenomes of Chironomidae were available (Beckenbach, 2012;
Deviatiiarov, Kikawada & Gusev, 2017; Kim, Kim & Shin, 2016; Park et al., 2020; Zhang et
al., 2019a), representing species from three subfamilies: Chironominae, Podonominae,
and Prodiamesinae. However, comparative analysis of mitogenome structure, base
composition, substitution and evolutionary rates among subfamilies has not been carried
out. In addition, the monophyly of Chironomidae has not been supported by a recent
study using mitogenomes of Culicomorpha (Zhang et al., 2019b).

In the present study, we provide complete mitogenomes for four species representing
the subfamilies Diamesinae, Orthocladiinae, Prodiamesinae, and Tanypodinae. Along
with the published mitogenomes of subfamilies Chironominae and Podonominae,
the first comparative analysis of the genome structure, base composition, substitution
and evolutionary rates among six chironomid subfamilies is presented. In addition, a
phylogenomic analysis covering six chironomid subfamilies was carried out.

MATERIALS & METHODS

Taxon sampling

Complete mitogenomes of six chironomid species (Appendix S1), representing six
subfamilies, were analyzed in this study, with two ceratopogonid species used as outgroups.
The mitogenomes of four non-biting midge species, Potthastia sp. (Diamesinae),
Rheocricotopus villiculus (Orthocladiinae), Prodiamesa olivacea (Prodiamesinae) and
Clinotanypus yani (Tanypodinae) are documented for the first time. The mitogenomes
of Chironomus tepperi (Chironominae) and Parochlus steinenii (Podonominae) were
retrieved from GenBank (Beckenbach, 2012; Kim, Kim ¢ Shin, 2016). The mitogenome
of Propsilocerus akamusi (MIN566452) (Zhang et al., 2019a) was excluded from the
present study because it is incomplete and lacks annotation. In addition, two species
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Table 1 Taxonomic information, sampling metadata, GenBank accession numbers and references of mitochondrial genomes used in the study.

Family Subfamily Species Life stage Sampling metadata Accessionno  Reference
Ceratopogonidae  Ceratopogoninae Culicoides NC_009809 Matsumoto et al. (2009)
arakawae
Ceratopogonidae Forcipomyiinae Forcipomyia Makan, Zunyi, Guizhou, MKO000395 Jiang et al. (2019)
makanensis China, 27.630765°N,
106.848949°E
Chironomidae Chironominae Chironomus JN861749 Beckenbach (2012)
tepperi
Chironomidae Diamesinae Potthastia sp. ~ Adult male ~ Wuying, Yichun, MW373523 This study
Heilongjiang, China,
48.0869°N, 129.2470°E,
27-Jui-2016, leg. C. Song
Chironomidae Orthocladiinae Rheocricotopus  Adult male  Tianmu Mountain MW373526 This study
villiculus National Nature Reserve,
Hangzhou, Zhejiang,
China, 30.3222°N,
119.442°E, 22-Jul-2019, leg.
X.-L. Lin
Chironomidae Podonominae Parochlus King George Island, West, KT003702 Kim, Kim & Shin (2016)
steinenti Antarctica, 62.2333°S,
58.7833°W, summer in
2015
Chironomidae Prodiamesinae Prodiamesa Larva Jiuzhaigou Valley Scenic MW373525 This study
olivacea and Historic Interest Area,
Sichuan, China, 33.1928°N,
103.8942°E, 12-Jul-2019,
leg. X.-Y. Ge
Chironomidae Tanypodinae Clinotanypus ~ Adultmale  Jiulongshan Nature MW373524 This study
yani Reserve, Guangyuan,

Sichuan, China,
31.976379°N,
106.035644°E, 8-Aug-2017,
leg. C. Song

of Ceratopogonidae (Culicoides arakawae and Forcipomyia makanensis) (Jiang et al.,
2019; Matsumoto et al., 2009) were selected as outgroups for phylogenetic analyses since
Ceratopogonidae was strongly supported as the sister group of Chironomidae in previous
studies (Kutty et al., 2018). Detailed taxon sampling information is listed in Table 1. The
vouchers of the newly sequenced species are deposited at the college of Life Sciences,
Nankai University, Tianjin, China.

