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Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), has become a global pandemic worldwide. Long non-
coding RNAs (lncRNAs) are a subclass of endogenous, non-protein-coding RNA, which 
lacks an open reading frame and is more than 200 nucleotides in length. However, 
the functions for lncRNAs in COVID-19 have not been unravelled. The present study 
aimed at identifying the related lncRNAs based on RNA sequencing of peripheral 
blood mononuclear cells from patients with SARS-CoV-2 infection as well as health 
individuals. Overall, 17 severe, 12 non-severe patients and 10 healthy controls were 
enrolled in this study. Firstly, we reported some altered lncRNAs between severe, 
non-severe COVID-19 patients and healthy controls. Next, we developed a 7-lncRNA 
panel with a good differential ability between severe and non-severe COVID-19 pa-
tients using least absolute shrinkage and selection operator regression. Finally, we 
observed that COVID-19 is a heterogeneous disease among which severe COVID-19 
patients have two subtypes with similar risk score and immune score based on lncRNA 
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1  | INTRODUC TION

Coronavirus disease 2019 (COVID-19), caused by severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2), has become a global 
pandemic, with over 13 million cases and considerably growing 
death worldwide. According to the 7th edition of Clinical Guidance 
for COVID-19 Pneumonia Diagnosis and Treatment of China, 
COVID-19 patients are categorized into four groups: mild, moder-
ate, severe and critically severe on the basis of clinical symptoms 
and related medical examinations.1 Approximately 20% of patients 
with COVID-19 develop severe disease warranting hospitalization, 
and approximately 5% require intensive care.2 Besides dyspnoea, 
hypoxaemia, acute respiratory distress and lymphopenia, cytokine 
release syndrome (CRS) is an important clinical features in patients 
at severe stage.3

Previous transcriptomic studies about COVID-19 have focussed 
on the analysis of protein-coding transcripts, using mRNA expres-
sion profiling to characterize the patterns and potential functional 
roles of their translated proteins.4 However, studies revealed that 
only less than 3% of the human genome is believed to be coding 
regions.5,6 The rest is called junk DNA among which lncRNAs are 
a group of non-coding RNAs with more than 200 nucleotides in 
length. The development of next generation sequencing technology 
has greatly shed light on the function of lncRNAs in the biological 
process of different disease. Besides cancer, studies have high-
lighted the role of lncRNAs in other disease, like immune disease.7,8 
Although some studies investigated the altered lncRNAs between 
COVID-19 patients with healthy control, no related studies have in-
vestigated the lncRNA expression pattern based on the severity of 
COVID-19 patients so far.9,10 The functions for lncRNAs in COVID-19 
have not been unravelled.

The present study aimed at identifying the target lncRNAs 
based on peripheral blood mononuclear cells (PBMCs) from pa-
tients with SARS-CoV-2 infection as well as health individuals. 
Particular attention was paid to differential regulations of ln-
cRNAS between severe and non-severe symptom groups in terms 
of lncRNA expression pattern. Our findings from the screening of 
lncRNA biomarkers are expected to improve the understanding of 

COVID-19 subtypes and may facilitate the further exploration of 
diagnosis, prognosis and even therapeutic strategies for this dev-
astating disease.

2  | MATERIAL S AND METHODS

2.1 | Patients and specimen collection

We collected blood from 29 patients enrolled in local hospital from 
March to April 2020 after written informed consent from patients. 
Eligibility criteria for moderate or severe patients were based on the 
7th guideline. Briefly, moderate patients were with fever and res-
piratory symptoms. Radiologic assessments found signs of pneumo-
nia. Severe type were patients meet any of the following criteria: 
(1) Shortness of breath, RR>=30 times/min; (2) Oxygen saturation 
<=93% at rest; (3) Alveolar oxygen partial pressure/fraction of inspi-
ration O2 (PaO2/FiO2) <=300 mm Hg. (4) CT chest imaging shows 
that lung damage develops significantly within 24-48  h. Critically 
severe type was patients meet any of the following criteria: (1) 
Respiratory failure requiring mechanical ventilation; (2) Signs of sep-
tic shock; (3) Multiple organ failure requiring ICU admission. For con-
trols, blood was collected from 10 healthy adult donors after written 
informed consent. All donors were consented for genetic research. 
The use of human samples in this study has been ethically approved 
by the hospital ethics committee. Written informed consent was 
obtained from patients and healthy individuals before sample and 
data collection. The study was conducted to the principles of the 
Declaration of Helsinki. Lymphocyte subtyping and serum inflamma-
tory indictor determined assay was performed at medical laboratory 
of hospital.

