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Abstract

Purpose of the Review—This review aims to summarize innovations in urologic surgical 

training in the past five years.

Recent Findings—Many assessment tools have been developed to objectively evaluate surgical 

skills and provide structured feedback to urologic trainees. A variety of simulation modalities (i.e., 

virtual/augmented reality, dry-lab, animal, and cadaver) have been utilized to facilitate the 

acquisition of surgical skills outside the high-stakes operating room environment. Three-

dimensional printing has been used to create high-fidelity, immersive dry-lab models at a 

reasonable cost. Non-technical skills such as teamwork and decision-making have gained more 

attention. Structured surgical video review has been shown to improve surgical skills not only for 

trainees, but also for qualified surgeons.

Summary—Research and development in urologic surgical training has been active in the past 

five years. Despite these advances, there is still an unfulfilled need for a standardized surgical 

training program covering both technical and non-technical skills.
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Introduction

Surgical training is currently transitioning from Halstead’s apprenticeship model to more 

standardized assessments of clinical competence. Influenced by other high-stakes fields such 

as aviation and the military, where simulation plays an essential role before real-life 

exposure, surgical training has incorporated various simulation models to shorten the 

learning curve. Recent studies have demonstrated surgeon skills impact patient outcomes, 
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such as length of hospital stay, duration of postoperative catheterization time, and urinary 

continence recovery after robotic-assisted radical prostatectomy (RARP) [1,2], which 

underscores the importance of careerlong surgical skill enhancement. In addition to technical 

ability, the development of strong non-technical skills, such as decision-making and 

interpersonal communication, are also critical to surgical competence.

This review explores recent innovations in open, endoscopic, laparoscopic, and robotic-

assisted surgery in the urologic field. We also summarize recent developments in non-

technical skills training and surgical skill assessment. Finally, we discuss current challenges 

and future directions in urologic surgical training.

Material and Methods

A broad search was performed on PubMed and Medline to identify English language articles 

between 2016–2020. Search terms included: ‘training’, ‘simulation’, ‘curriculum’, ‘e-

learning’, ‘urology’ and ‘surgery’. Reference lists of the identified articles were screened for 

further relevant studies. Articles were selected based on innovation, with an emphasis on 

more contemporary works within the past three years.

Definitions of validity adopted in this article are based on previous reviews [3,4], originally 

coming from Cronbach’s test validity theory. Face validity is a measure of participants’ 

subjective assessments of simulator realism; content validity measures expert subjective 

assessments of the simulator’s appropriateness for training; construct validity is the ability of 

the simulator to distinguish between different levels of experience; concurrent validity is the 

comparison of the training model against the gold standard simulation; predictive validity is 

the ability for simulated performance to accurately predict operating room performance. A 

new definition of validity based on Messick’s Conceptual Framework was introduced into 

urologic surgical training in recent years, which shifts the concept of validity from a fixed 

property of the simulator to emphasizing its specific assessment context [5]. The new system 

consists of five sources of validity: test content, response processes, internal structure, 

relationships to other variables, and consequences of testing. As few articles have adopted 

this novel schema, we used the conventional definitions of validity in this review; however, 

we encourage future studies to adopt the new validity framework.

Surgical Assessment

One crucial component of high-quality surgical training programs that transcends any 

surgical approach is objective and structured feedback [6,7]. The research community has 

recently developed an abundance of tools to assess technical skills. In a systematic review, 

Vaidya et al. identified 76 unique evaluation tools across surgical specialties, with the most 

frequently used being the Objective Structured Assessment of Technical Skills (OSATS) [8].

While past tools have focused on global skills assessment (e.g., OSATS), recent evaluations 

have been developed and validated for specific procedures. Hussein et al. developed the 

Prostatectomy Assessment and Competency Evaluation (PACE) to assess the quality of 

robot-assisted radical prostatectomy [9]. Similar assessments have been developed for partial 

nephrectomy (SPaN) [10], radical cystectomy (CASE) [11], and lymphadenectomy 
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(PLACE) [12]. These tools not only supply general feedback but can also provide evaluation 

of specific tasks and steps for trainees to focus on improvement. Other evaluations have been 

developed to assess specific tasks, including laparoscopic suturing (LS-CAT) [13] and 

surgical assistant skills [14].