DNA extraction, sequencing and assembling

For the newly sequenced species, total genomic DNA was extracted from the body, (except
abdomen and genitalia) using a General AllGen Kit (Qiagen, Germany). The entire
mitogenome of each species were sequenced using the Illumina NovaSeq 6000 platform

Zheng et al. (2021), PeerJ, DOI 10.7717/peerj.11294

317


https://peerj.com
http://www.ncbi.nlm.nih.gov/nuccore/NC_009809
https://www.ncbi.nlm.nih.gov/nucleotide?term=MK000395
https://www.ncbi.nlm.nih.gov/nucleotide?term=JN861749
https://www.ncbi.nlm.nih.gov/nucleotide?term=MW373523
https://www.ncbi.nlm.nih.gov/nucleotide?term=MW373526
https://www.ncbi.nlm.nih.gov/nucleotide?term=KT003702
https://www.ncbi.nlm.nih.gov/nucleotide?term=MW373525
https://www.ncbi.nlm.nih.gov/nucleotide?term=MW373524
http://dx.doi.org/10.7717/peerj.11294

Peer

with an insert size of 350-bp and a paired-end 150-bp sequencing strategy by the Allwegene
Company and Novogene Co., Ltd. at Beijing, China. About 2 Gb clean data were obtained
from each library after trimming using Trimmomatic (Bolger, Lohse & Usadel, 2014).

To ensure the accuracy of the mitogenome sequences, three frequently used assembly
methods were applied to each sample. A de novo assembly was performed using IDBA-UD
(Peng et al., 2012) with minimum and maximum k values of 40 and 120 bp, respectively.
Two reference based assemblies were performed using Geneious 2020.2.1 (Kearse et al.,
2012) with default setting and MITObim 1.9 (Hahn, Bachmann ¢ Chevreux, 2013). The
mitogenome sequences obtained by the three methods were aligned, manually compared,
and finally compiled into a single sequence in Geneious 2020.2.1 (Kearse et al., 2012).

Genome annotation, composition and substitution rate

Genome annotation was conducted as previously described in Zheng et al. (2020).
Specifically, the transfer RNA (tRNA) genes and their secondary structures were detected by
MITOS2 webserver (http://mitos2.bioinf.uni-leipzig.de/index.py) (Bernt et al., 2013) with
invertebrate mitochondrial genetic code. The ribosomal RNA (rRNA) genes were predicted
by alignment with homologous regions of mitogenome from closely related species. Protein
coding genes (PCGs) were initially annotated using the Open Reading Frame Finder (ORF
Finder) as implemented at the NCBI website (https://www.ncbi.nlm.nih.gov/orffinder/)
and then compared with published mitogenomes of insects using the program BLAST
(http://blast.ncbi.nlm.nih.gov/Blast.cgi). Newly sequenced mitogenomes were submitted
to GenBank (accession numbers: MW373523-MW373526).

CGView Server V 1.0 (Grant & Stothard, 2008) was used to draw mitogenome maps.
Codon usage of PCGs and nucleotide composition were calculated in MEGA X (Kumar et
al., 2018). The bias of the nucleotide composition was measured according to the formulas:
AT-skew = (A—T)/(A+T) and GC-skew = (G—C)/(G+C). Rates of non-synonymous
substitution rate (Ka) and synonymous substitution rate (Ks) were calculated in DnaSP
6.12.03 (Rozas et al., 2017).

Phylogenetic analyses

Phylogenetic analyses were conducted using the sequences of 13 PCGs and two rRNAs.
The PCGs were aligned based on amino acid sequences using Muscle implemented in
MEGA X (Kumar et al., 2018). The rRNAs were aligned using MAFFT 7.402 (Katoh &
Standley, 2013) with algorithm G-INS-i strategy. Alignments of individual genes were then
concatenated using SequenceMatrix v1.7.8 (Vaidya, Lohman ¢ Meier, 2011) to generate
five datasets: PCG123 (all three codon positions of the 13 PCGs), PCG123R (all three
codon positions of the 13 PCGs and two rRNAs), PCG12 (the first and second codon
positions of the 13 PCGs), PCG12R (the first and second codon positions of the 13 PCGs
and two rRNAs), and AA (amino acid sequences of the 13 PCGs). To test substitution
saturation, transition and transversion rates were evaluated by DAMBE 5.6.14 (Xia,
2013). The program PartitionFinder 2.0 (Lanfear et al., 2017) was used to infer the best
substitution model (Table S1). The analysis of Bayesian inference (BI) and maximum
likelihood (ML) were conducted for each dataset. The BI analyses were performed under
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the program MrBayes 3.2.7a (Ronquist et al., 2012) with partitioned models (Table S1).
Two simultaneous Markov chain Monte Carlo (MCMC) runs of 10,000,000 generations
were conducted, trees were sampled every 1000 generations with a burn-in of 25%. The
program Tracer 1.7 (Rambaut et al., 2018) was used to assess the convergence of runs. The
ML analyses were conducted using the program RAxML 8.0.12 (Stamatakis, 2014) under
the substitution model GTR +GAMMA +1. The nodal support values were calculated with
1,000 bootstrap replicates.