2.2 | Temporal RNA transcript isolation, 
sequencing and processing

Human PBMCs were isolated by centrifugation. Peripheral blood 
was layered and centrifuged at 950 g for 30 min. After isolation on a 
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Ficoll-Histopaque layer (Sigma Aldrich, Italy), the plasma was care-
fully removed and the PBMC cells were transferred to falcon tubes 
for RNA extraction. Samples were homogenized and total RNA was 
isolated by TRIzol® reagent (Invitrogen by Life Technologies, NY, 
USA) following the manufacturer's protocol. RNAs were quanti-
fied using a Nanodrop ND-100 Spectrophotometer (Nanodrop 
Technologies, Wilmington, USA) with RNAs of a 260:280 ratio ≥1.5 
and an RNA integrity number ≥8 was deep sequenced. Sequencing 
libraries were prepared with the Illumina TruSeq Stranded RNA 
Library Prep, version 2, Protocol D, using 500ng total RNA 
(Illumina, USA). The qualities of the libraries were assessed by 
2100 Bioanalyzer with a DNA1000 assay. Libraries were quanti-
fied by qPCR using the KAPA Library Quantification kit for Illumina 
sequencing platforms. RNA processing has conducted by Illumina 
NextSeq 500 Sequencing. FastQ files were generated from.bcl files 
produced by Illumina NextSeq sequencer by llumina bcl2fastq2.

2.3 | Data pre-processing and screening of 
differentially expressed lncRNAs

In order to identify the biological significance of each probe, 
the comprehensive gene annotation files were obtained from 
GENCODE in GTF format. The GENCODE annotation was the de-
fault gene annotation displayed in the Ensembl Genome Browser. 
The transcripts with a length of more than 200 nucleotides and 
those labelled as ‘non_coding’, ‘processed_transcript’, ‘lincRNA’, 
‘retained_intron’, ‘antisense’, ‘sense overlapping’, ‘sense_intronic’ 
and ‘bidirectional_promoter_lncrna’ were considered as ‘lncRNAs’. 
Finally, 2511 expressed lncRNAs were annotated. The Affymetrix 
probe level data were obtained by reading the CEL files using the 
ReadAffy function of the Affy R package, and then, the raw data 
were pre-processed (background correction, normalization and 
summary expression computation). Empirical Analysis of Digital 
Gene Expression Data in R (edger) package (http://bioco​nduct​
or.org/packa​ges/relea​se/bioc/html/edgeR.html) was applied to 
explore the differentially expressed lncRNAs (DELncRNAs) be-
tween three groups using the criteria of P-value <0.05 and |log2 
(fold change) | >= 1.

2.4 | Hierarchical cluster analysis and Principal 
Component Analysis

To investigate the relationships among the severity of patients, hi-
erarchical cluster analysis and PCA were performed for all patients. 
Total 39 patients, including 12 non-severe patients, 17 severe pa-
tients and 10 normal patients, were embedded in this step. Patients 
with similarly expressed lncRNAs tended to close up in hierarchi-
cal cluster analysis and PCA. We carried out the hierarchical cluster 
analysis using flashclust function in WGCNA R package and PCA 
using factoextra R packages.11

2.5 | Construction of the COVID-19 risk score

To further investigate the prognosis of COVID-19 patients, we de-
veloped a prognosis risk score model using LASSO (Least Absolute 
Shrinkage and Selection Operator) regression. We selected non-
severe patients and severe patients. All lncRNAs are included. We 
divided patients into training set (50% patients) and test set 1 (50% 
patients) randomly. LASSO regression was carried out on training 
set and test sets ten thousand times. To assess the performance of 
each model, AUC (Area under curve) of the ROC (receiver operating 
characteristic curve) was calculated for each model. We sum square 
of AUC (training set) and square of AUC (test set) as the performance 
index of each model. We selected the model with max performance 
index as the best model. Seven lncRNAs were finally confirmed. 
The risk score for predicting severity of COVID-19 patients was 
calculated based on the expression levels and the corresponding 
regression coefficients of the 7 lncRNAs. The equation for the risk 
score of the 7-lncRNA signature was shown asfollows: risk score = 
5.78-34.59*AC010904.2-1.05*AC012065.4-0.00063*AL365203.2
-0.867*AC010175.1-0.021*LINC00562-0.0093*AC010536.1-1.05* 
AP005671.1.