Conventionally, these tools require review of surgical footage by specialists, which is time-

consuming, limiting their extensive use in training programs. Alternative methods to assess 

surgery in a scalable manner have been investigated. Recent studies have utilized crowd-

sourced evaluations to streamline this process, which achieved comparable results to expert 

assessment and is more efficient and cost-effective [15–17]. Another way to streamline this 

process is by automation. Data captured during surgery, such as video, instrument 

kinematics, and system events (e.g., camera movement), can be used to train computer 

algorithms on how to distinguish good vs. bad-quality surgical performance. Hung et al. 

developed and validated automated performance metrics (APMs), which directly quantify 

surgeon performance [18,19]. Baghdadi et al. use a combination of video data and machine 

learning to automate the evaluation of lymph node dissection thoroughness [20]. The 

algorithm achieved 83.3% accuracy compared to manually scored PLACE ratings.

Currently, most of the aforementioned assessment tools are utilized under research settings. 

How to incorporate these structured assessment tools into standardized surgical training still 

needs exploration. Harriman et al. reported the use of an online program, namely, Resident 

Report Card (RRC) to provide structured feedback to trainees after multiple types of 

urologic procedures [21]. Over a 5-year period, RRC records showed a steady improvement 

of trainees’ surgical skills across procedures. Surveyed residents were overwhelmingly 

positive about the use of RRC in their residency training period. As an initial trial, this study 

sheds light on the logistics of providing timely, structured feedback.

Innovations in Open Surgical Training

Although minimally invasive and endoscopic approaches have gradually replaced standard 

of care for many urologic diseases, competency in open surgery remains a core objective for 

urologic training programs. Merrill et al. reported a decline in open surgical case volume 

coupled with a rise in robotic cases for residents at US teaching hospitals [22]. Variation in 

training environments has led to disparities in urologic resident and fellow access to open 

procedural training. Simulator-based modalities can help bridge this gap in open surgery 

training opportunities.

Past open surgical training simulations consisted primarily of realistic benchtop models for 

instruction of basic procedures, including the open prostatectomy, vasectomy, circumcision, 

and suprapubic tube (SPT) placement [3,23].

Open surgical training has continued to rely on benchtop models and cadaveric simulation. 

As these options have historically been expensive and difficult to procure, several cost-

effective training models relying on 3D printing and cheaper materials have been developed 

(Table 1) [24–28]. One study showed that using household items to create models for open 

prostatectomy (using an orange placed in a cut-off plastic gallon container, representing 
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prostate in the deep pelvis) was well-received and improved trainee skills [24]. An 

inexpensive model for ischemic priapism utilizing a hot-dog and Red Vines candy 

demonstrated face and content validity [25]. Trainees who completed vasectomy reversal 

training on 3D-printed silicone benchtop models reported improved microsurgical skills 

[26]. A urogynecologic simulation of trans-obturator sling procedure for stress urinary 

incontinence was developed using a 3D-printed model of the female pelvis, allowing for 

trainees to visualize and practice proper sling placement [27]. Residents also received 

training on penile implant surgery using a 3D-printed model, demonstrating significant skill 

improvement [28]. SPT placement is an open urologic procedure with a wealth of training 

options available. While many are commercial models [29], several low-cost simulators have 

been recently developed for training. One study used a water bladder surrounded by 

Styrofoam in a plastic container; another utilized a latex glove filled with water along with 

other common emergency room items [29,30]. Both were assessed as realistic and valuable 

training tools by experts and trainees.

Cadaveric simulation remains the most comprehensive option for open surgical training. The 

British Association of Urological Surgeons (BAUS) and Thiel embalmed cadavers (TEC) 

continue to offer courses on procedures ranging from artificial urinary sphincter to radical 

orchiectomy [31]. Renal transplant simulation has been particularly difficult to realistically 

mimic in a simulated or benchtop model, explaining the continued appeal of cadaveric 

training [32]. Lentz et al. also showed that cadaveric penile implant training improved 

resident skill and confidence in prosthesis placement [33].