RESULTS

Mitogenome organization and composition

The complete mitogenomes of Chironomus tepperi, Potthastia sp., Rheocricotopus villiculus,
Parochlus steinenii, Prodiamesa olivacea, and Clinotanypus yani are 15,652, 15,913, 15,985,
16,803, 16,190, and 16,247 bp in size, respectively (Fig. 1; Appendix S2). They are circular
molecules, each containing 37 typical mitochondrial genes (13 PCGs, two rRNAs, and
22 tRNAs) and one control region. Among these genes, four PCGs (ND1, ND4, ND4L,
and ND5), eight tRNAs (trnC, trnF, trnH, trnL (UAG), trnP, trnQ, trnV, and trnY), and
two rRNAs (12S rRNAs and 16S rRNAs) are encoded by the minority strand (N strand),
while the other 23 genes are located in the majority strand (J strand). ATP8-ATP6 and
ND4L-ND4 overlap by seven nucleotides (ATGATAA and ATGTTAA, respectively) in all
six Chironomidae species.

Nucleotide composition (Table 2) of the six Chironomidae species is similar, with a
high A+T bias (72.4%-76.8%), the control region has the highest A+T content while
the first and the second codon positions of PCGs have the lowest A+T content. All six
Chironomidae species exhibited negative AT-skew and GC-skew. All three codon positions
of PCGs had negative AT-skew, the GC-skew of the first codon position was positive, while
the 2nd and the 3rd codon position were negative. Some gene regions exhibited different
nucleotide skew among the six Chironomidae species. For example, in 12S rRNA, the
AT-skew of Chironomus tepperi and Clinotanypus yani are —0.01 and 0.00 respectively,
while the AT-skew are positive (0.01-0.05) in the remaining four species.

Protein coding genes

Among Chironomidae species, most PCGs initiate with the standard start codon ATN.
The start codon of COI was TTG in Chironomus tepperi, Potthastia sp., Rheocricotopus
villiculus and Prodiamesa olivacea. The start codon of ND5 in Chironomus tepperi, Potthastia
sp., Rheocricotopus villiculus, Prodiamesa olivacea and Clinotanypus yani was GTG. ND1
started with TTG in Potthastia sp., Rheocricotopus villiculus, Parochlus steinenii, Prodiamesa
olivacea, and Clinotanypus yani. Most PCGs have complete termination codons (TAA
or TAG), however, COII in Parochlus steinenii and Clinotanypus yani has an incomplete
termination codon (T-).

Total codon number (except the termination codons) in Chironomus tepperi, Potthastia
sp., Rheocricotopus villiculus, Parochlus steinenii, Prodiamesa olivacea, and Clinotanypus
yani were 3,730, 3,743, 3,726, 3,729, 3,729, and 3,709, respectively. The most frequently
codon families are Ile, Leu2, and Phe (>300), while the least used codon family is Cys (<50)
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Figure 1 Mitogenome maps of Chironomus tepperi (A), Potthastia sp. (B), Rheocricotopus villiculus
(C), Rheocricotopus villiculus (D), Prodiamesa olivacea (E), Clinotanypus yani (F). The names of PCGs
and rRNAs are indicated by standard abbreviations, while names of tRNAs are represented by a single let-
ter abbreviation. The first circle shows the gene map and arrows indicate the orientation of gene transcrip-
tion. Blue arrows refer to PCGs, purple arrows refer to rRNAs, red arrows refer to tRNAs and grey arrow
refers to control region. The second circle shows the GC content, which is plotted as the deviation from
the average GC content of the entire sequence. The third circle shows the GC-skew, which is plotted as

the deviation from the average GC-skew of the entire sequence. The innermost circle shows the sequence
length.