2.6 | Integrative clustering using iCluster algorithm

COVID-19 is a complex and serious disease. Different patients have 
quite different treatment responses and prognoses. To give pa-
tients individual treatment, we identify the subtypes of COVID-19 
patients. First, we carried out WGCNA (weighted gene correlation 
network analysis) algorithm for all lncRNAs of non-severe and se-
vere patients using default parameters. We used dynamic tree 
cutting method to identify the lncRNAs co-expression modules. 
The co-expression modules were assigned to different colours for 
visualization. We calculated the correlation of co-expression mod-
ules and seriousness. We selected lncRNAs co-expression modules 
which were significantly correlated with seriousness. Next, we im-
plemented iCluster algorithm for the lncRNAs modules we selected. 
We chose the k where the curve of percent explained variation levels 
off. The number of the clusters is k + 1.

2.7 | Assessment of patients’ immune status

To figure out whether immune statuses of different iCluster pa-
tients are different, we assessed the immune status of patients 
using GSVA R package.12 First, we screened the immune indices 
that were significant different between non-severe and severe 
COVID-19 patients using Wilcoxon's test. Immune indices which 
p-value less than 0.01 were selected. Next, we screened gene sig-
natures of these immune indices using Boruta R package.13 Finally, 
we used GSVA algorithm to assess the immune score based on the 
gene signatures.

http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
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2.8 | Model selection

The optimal combination of clusters was determined minimizing a 
Bayesian Information Criterion (BIC). An ‘elbow’ point was noted at 
K = 3, beyond which the BIC kept increasing, and thus, the 3-class 
solution was chosen. Figure S3C shows that the results were highly 
comparable for individual unsupervised clustering versus integra-
tive clustering, indicating that the iCluster groupings represented 
the combined information of all platforms and lacked bias to a par-
ticular data type. To compare the resultant iCluster groupings to the 

molecular subclasses developed by Hoshida,14 we assigned each of 
our patients to one of the three Hoshida subclasses using their tran-
scriptional predictors. We found strong concordance between the 
iClusters and the Hoshida subclasses.

2.9 | Statistical analysis

R language software was used to test for differences in means be-
tween specific severe and non-severe groups. The null hypothesis of 

F I G U R E  1   Comparison of immune status between severe and non-severe patients [Colour figure can be viewed at wileyonlinelibrary.
com]

www.wileyonlinelibrary.com
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no differences in means was tested using a two-tailed t test with a 
P-value < 0.05 deemed as significant.

3  | RESULTS

3.1 | Patients information

All COVID-19 patients were randomly recruited, and among those, 
12 patients had mild or moderate symptoms, accounting for 45.2%, 
whereas 17 patients had severe or critically severe symptoms, ac-
counting for 54.8%. The mean age of severe patients is 74 (ranging 
from 52 to 91) and 69.14 (ranging from 58 to 82) of non-severe pa-
tients. In this study, a majority of patients (74.4%, 29/39) were male 

and most patients (87.2%, 34/39) were over 60 years, consistently 
with previous literature reports.15,16

For the immune status, we observed several immune cells 
showed drastic alteration whereas disease progressed from non-
severe condition to severe condition. A significant decrease in 
total lymphocytes (P  =0.0035), absolute number of total T cells 
(P =0.00071), Total CD8 + T lymphocyte count (P =0.035), absolute 
number of CD4 + T cells (P =0.00031), absolute number of B cells 
(P =0.012), and a significant increase in IL-6 (P =0.011), Procalcitonin 
(P =0.0027) and CRP (P =0.002) was observed (Figure 1). Other in-
dexes like proportion of total T cells and proportion of cytotoxic T 
lymphocyte revealed no significant difference between two groups 
in our study. These results suggested different immune response of 
different clinical severity of patients, similar to previous reports.17,18

F I G U R E  2   Volcano plot of differentially expressed lncRNAs between severe and non-severe COVID-19 patients [Colour figure can be 
viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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3.2 | Altered lncRNAs between severe vs. non-
severe patients