Recent advances have made open surgical simulation cheaper and more accessible for 

trainees. An exciting direction involves the use of augmented reality (AR), in which 

annotations can be digitally superimposed on the surgical field. One study utilized the 

HoloLens AR headset to mentor residents on abdominal incisions, demonstrating improved 

trainee surgical performance [34]. Thus, procedures once reliant on cadaveric training may 

well be displaced by models utilizing 3D-printing and AR technologies.

Innovations in Endoscopic Surgical Training

Endourologic surgeries have experienced rapid adoption in recent decades, now utilized for 

several fundamental diagnostic and therapeutic procedures. As many of these procedures 

utilize proprietary medical technologies, a number of commercial endoscopic training 

models are available. Past simulations rely heavily on benchtop training but also utilize 

virtual reality (VR) and animal models for a range of procedures, including transurethral 

resections of the prostate (TURP) and bladder tumors (TURBT), percutaneous 

nephrolithotomy (PCNL), and ureteroscopy (URS) [35]. In recent years, endoscopic training 

has continued to build on these existing modalities and expanded the variety of procedures 

with validated simulations (Table 1 and Table 2).

Numerous benchtop, VR, animal, and cadaveric cystoscopy/URS models are available to 

simulate stones and strictures, as well as provide a realistic practice environment for trainees 

to improve manual dexterity [35]. For URS training, one group developed a simulation 

utilizing the HoloLens VR headset to perform mid-ureteric stone removal with basket, with 
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trainees reporting greater procedure realism compared to benchtop simulation [36]. Recent 

studies have adapted existing cystoscopy models for new pathologies, with a particular focus 

in urogynecology. Al-Jabir et al. used benchtop and cadaveric models to simulate 

intravesical botulinum toxin injection for overactive bladder with urge incontinence, 

demonstrating face and content validity [37]. A separate team demonstrated face, content, 

and construct validity for endoscopic needle injection of bulking agents for stress urinary 

incontinence using porcine bladders mounted in a hysteroscopy trainer [38].

TURP and TURBT simulators have increasingly relied on VR and 3D-printed benchtop 

models for training. One group simulated Holmium Laser Enucleation of the Prostate 

(HoLEP) utilizing real endoscopic tools on synthetic prostate models [39], while another 

developed a comprehensive TURP curriculum with benchtop resectoscope and clot 

evacuation training [40]. Choi et al. developed a 3D-printed biomimetic prostate “phantom” 

based on MRI images, which demonstrated tissue electrocautery scarring during TURP [41]. 

These new models were universally rated as highly realistic and allowed for real-time skills 

assessment. Several VR-based TURBT simulators have recently been developed, showing 

measurable reductions in intraoperative blood loss and bladder injury [42,43]. Lastly, a 

virtual transrectal ultrasound (TRUS) prostate biopsy simulator demonstrated skills transfer 

to cadaveric TRUS in trainees [44]. VR-based simulators allow for the objective assessment 

of select competencies, and possibly can be utilized for accreditation [45].

PCNL simulation offers a variety of modalities for training, with new technologies slowly 

displacing the current gold standard, high-fidelity TEC. Multiple studies created reusable, 

low-cost models for percutaneous renal access, using ballistic gel and 3D-printed rubber 

collecting systems [46, 47]. An objective of PCNL training is proficiency using the 

fluoroscopic C-arm for intraoperative imaging. Several studies piloted high-fidelity synthetic 

and ex vivo porcine models to assess resident competency with C-arm use before and after 

training, demonstrating improvements in trainee performance [48,49].

Despite an abundance of commercial benchtop simulators available for endourologic 

training, significant improvements in 3D-printing and VR technologies have led to the 

development of highly realistic, reusable models for a wide array of procedures. Coupled 

with a shift towards objective, competency-based assessments, these novel simulators are 

gradually being adopted for standardized endoscopic training.

Innovations in Laparoscopic Surgical Training

Owing to its technically demanding nature, laparoscopic surgery is associated with a steeper 

learning curve than robotic-assisted surgery (RAS) [50]. A recently published systematic 

review on surgical training in the US and Europe found that most residents considered their 

laparoscopic training inadequate [51]. With the rapid growth of RAS, the opportunity for 

sufficient laparoscopic exposure during residency is decreasing. Simulated training can 

augment the acquisition of laparoscopic skills outside the operating room.