Full-size Gl DOI: 10.7717/peer;j.11294/fig-1

in all six Chironomidae species (Fig. 2). The relative synonymous codon usage (RSCU)

patterns among the six Chironomidae species are similar. The RSCU values are showed

in Fig. 3. All synonymous codons of 20 amino acids are present. The most frequent used
codons are NNU and NNA for each amino acid (Fig. 3).
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Table 2 Nucleotide composition of mitochondrial genomes of the six Chironomidae species.

Species Whole Protein  First Second Third tRNA 128 16S Control
genome  coding codon codon codon genes rRNA rRNA region
genes position  position  position
Chironomus tepperi 76.7 74.3 67.6 67.6 87.6 79.0 82.6 84.3 93.0
Potthastia sp. 76.8 74.7 69.0 66.1 88.9 76.8 78.1 82.7 93.3
A+T% Rheocricotopus villiculus 77.3 74.4 69.6 67.4 86.0 79.5 84.1 84.4 93.7
Parochlus steinenii 72.4 69.0 64.6 64.7 77.5 73.2 76.4 80.1 85.5
Prodiamesa olivacea 75.8 73.4 66.7 65.5 88.2 76.2 78.1 81.9 89.2
Clinotanypus yani 75.0 72.5 65.4 65.1 87.0 75.7 79.1 81.3 88.7
Chironomus tepperi —0.14 —0.20 —0.09 —0.41 —0.13 0.03 —0.01 0.00 —0.11
Potthastia sp. —0.13 —0.20 —0.10 —0.39 —0.12 0.03 0.01 0.04 —0.05
AT-Skew Rheocricotopus villiculus ~ —0.12 —0.18 —0.09 —0.40 —0.08 0.02 0.01 0.05 —0.07
Parochlus steinenii —0.11 —0.19 —0.09 —0.40 —0.11 0.04 0.05 0.03 0.06
Prodiamesa olivacea —0.12 —0.19 —0.10 —0.40 —0.09 0.03 0.04 0.01 0.02
Clinotanypus yani —0.13 —0.19 —0.10 —0.39 —0.10 0.02 0.00 0.03 —0.08
Chironomus tepperi —0.06 —0.02 0.19 —0.18 —0.12 —0.13 —0.37 —0.36 —0.43
Potthastia sp. —0.03 0.02 0.27 —0.16 —0.15 —0.12 —0.24 —0.28 —0.31
GC-Skew Rheocricotopus villiculus —0.04 —0.01 0.25 —0.18 —0.17 —0.09 —0.23 —0.34 —0.19
Parochlus steinenii —0.04 —0.01 0.21 —-0.17 —0.10 —0.06 —0.21 —0.26 —0.18
Prodiamesa olivacea —0.04 0.00 0.25 —0.16 —0.21 —0.09 —0.24 —0.29 —0.16
Clinotanypus yani —0.06 0.00 0.24 —0.18 —0.18 —0.12 —0.28 —0.34 —0.39
600 -
W Chironomus tepperi
W Potthastia sp.
500
Rheocricotopus villiculus
B Parochius steinenii
400 -
B Prodiamesa olivacea
W Clinotanypus yani
300 -
200 -
100 A

Ala Arg Asn Asp Cys GIn Glu Gly His lle LeulLeu2 Lys Met Phe Pro Ser1Ser2 Thr Trp Tyr Val

Figure 2 Patterns of codon usage of the six mitogenomes of six chironomid subfamilies. The X -axis
shows the codon families and the Y -axis shows the total codons.
Full-size Gl DOI: 10.7717/peerj.11294/fig-2