To profile the peripheral lncRNA signature response to COVID-19, 
we performed a transcriptional analysis of lncRNAs using RNA-Seq. 
A spectrum of 2511 functionally active lncRNAs was identified by 
utilizing stringent criteria (RPKM in at least 10% of samples). The 
comparison between the severe and non-severe COVID-19 patients 
was demonstrated in a volcano plot (Figure  2). Overall, we found 
687 lncRNAs using the criteria of P-value  <  0.05 and |log2(fold 
change)|>=1 (Table  S1). A number of most significantly regulated 
lncRNA signatures were listed in Table 1. Among the up-regulated 
lncRNAs, 3 lncRNAs had a log fold change above 3. Among the down-
regulated lncRNAs, 1 lncRNA had a log fold change above 6 and 6 
lncRNAs had a fold change between 4 and 6. The most up-regulated 
one was ENSG00000231412 (AC005392.2) (log fold change: 3.73), 
followed by ENSG00000274173 (AL035661.1) (log fold chang: 3.47) 
and ENSG00000231535 (LINC00278) (log fold change: 3.08). The 
most down-regulated one was ENSG00000229807 (XIST) (log fold 
change: −6.573), followed by ENSG00000273160 (AL359962.2) (log 
fold change: −4.412). Also, the expression quantity of lncRNA be-
tween patients and healthy controls was compared (Figure S1 and 

Figure S2). Venn diagram was also used to summarize the finding 
(Figure S3). Overall, there were 1072 lncRNAs differentially ex-
pressed in both groups. With the exclusion of the lncRNAs only dif-
ferentially expressed in both two groups, there were 215 specific 
lncRNAs differentially expressed in three groups.

3.3 | Hierarchical clustering and PCA

We calculated RNA-seq based lncRNA expression levels in FPKM 
and performed unsupervised hierarchical clustering to detect simi-
larities in gene expression profiles between severe, non-severe 
and healthy control by fashClust function of the WGCNA package 
(Figure  3A). We observed an obvious separation between those 
three groups, suggesting specific lncRNA profile signatures for 
COVID-19 patients. Principal component analysis (PCA) of vari-
ant genes re-marked such separation (Figure 3B). PCA was able to 
distinguish severe patients demonstrated that the severe patients 
separated from the healthy control and non-severe patients (PC1: 
62.9%, PC2: 5.7%). This result enhanced that the lncRNA profile of 
severe patients differs a lot from non-severe patients and healthy 
control.

TA B L E  1   Top 10 up- and down-regulated LncRNA in severe patients when compared with non-severe patients