Several dry-lab models have been developed for specific laparoscopic procedures, including 

partial nephrectomy, pyeloplasty, ureteral reimplantation, and urethrovesical anastomosis 
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[3]. . Most recently developed urethrovesical anastomosis models demonstrate construct/

concurrent validity (Table 1) [52], but none have demonstrated predictive validity [21]. 

Besides dry-lab models, several VR simulators have been commercially available for more 

than ten years [3]. They can be used to train basic laparoscopic skills such as camera 

navigation, bimanual coordination, dissection, suturing, and clip application; they also 

provide procedure-specific training, such as laparoscopic-assisted radical nephrectomy 

(LARN).

A trend in recent years favors less-expensive, more accessible laparoscopic training models. 

Kailavasan et al. designed a low-cost (£2.5 each) abdominal wall model, which can be used 

for laparoscopic port incision training [53]. The model has multiple layers, simulating the 

abdominal wall from skin to peritoneum. Travassos et al. published a tutorial for a 

homemade laparoscopic simulation box costing less than $75 [54]. Parkhomenko et al. 

invented several 3D-printed laparoscopic training models for basic skills training, costing 

$26.50 each [55]. Though the experience reported by trainees was significantly worse than 

expensive conventional models, the training value was comparable, suggesting 3D-printed 

models can be used as an economical way for laparoscopic skills acquisition.

Other studies compared simulators head-to-head to determine efficacy and cost-

effectiveness. Oussi et al. compared a cheap, low-fidelity simulator (Blackbox) with an 

expensive, high-fidelity simulator (LapMentor) to determine if the added cost translated into 

better training [56]. They found that the cheaper Blackbox also yielded better skill 

transferability to a VR simulator, suggesting the high cost-effectiveness of low-fidelity 

models. Another study examined the added value of “take-home” laparoscopic training, but 

found no significant improvement in training efficiency or efficacy [57]. Montanari et al. 

investigated if the use of a 3D training box could improve the efficiency of conventional 2D 

laparoscopic training, but found regular 2D training is non-inferior to 3D training [58].

Despite the development of numerous training models, a recent survey found a decrease in 

laparoscopic training during urologic residency [59]. Attention should be drawn to 

incorporate laparoscopic simulation training into current residency programs in a structured 

and efficient way.

Innovations in Robotic Surgical Training

The number of robotic-assisted surgeries (RAS) has grown exponentially in recent years. In 

2019 approximately 1.2 million RAS were performed worldwide, the largest part of which 

were urologic, involving urologic oncology, reconstruction, pediatrics, and female urology 

[60]. Thus, a high-quality robotic surgical training program is essential for trainee 

accreditation. A number of simulation models can facilitate the acquisition of robotic 

surgical skills.

Dry-lab models published in recent years were summarized in Table 1, including basic skills 

training and procedure-specific models (urethrovesical anastomosis, pyeloplasty, partial 

nephrectomy, and radical prostatectomy). Novel dry-lab simulations have utilized 3D-

printing technology to create realistic, personalized models [61,62]. Melnyk et al. developed 
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a robotic-assisted partial nephrectomy (RAPN) model using 3D-printing to create a poly-

vinyl alcohol (PVA) kidney cast from patient imaging [63]. The mechanical and functional 

properties of the model proved to be similar to fresh porcine kidney in terms of compression, 

elasticity, and suture tension during renorrhaphy. This is one of the first synthetic kidney 

models that achieved mechanical realism and functional similarity (perfused renal hilum) to 

in vivo kidney models. The same team applied a similar method to create a high-fidelity, 

full-immersion prostate model, which can be used to simulate four critical steps of RARP 

(bladder neck dissection, seminal vesicle mobilization, neuro-vascular bundle dissection, 

and vesicourethral anastomosis) [64]. Construct validity was shown between novices and 

experts. Of note, clinically relevant outcomes (i.e., positive margin and VUA leakage) can 

also be assessed, enabling meaningful feedback to trainees.

A summary of VR/AR simulators for robotic surgery is presented in Table 2 [21]. Besides 

basic surgical skills, most simulators also provide procedure-specific training, including 

RARP, RAPN, robotic-assisted radical cystectomy (RARC) and pelvic lymph node 

dissection (PLND). Most of these simulators demonstrate construct or concurrent validity, 

while dV-Trainer® (Mimic Technologies, USA), da Vinci Skills Simulator (dVSS, Intuitive 

Surgical, Inc., USA) and Robotic Surgery Simulator (RoSS®, Simulated Surgical Systems 

LLC, USA) have shown predictive validity in animals or actual patients [21,65]. 