The Ka/Ks value (w) was used to test for signatures of natural selection (Cheng et al.,
2018; Hu ¢ Banzhaf, 2008). The w value of all PCGs are less than 0.6. Among the 13 PCGs,
ATP8 has the largest w value, indicating that ATP8 evolves at the fastest rate. The animal
DNA barcoding gene COI has the lowest o value (Fig. 4).
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Figure 3 The relative synonymous codon usage (RSCU) in the six mitogenomes of six chironomid
subfamilies. The X -axis shows the codons and the Y -axis shows RSCU values.
Full-size G DOI: 10.7717/peerj.11294/fig-3

tRNAs, rRNAs and control region

The typical set of 22 tRNA genes were identified in the mitogenomes of all six Chironomidae
species, ranging from 63 to 72 bp in length. The tRNA genes exhibit high A+T content
(73.2%-79.5%), positive AT-skew, and negative GC-skew (Table 2). All the predicted
tRNAs can be folded into the typical clover-leaf secondary structure except trnS (GCU),
which lacks the dihydrouridine (DHU) arm. The non-Watson-crick base pair G-U is
common in tRNA genes from all Chironomidae species (Fig. S1-56).

Both 12§ and 16S rRNA genes exhibit similar position and size across the Chironomidae
mitogenomes. The A+T content of 125 and 16S rRNA genes ranges from 76.4% to 82.6%
and 80.1% to 84.4%, respectively. Both genes exhibit positive AT-skew and negative
GC-skew in all Chironomidae species except Chironomus tepperi: the AT-skew of 12S
rRNA and 16S rRNA in Chironomus tepperi is —0.01 and 0.00, respectively (Table 2).

The control regions of Chironomus tepperi, Potthastia sp., Rheocricotopus villiculus,
Parochlus steinenii, Prodiamesa olivacea, and Clinotanypus yani are 500, 911, 832, 1,783,
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Figure 4 Evolution rate of each PCG of the six mitogenomes of six chironomid subfamilies
mitogenomes. Ka refers to non-synonymous substitution rate, Ks refers to synonymous substitution
rate, Ka/Ks refers to evolution rate of each PCG.
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1,079, and 1,095 bp in size, respectively (Appendix S2). All are A + T rich (85.5%-93.7%),
much higher than the whole mitogenomes (72.4%-77.3%).

Saturation test and phylogenetic analyses

Saturation tests were performed for the four nucleotide datasets. Each dataset was free
of saturation (Fig. S7). In general, phylogenetic trees support the monophyly of the
Chironomidae across different datasets in ML and BI analyses (Fig. 5, PP = 1, BS = 100).
Within Chironomidae, four topologies were inferred from five datasets: (i) Orthocladiinae
+ (Chironominae + ((Diamesinae 4+ Prodiamesinae) + (Podonominae + Tanypodinae)))
was inferred from the PCG123 and PCGR datasets (Figs. 5A and 5B); (ii) Orthocladiinae
+ (Chironominae + (Diamesinae+ (Prodiamesinae + (Podonominae + Tanypodinae))))
was inferred from the PCG12 dataset (Fig. 5C); (iii) (Orthocladiinae + Chironominae) +
(Diamesinae + (Prodiamesinae + (Podonominae + Tanypodinae))) was inferred from
the PCGI12R dataset (Fig. 5D); (iv) Chironominae + (Orthocladiinae + (Prodiamesinae
+ (Diamesinae + (Podonominae + Tanypodinae)))) was inferred from the AA dataset
(Fig. 5E). The topology inferred from the AA had the strongest nodal support. Based on five
different datasets, Podonominae is sister to Tanypodinae with strong support in both BI
(PP > 0.98) and, ML (BS = 100) reconstructions, which makes the sister to (Diamesinae +
Prodiamesinae) with strong support (PP = 1, BS > 91) at the “tip” position. The remaining
subfamilies Chironominae and Orthocladiinae are sister to above four subfamilies.

DISCUSSION

Mitogenome features
The entire mitogenome length of the six Chironomidae species differs considerably
(15,652-16,803 bp), mainly due to the variation in control region size. All Chironomidae
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Figure 5 Phylogenetic relationships of six subfamilies within Chironomidae inferred from
mitogenomes. (A) Topology obtained based on PCG123; (B) Topology obtained based on PCG123R; (C)
Topology obtained based on PCG12; (D) Topology obtained based on PCG12R; (E) Topology obtained
based on AA. Numbers at the nodes are BI posterior probabilities (left) and ML bootstrap values (right).
Full-size & DOI: 10.7717/peerj.11294/fig-5

mitogenomes contain 37 typical genes and a control region, the order and arrangement
of these genes are completely accordant with the ancestral insect gene arrangement (Clary
& Wolstenholme, 1985). The whole mitogenome of Chironomidae has high A+T content
and similar AT/GC-skew, consistent with the similar base composition biases of insect
mitochondrial DNA (Wei ef al., 2010). This type of nucleotide bias may be related to the
asymmetric mutation processes during replication (Hassanin, Leger ¢ Deutsch, 2005).