Down-regulated LncRNAs

ensembl-ID logFC AveExpr t P value adj.P. Val B Symbol

ENSG00000229807 −6.573 1.542 −4.149 1.86E-04 8.42E-04 0.092 XIST

ENSG00000273160 −4.412 2.669 −11.368 1.13E-13 8.98E-12 21.097 AL359962.2

ENSG00000223511 −4.180 0.081 −9.204 3.92E-11 1.01E-09 15.290 AL683807.1

ENSG00000223511 −4.180 0.081 −9.204 3.92E-11 1.01E-09 15.290 AL683807.1

ENSG00000256427 −4.123 −0.124 −12.225 1.32E-14 2.31E-12 23.224 AC010175.1

ENSG00000270069 −4.048 0.240 −10.236 2.24E-12 9.91E-11 18.136 MIR222HG

ENSG00000276867 −4.042 −0.337 −12.561 5.82E-15 1.29E-12 24.032 AC074050.4

ENSG00000256582 −3.974 0.819 −16.160 2.04E-18 4.28E-15 31.836 LINC02390

ENSG00000257242 −3.887 1.620 −14.255 1.15E-16 9.70E-14 27.892 LINC01619

ENSG00000230606 −3.704 2.173 −13.267 1.09E-15 4.42E-13 25.682 AC092683.1

Up-regulated LncRNAs

ensembl-ID logFC AveExpr t P value adj.P. Val B Symbol

ENSG00000231412 3.729 1.059 5.372 4.36E-06 2.84E-05 3.758 AC005392.2

ENSG00000274173 3.469 −0.177 6.338 2.13E-07 1.95E-06 6.742 AL035661.1

ENSG00000231535 3.075 0.197 2.531 1.57E-02 4.25E-02 -4.104 LINC00278

ENSG00000273812 2.600 0.558 5.737 1.39E-06 1.03E-05 4.883 BX640514.2

ENSG00000283036 2.503 −1.086 5.119 9.59E-06 5.76E-05 2.983 LINC01988

ENSG00000275527 2.489 0.588 5.922 7.81E-07 6.16E-06 5.456 AC100835.2

ENSG00000261172 2.363 0.503 5.143 8.92E-06 5.39E-05 3.055 AC133919.2

ENSG00000237520 2.354 −1.232 4.332 1.07E-04 5.16E-04 0.623 AL391832.1

ENSG00000226012 2.285 0.014 5.042 1.22E-05 7.24E-05 2.747 AP001434.1

ENSG00000249790 2.203 6.121 5.060 1.15E-05 6.85E-05 2.804 AC092490.1
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3.4 | Development of weighted co-expression 
network and identification of key modules

Selection of the soft-thresholding power is an important step when 
constructing a WGCNA. We performed the analysis of network to-
pology for thresholding powers from 1 to 20 and identified the rela-
tively balanced scale independence and mean connectivity of the 
WGCNA. As shown in Figure 4A and B, power value 3, which was 
the lowest power for the scale-free topology fit index on 0.9, was 
selected to produce a hierarchical clustering tree (dendrogram) of 
lncRNAs. We set the MEDissThres as 0.25 to merge similar modules. 
Finally, 4 modules were identified. There were 366 lncRNA in the 

blue module, 34 lncRNA in the yellow module, 258 lncRNA in the 
brown module and 1862 lncRNAs in the turquois module.

Interaction relationships of the 4 modules were analysed, and 
the network heat map was plotted (Figure 4C). The results revealed 
that each module was an independent validation to each other, 
which demonstrated a high level of independence among the mod-
ules and relative independence of genes expression in each module. 
Importantly, we calculated the correlation of the modules and the 
severity of disease. The correlation of the blue module, turquoise 
module, brown module and yellow module was 0.22, −0.86, −0.52 
and 0.24, respectively. The p-values of brown and turquoise module 
are significant (P-value < 0.01), which indicated that the brown and 

F I G U R E  3   (A) Hierarchical clustering conducted on CuffDiff2 expression values (in FPKM). ZA/A/C are clearly separated in two distinct 
groups. (B) PCA of variant genes in which input samples are clustered in severe patients (blue circles), non-severe patients (green circles) and 
control (red circles) groups [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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turquoise module may play an important role in the development of 
the COVID-19 (Figure 4D). We identified the turquoise module and 
brown module as the modules most relevant to the disease severity.

3.5 | lncRNA subtypes categorize COVID-19 
patients based on iCluster algorithm

The optimal combination of subtypes was determined via minimizing 
a Bayesian Information Criterion (BIC). An ‘elbow’ point was noted 
at K = 3, beyond which the BIC kept increasing and thus the 4-class 
solution was chosen (Figure S4). In total, four subtypes were identi-
fied (Figure  5A). The outcome of iClusters algorithm showed that 
COVID-19 is a heterogeneous disease with multi-subtypes. The sig-
nature of each iCluster was shown in Table S2–S5. We inferred that 
patients in different subtypes can represent different severe condi-
tions. Thus, we developed a LASSO model to calculate patients’ risk 
scores. The risk score for predicting severity of COVID-19 patients 

was calculated based on the expression levels and the correspond-
ing regression coefficients of the 7 lncRNAs (Table 2). Based on the 
risk score, we observed a significant difference between severe and 
non-severe COVID-19 patients (P = 7e-6) (Figure 5B). Subsequently, 
the area under the curve (AUC) value of the receiver operating char-
acteristic (ROC) curve revealed the significant performance of this 
7-lncRNAs signature in differentiating the severe and non-severe 
patients (AUC = 1) (Figure S5).

We compare the possible risk score in every subtype and ob-
served that severe patients have two different subtypes (iCluster 
2 and iCluster 3) with indicate a clear subtype in severe patients 
(Figure 5C). Next, we compared immune status between different 
iClusters subtypes. We calculated the immune scores to measure 
the immune status of patients. The signatures of each immune index 
which was significant different between non-severe and severe pa-
tients were screened using Bortua R package. The immune scores 
were calculated based on all signatures utilizing GSVA R package. We 
conclude that subtype of iCluster 2 and iCluster 3 had a significant 

F I G U R E  4   (A) Soft threshold in Weighted Gene Co-Expression Network Analysis (WGCNA) of lncRNAs. (B) Using topological overlapping 
matrix dissimilarity, the cluster dendrogram was prepared to show four individual modules including MEyellow, MEblue, MEbrown and 
MEturquoise. (C) Heat map plot of the eigenegene adjacencies in the network; (D) the correlation analysis between the four modules and 
severity level. The ME brown and MEturquoise module shows negative correlation with the severity phenotype [Colour figure can be viewed 
at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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low immune score when compared to iCluster 1 and iCluster 4, con-
sistent with the severe clinical condition (Figure 5D).