Nevertheless, the evidence level for these studies is limited due to the small numbers of 

participants and predominance of single-center studies. Large, multicenter, randomized 

controlled trials are needed to robustly support the transferability of robotic surgical skills 

from simulators to the operating room [65].

Novel computational technologies have been explored in robotic surgical training. A pilot 

study combined a machine-learning algorithm with dry-lab simulation [66]. The algorithm 

can learn from expert demonstrations, and then give feedback to trainees autonomously. This 

technology shows promise as an interactive training system that can provide real-time 

feedback to improve efficiency of surgical skills acquisition. Another study created a video 

and hand-motion playback system [67]. By synchronously recording intraoperative videos, 

robotic arm joint angles, and surgeon-console interaction, the system can replay the entire 

surgery video with corresponding expert surgeon hand-motions.

Apart from high-validity simulations, trainees’ involvement in real robotic surgery is also 

essential for robotic skills acquisition. Cimen et al. found that simple bedside assistance 

experience can help trainees shorten the learning curve of robotic surgery [68,69]. Compared 

to novice surgeons who had no prior RARP bedside assistance experience, the group with 

bedside experience showed better surgical performance in their first 50 RARP cases [68].

Another factor that may impact robotic training quality is trainers’ teaching ability. In order 

to maximize the quality of robotic training programs, a “train the trainer (TTT)” course was 

developed by experts from the USA and Europe [70]. A consensus was reached on a 

standardized TTT course design, though further validation is needed to prove its efficacy.

Multiple advances in robotic surgery training have been achieved in recent years. However, 

there is still a lack of standardized and validated robotic surgery curricula incorporated into 
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residency training. Furthermore, the emergence of several novel robotic systems in recent 

years raises a new question about the transferability of surgical skills between different 

systems [71]. Further studies are required before high-level evidencebased robotic training 

can be carried out.

Non-technical Skill Training

Surgical competency can be defined as a collective assessment of surgical technical and non-

technical skills [72]. Non-technical skills (NTS) are defined as the social (teamwork, 

communication, leadership), cognitive (decision making, situational awareness), and 

personal resources (resilience) that are important in the surgical setting [73]. While technical 

skills training and evaluation have historically gained more attention, there is a recent 

movement toward the recognition and development of NTS. Indeed, there is evidence that 

surgical incidents may more commonly be caused by lapses in NTS than due to deficient 

technical skills [74]. While robust data is scarce, a recent meta-analysis suggests that NTS 

training may reduce patient mortality [75].

There are a number of assessment tools to evaluate NTS that have been validated in surgical 

education, including Non-Technical Skills for Surgeons (NOTSS), NOn-TECHnical Skills 

(NOTECHS), and Observational Teamwork Assessment for Surgery (OTAS) [76]. In a 

systematic review of NTS assessments, Wood et al. [77] concluded that NOTSS is the best 

scale for individual use, while NOTECHS is best for team assessment. This highlights the 

idea that NTS assessment is dependent on context. In recognition that generalized 

assessment scales may be less applicable in specialized circumstances, Raison et al. 

developed an NTS assessment specific to robotic surgery [78]. The Interpersonal and 

Cognitive Assessment for Robotic Surgery (ICARS) includes unique behaviors (e.g., 

awareness of equipment failure) as compared with generic assessment tools.

Simulation is regarded as the most effective method to train NTS [79]. Somasundram et al. 

incorporated NTS training into a 5-day surgical boot camp simulating a number of events on 

the hospital ward [80]. Mean NOTSS scores were used to evaluate baseline NTS and to 

inform future camps. Goldenberg et al. simulated laparoscopic IVC injury and assessed NTS 

by NOTSS [81]. They show that NTS is greater among more senior residents, suggesting 

that NTS develops over the course of training. While these studies evaluate NTS, they do not 

show that their respective simulations increase NTS. Nelson et al. showed that general 

surgery residents that role-played the position of surgical technologist during live surgeries 

improved self-rated metrics of situational awareness, communication, teamwork, and 

professionalism in pre- and post-operative questionnaires [82]. Liao et al. showed that a 

video coaching intervention (review of surgical video with an expert) improved NOTSS 

scores as compared to those that did not receive video coaching [83].