Among the Chironomidae mitogenomes, most PCGs have complete termination
codons, while the COII gene in Parochlus steinenii and Clinotanypus yani has an incomplete
termination codon (T-) that probably completed by post-transcriptional polyadenylation
(Ojala, Montoya ¢ Attardi, 1981). The patterns of codon usage among the Chironomidae
mitogenomes are nearly the same. The most frequent used codons were NNU and NNA for
each amino acid, reflecting the AT bias of nucleotide composition. For most amino acids,
the most frequently used codon is not the anti-codon that strictly correspond to tRNA.
The low w value for each PCG indicates that they are all under strong purifying selection.
The animal DNA barcoding gene COI has the lowest evolutionary rate, which is consistent
with the results observed from other insect groups (Li et al., 2020; Yang, Yu & Du, 2013;
Zhang & Ye, 2017).

All six Chironomidae mitogenomes contain the 22 typical tRNA genes, and secondary
structure across species is similar. Unlike other tRNA genes, trnS (GCU) lacks the
dihydrouridine (DHU) arm. This could be commonly found in published insect
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mitogenomes (Li et al., 2012; Lu, Huang & Deng, 2020; Zhang et al., 2018). The A+T
contents of 12S rRNA, 16S rRNA, and control region are much higher than that in
the whole genome in Chironomidae mitogenomes, indicating a strong A+T bias in these

regions.

Phylogenetic analyses

In this study, we applied a variety of strategies to explore the phylogenetic relationships of
six subfamilies within the Chironomidae, and confirmed the monophyly of Chironomidae
(Fig. 5). However, the topology of subfamilies based on mitogenomes in this study is
inconsistent with previous morphological and molecular studies (Cranston, Hardy ¢
Morse, 20125 Seether, 1977; Seether, 2000). The present morphological phylogenetics of
Chironomidae (Sether, 2000) is composed 11 subfamilies, including (((((Chironominae +
Orthocladiinae) + Prodiamesinae) +Diamesinae) + Buchonomyiinae + Chienomyiinae)
+ ((Usambaromyiinae 4+ Tanypodinae) + Podonominae + Aphroteniinae)) +
Telmatogetoninae. The present molecular phylogenetic system of Chironomidae (Cranston,
Hardy ¢ Morse, 2012) is composed nine subfamilies, including ((((((Chironominae +
(Orthocladiinae 4+ Prodiamesinae)) 4+ Diamesinae) + Telmatogetoninae) + Tanypodinae)
+ Podonominae) + Aphroteniinae) + Buchonomyiinae. Nevertheless, Podonominae and
Tanypodinae are ancestral taxa based on both traditional morphological and molecular
phylogenies. However, they appear at the “tip” position of mitogenomic phylogenetic tree.
Moreover, the “tip” taxa Chironominae and Orthocladiinae appear at the “root” position
of the mitogenomic phylogenetic tree. This erroneous phylogenetic reconstruction may be a
result of long branch attraction (LBA) (Siddall &> Whiting, 1999). Due to the high mutation
rate of the mitochondrial genetic markers within Chironomidae, some studies (Ekrem ¢
Willassen, 2004; Ekrem, Willassen ¢ Stur, 2010) have reported that mitochondrial markers
(e.g., COI, COII) are not suitable for phylogenetic relationship reconstruction. Here, our
mt data reveal different evolutionary history of six subfamilies, which is contradictory with
traditional morphology-based systematics. Therefore, we assume that mitogenomes has
poor signal for phylogenetic reconstructions at subfamily level in the Chironomidae.

CONCLUSIONS

In this study, we sequenced four complete mitogenomes representing four subfamilies of
Chironomidae by whole genome sequencing technologies and did the first comparative
analysis of mitogenome base composition and evolutionary history in Chironomidae. The
study shows that mitogenomes of Chironomidae are conserved in structure, gene order and
nucleotide composition. Our results revealed that mitogenomes have poor phylogenetic
signals for subfamily level relationships in Chironomidae.
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