4  | DISCUSSION

Long non-coding RNA (lncRNA) is a subclass of endogenous, non-
protein-coding RNA, which lacks an open reading frame and is more 
than 200 nucleotides in length. As the lncRNAs expression pattern 

remains unclear in COVID-19 patients, our study is the first analysis 
to provide detailed lncRNAs information as molecular biomarkers. 
Here, we used RNA sequencing to characterize the lncRNA expres-
sion pattern in peripheral blood from 17 severe patients and 12 non-
severe patients and 10 healthy controls. Overall, we observed that 
many lncRNAs were significantly altered as we compared between 
the three groups: severe, non-severe COVID-19 patients and healthy 
control. For example, we observed lncRNA GATA5 was significantly 
elevated in severe condition. In a paper published by Gennadi, 

F I G U R E  5   (A) Four clusters of lncRNAs were identified based on icluster algorithm. (B) Risk score by lncRNA pattern was compared 
between severe and non-severe patients. (C) Risk score was compared in four icluster subtypes. (D) Immune score was compared in four 
lncRNA subtypes [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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GATA5 was repressor of ACE2 gene which may be putative mitiga-
tion agents.19

The driving factors in COVID-19 remain unclear. It is urgent 
for the doctors to identify from the numerous outpatients as soon 
as possible who will develop severe conditions like ARDS or even 
death. In a paper published by Zhou et al, the authors confirmed 
the older age, high SOFA score and d-dimer greater than 1μg/mL 
are potential risk factors by logistic regression methods from 191 
patients with 54 deaths.20 T cell and B cell functions decreased with 
age. The excess production of type 2 cytokines could lead to a de-
ficiency in control of viral replication and produce more prolonged 
pro-inflammatory responses, potentially leading to poor outcome.21 
However, as the cases are climbing rapidly among young adults, 
for example, in California, more than 44% of new diagnoses are in 
people age 34 or younger, it is urgent for us to dig out more mark-
ers which can predict the severity of the COVID-19 patients. One 
major finding of our study is that we reported a good 7-lncRNA 
panel which can represent the severity of the disease with the area 
under curve of 1 for the first time. These 7 lncRNAs, AC010904.2, 
AC012065.4, AL365203.2, AC010175.1, LINC00562, AC010536.1 
and AP005671.1, were firstly reported in COVID-19 patients. 
However, the detailed biological mechanism of these lncRNAs is 
missing which needs more investigation. Although the biological 
importance of these unreported lncRNAs need further evaluation 
by experiments, our study proposed an efficient strategy to identify 
important lncRNAs associated with COVID-19 and predict their po-
tential functional roles, which may guide subsequently mechanism 
experiments.

From immune index of these patients, we observed a significant 
decrease index like total lymphocytes, T cell counts, CD4 + T cell 
counts and B cell counts and a significant increase in Procalcitonin 
and CRP. The results were consistent with previous studies. Chen 
et al characterized the immunological features of COVID-19 patients 
with different severity of the disease. Totally, 11 patients with se-
vere disease displayed significantly higher serum levels of IL-6, IL-10 
and TNF-α and lower absolute numbers of T lymphocytes, CD4 + T 
cells and CD8 + T cells as compared with 10 moderate patients.22 
Moreover, Xiong et al performed a transcriptome sequencing anal-
ysis of several pro-inflammatory genes in both PMCs and broncho-
alveolar lavage fluid of patients with COVID-19, compared with 
samples from healthy donors. Laboratory findings of the 3 patients 