Despite the recognition of NTS as important for clinical outcomes, there is still a lack of 

NTS training across all surgical specialties [79]. As assessment tools and training modalities 

are validated and become more established, it will be essential to integrate them into surgical 

curricula.
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Video Review to Improve Surgical Skills

The aforementioned training modalities mainly involve residents/fellows focusing on the 

acquisition of necessary cognitive knowledge and basic psychomotor ability to perform a 

surgery. However, the improvement of surgical skills does not end with residency/fellowship 

programs; it continues throughout the career. As elite athletes review videos of their own 

performance to improve, surgeons can adopt the same method [84,85].

Several studies have established that by the utilization of video workshops, surgeons can 

improve their surgical skills and the actual patient outcomes [84]. Cathcart et al. found that 

following the adoption of peer-video review after RARP, surgeons used the learning points 

gained to modify their techniques, and the patient-reported continence recovery rate at 3 

months increased from 57% to 67% (p = 0.02) [86]. Another study by Michigan Urological 

Surgery Improvement Collaborative (MUSIC) showed that by reviewing each other’s 

surgical videos in pairs and providing feedback in a structured format, surgeons could 

identify potentially beneficial changes in technique [87]. Another study found that by self-

debriefing on their own simulation videos, a trainee can maintain their surgical skills over 

the gap period to the next training session [88].

Open Resources of Surgical Education

A survey conducted in the United Kingdom showed that 86.7% of surgical trainees routinely 

watched online surgical videos, i.e., on YouTube.com or Websurg.com, with most preferring 

videos with supplemental information such as commentary, snapshots, and diagrams [89]. 

Arslan et al. assessed the quality of 1,688 videos of laparoscopic and robotic-assisted radical 

prostatectomy on YouTube [90]. They found that the website includes high-quality videos 

for both procedures, but there is a lack of objective parameters to predict the educational 

quality of the video.

Challenges and Future Directions

Currently, one concern that limits residents’ exposure to surgery is the belief that extensive 

involvement of trainees in procedures may impact surgical quality. Studies regarding this 

question have conflicting results: most have suggested that under the appropriate 

supervision, resident involvement has minimal impacts on surgical quality and safety, solely 

lengthening operation time [91–94]. However, another study found that resident involvement 

increases patient complication rates (OR=1.61, p<0.001) [95]. Higher-level evidence is 

needed to resolve this question.

Secondly, there is a need for objective and structured feedback following surgery. Work hour 

limitations and more diverse surgical techniques make it difficult for current urologic 

residents to gain as much procedural exposure as prior generations. Kim et al. demonstrated 

that early, standardized feedback is more effective than later feedback [96]. Though an 

abundance of assessment methods exists, how to efficiently incorporate them into the current 

training system remains to be explored.
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Finally, as suggested by multiple surveys [97,98], there is a dire need for incorporation of 

standardized, structured surgical training programs that encompass both technical and non-

technical skills. One barrier is the lack of high-level evidence supporting such programs. 

Though several randomized controlled trials have evidenced that skills acquired by 

simulation curricula can be transferred to the operating room [38,99], most of them are 

small, single-center studies. As an initial step, an ongoing international randomized 

controlled trial, namely SIMULATE, aims to inspect whether a standardized URS 

curriculum combining theoretic knowledge, VR, and cadaveric simulation can reduce 

complication rates of the first 25 URS cases performed by novices [100]. Such international 

collaboration should be encouraged to provide critical evidence that may change current 

training paradigms.

Conclusions

A multitude of assessment tools have been developed to provide structured feedback to 

surgical trainees. Various simulators exist across diverse surgical procedures to provide 

technical exposure outside the operating room. Newer technology, such as machine learning, 

virtual reality, and 3D-printing, has advanced surgical training by providing interactive 

training systems and high-fidelity simulations. Despite these advancements, there is still a 

gap of high-level evidence supporting the role of a structured simulation curriculum in 

surgical training. A dire need exists for a standardized surgical training program covering 

both technical and non-technical skills.
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