indicated cell count reduction of various types of immune cells in-
cluding lymphocytes in patients’ blood.23 Another study by Wang 
et al, including 65 SARS-CoV-2-positive patients, showed that the 
absolute numbers of CD4 + T cells, CD8 + T cells and B cells pro-
gressively decreased in relation with increasing severity of illness.24 
All these evidence have been demonstrated that disease progression 
of COVID-19 is dominated by the progressive loss of lymphocytes 
and gain of myeloid cells. The ‘cytokine storm’ and the subsequent 
ARDS result from the effects of the combination of several immune-
active molecules. The ‘cytokine storm’ is the most dangerous and 
potentially life-threatening event related to COVID-19.25 In recent 
years, the physiological roles of lncRNAs in immune system emerge 
as vital and inspiring. For example, lncRNA-EPS can precisely regu-
late in macrophages to control the expression of immune response 
genes.26 Zhang et al also reported that lncRNA NEAT1 can signifi-
cantly reduce the expression of a group of chemokines and cyto-
kines, including IL-6, CXCL10.27 In our study, we extracted total RNA 
from peripheral blood of each patients, so the lncRNA expression 
pattern from these RNAs can be regarded as the unique feature rep-
resenting the severity condition of these patients, regardless of the 
specific PBMC types. Based on these immune indexes, we develop 
an immune score which can represent the patient's immune status 
by GSVA algorithm based on these lncRNA signatures. It is of vital 
significance to further investigate the lncRNAs’ relationship with the 
immune status.

Some studies explored the lncRNAs in COVID-19 patients. 
Vishnubalaji et al revealed 155 up-regulated and 195 down-regulated 
lncRNAs comparing SARS-CoV-2 infected bronchial epithelial cells 
with normal human bronchial epithelial cells.9 Yousefi et al also to 
determine the importance of key non-coding RNAs involving in TGF-
beta signalling pathway as potential therapeutic targets by computa-
tional analysis.10 However, none of them reported featured lncRNAs 
between severe and non-severe COVID-19 patients especially for 
risk stratification. By iCluster algorithm methods, our study is the 
first analysis to provide lncRNA-based stratification of COVID-19 
patients by means of lncRNA subtypes. The proposed subtypes 
are characterized by distinct molecular profiles defined by lncRNA 
expression. The icluster-based subtypes are associated with the se-
verity of the disease and immune status. In particular, it is evident 
that subtype iCluster1 and iCluster4 is associated with more favour-
able condition of COVID-19 and subtype iCluster2 and iCluster3 

TA B L E  2   The detailed information of the 7-lncRNA pattern predicting risk of severity in COVID-19 patients

Ensemble ID Gene symbol Gene type Chromosome location

ENSG00000272002 AC010904.2 lincRNA chr2:7260871-7261504:(+)

ENSG00000270100 AC012065.4 lincRNA chr2:20678254-20678932:(-)

ENSG00000273038 AL365203.2 lincRNA chr10:32887255-32889311:(-)

ENSG00000256427 AC010175.1 lincRNA chr12:9246497-9257960:(+)

ENSG00000260388 LINC00562 lincRNA chr13:47930153-47932622:(-)

ENSG00000226180 AC010536.1 lincRNA chr16:87693537-87696147:(-)

ENSG00000266288 AP005671.1 lincRNA chr18:5381641-5385330(-)
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indicates more severe condition. It is our surprising finding that in 
severe patients, we observe two subtypes (iCluster2 and iCluster3) 
with similar immune scores and risk scores. It indicates that severe 
patients can be divided into two subtypes by lncRNA expression 
pattern. It is of great value for us to further analyse the differed ln-
cRNAs in the prediction of severity of COVID-19.

One disadvantage of this study is that the data limit our ability to 
further analyse the function of these lncRNAs. We plan to compare 
lncRNA expression-based subtypes with mRNA expression-based 
subtypes in further study. Moreover, we hope more studies can 
focus on the risk prediction or prognosis ability of lncRNAs with a 
larger number of COVID-19 patients in the future.

In summary, we have presented a lncRNA atlas of the peripheral 
immune response to COVID-19. These data highlight immunological 
features associated with severity of the disease. These lncRNAs can 
be new surrogate biomarker of diagnosis and prognosis in vitro of 
COVID-19 patients.

5  | CONCLUSIONS

In conclusion, we have identified a substantial number of COVID-19 
related lncRNAs in this study, and we have imputed potential immu-
nological functions for them in the pathogenesis of COVID-19 pa-
tients. Moreover, our results provide interesting potential clues into 
the mechanisms of lncRNA panel in the severity of COVID-19 ARDS. 
As the roles of lncRNAs in COVID-19 have not yet been fully identi-
fied and understood, this analysis should provide valuable resource 
and information for the future studies.
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